Skip to main content

Advertisement

Log in

Head roll dependent variability of subjective visual vertical and ocular counterroll

  • Research Note
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We compared the variability of the subjective visual vertical (SVV) and static ocular counterroll (OCR), and hypothesized a correlation between the measurements because of their shared macular input. SVV and OCR were measured simultaneously in various whole-body roll positions [upright, 45° right-ear down (RED), and 75° RED] in six subjects. Gains of OCR were −0.18 (45° RED) and −0.12 (75° RED), whereas gains of compensation for body roll in the SVV task were −1.11 (45° RED) and −0.96 (75° RED). Normalized SVV and OCR variabilities were not significantly different (P > 0.05), i.e., both increased with increasing roll. Moreover, a significant correlation (R 2 = 0.80, slope = 0.29) between SVV and OCR variabilities was found. Whereas the gain of OCR is different from the gain of SVV, trial-to-trial variability of OCR follows the same roll-dependent modulation observed in SVV variability. We propose that the similarities in variability reflect a common otolith input, which, however, is subject to distinct central processing for determining the gain of SVV and OCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anastasopoulos D, Bronstein A, Haslwanter T, Fetter M, Dichgans J (1999) The role of somatosensory input for the perception of verticality. Ann N Y Acad Sci 871:379–383

    Article  PubMed  CAS  Google Scholar 

  • Angelaki DE, Cullen KE (2008) Vestibular system: the many facets of a multimodal sense. Annu Rev Neurosci 31:125–150

    Article  PubMed  CAS  Google Scholar 

  • Aubert H (1861) Eine scheinbare bedeutende Drehung von Objekten bei Neigung des Kopfes nach rechts oder links. Virchows Arch 20:381–393

    Article  Google Scholar 

  • Bergamin O, Bizzarri S, Straumann D (2002) Ocular torsion during voluntary blinks in humans. Invest Ophthalmol Vis Sci 43:3438–3443

    PubMed  Google Scholar 

  • Bockisch CJ, Haslwanter T (2001) Three-dimensional eye position during static roll and pitch in humans. Vis Res 41:2127–2137

    Article  PubMed  CAS  Google Scholar 

  • Brandt T, Dieterich M (1999) The vestibular cortex. Its locations, functions, and disorders. Ann N Y Acad Sci 871:293–312

    Article  PubMed  CAS  Google Scholar 

  • Bronstein AM (1999) The interaction of otolith and proprioceptive information in the perception of verticality. The effects of labyrinthine and CNS disease. Ann N Y Acad Sci 871:324–333

    Article  PubMed  CAS  Google Scholar 

  • Bronstein AM, Yardley L, Moore AP, Cleeves L (1996) Visually and posturally mediated tilt illusion in Parkinson’s disease and in labyrinthine defective subjects. Neurology 47:651–656

    PubMed  CAS  Google Scholar 

  • Collewijn H, van der Steen J, Ferman L, Jansen TC (1985) Human ocular counterroll: assessment of static and dynamic properties from electromagnetic scleral coil recordings. Exp Brain Res 59:185–196

    Article  PubMed  CAS  Google Scholar 

  • Crawford JD, Tweed DB, Vilis T (2003) Static ocular counterroll is implemented through the 3-D neural integrator. J Neurophysiol 90:2777–2784

    Article  PubMed  Google Scholar 

  • De Graaf B, Bekkering H, Erasmus C, Bles W (1992) Influence of visual, vestibular, cervical, and somatosensory tilt information on ocular rotation and perception of the horizontal. J Vestib Res 2:15–30

    PubMed  Google Scholar 

  • De Graaf B, Bos JE, Groen E (1996) Saccular impact on ocular torsion. Brain Res Bull 40:321–326

    Article  PubMed  Google Scholar 

  • De Vrijer M, Medendorp WP, Van Gisbergen JA (2008) Shared computational mechanism for tilt compensation accounts for biased verticality percepts in motion and pattern vision. J Neurophysiol 99:915–930

    Article  PubMed  Google Scholar 

  • Diamond SG, Markham CH, Simpson NE, Curthoys IS (1979) Binocular counterrolling in humans during dynamic rotation. Acta Otolaryngol 87:490–498

    Article  PubMed  CAS  Google Scholar 

  • Fernandez C, Goldberg JM, Abend WK (1972) Response to static tilts of peripheral neurons innervating otolith organs of the squirrel monkey. J Neurophysiol 35:978–987

    PubMed  CAS  Google Scholar 

  • Goonetilleke SC, Mezey LE, Burgess AM, Curthoys IS (2008) On the relation between ocular torsion and visual perception of line orientation. Vis Res 48:1488–1496

    Article  PubMed  Google Scholar 

  • Graybiel A, Miller EF 2nd, Newsom BD, Kennedy RS (1968) The effect of water immersion on perception of the oculogravic illusion in normal and labyrinthine-defective subjects. Acta Otolaryngol 65:599–610

    Article  PubMed  CAS  Google Scholar 

  • Haustein W (1989) Considerations on Listing's law and the primary position by means of a matrix description of eye position control. Biol Cybern 60:411–420

    Article  PubMed  CAS  Google Scholar 

  • Haustein W (1992) Head-centric visual localization with lateral body tilt. Vis Res 32:669–673

    Article  PubMed  CAS  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Howard IP (1982) Human visual orientation. Wiley, New York

    Google Scholar 

  • Jaggi-Schwarz K, Hess BJ (2003) Influence of dynamic tilts on the perception of earth-vertical. Exp Brain Res 149:340–350

    PubMed  Google Scholar 

  • Jarchow T, Mast FW (1999) The effect of water immersion on postural and visual orientation. Aviat Space Environ Med 70:879–886

    PubMed  CAS  Google Scholar 

  • Krejcova H, Highstein S, Cohen B (1971) Labyrinthine and extra-labyrinthine effects on ocular counter-rolling. Acta Otolaryngol 72:165–171

    Article  PubMed  CAS  Google Scholar 

  • Lechner-Steinleitner S (1978) Interaction of labyrinthine and somatoreceptor inputs as determinants of the subjective vertical. Psychol Res 40:65–76

    Article  PubMed  CAS  Google Scholar 

  • MacDougall HG, Curthoys IS, Betts GA, Burgess AM, Halmagyi GM (1999) Human ocular counterrolling during roll-tilt and centrifugation. Ann N Y Acad Sci 871:173–180

    Article  PubMed  CAS  Google Scholar 

  • Maruta J, Raphan T, Simpson JI, Cohen B (2008) Vertical (Z-axis) acceleration alters the ocular response to linear acceleration in the rabbit. Exp Brain Res 185:87–99

    Article  PubMed  Google Scholar 

  • Mast F (2000) Does the world rock when the eyes roll? Swiss J Psychol 59:89–101

    Article  Google Scholar 

  • Merker BH, Held R (1981) Eye torsion and the apparent horizon under head tilt and visual field rotation. Vis Res 21:543–547

    Article  PubMed  CAS  Google Scholar 

  • Miller EF, Graybiel A (1962) Counterrolling of the human eyes produced by head tilt with respect to gravity. Acta Otolaryngol 54:479–501

    Article  PubMed  Google Scholar 

  • Miller AD, Graybiel A (1963) A comparison of ocular counter-rolling movements between normal persons and deaf subjects with bilateral labyrinthine defects. Ann Otol 72:885–893

    Google Scholar 

  • Miller EF 2nd, Fregly AR, Graybiel A (1968) Visual horizontal-perception in relation to otolith-function. Am J Psychol 81:488–496

    Article  PubMed  Google Scholar 

  • Mittelstaedt H (1983) A new solution to the problem of the subjective vertical. Naturwissenschaften 70:272–281

    Article  PubMed  CAS  Google Scholar 

  • Mueller GE (1916) Ueber das Aubertsche Phaenomenon. Z Psychol Physiol Sinnesorg 49:109–246

    Google Scholar 

  • Palla A, Bockisch CJ, Bergamin O, Straumann D (2006) Dissociated hysteresis of static ocular counterroll in humans. J Neurophysiol 95:2222–2232

    Article  PubMed  CAS  Google Scholar 

  • Pansell T, Tribukait A, Bolzani R, Schworm HD, Ygge J (2005) Drift in ocular torsion during sustained head tilt. Strabismus 13:115–121

    Article  PubMed  Google Scholar 

  • Pavlou M, Wijnberg N, Faldon ME, Bronstein AM (2003) Effect of semicircular canal stimulation on the perception of the visual vertical. J Neurophysiol 90:622–630

    Article  PubMed  Google Scholar 

  • Schoene H (1964) On the role of gravity in human spatial orientation. Aerosp Med 35:764–772

    PubMed  CAS  Google Scholar 

  • Schoene H, Udo de Haes H (1968) Perception of gravity-vertical as a function of head and trunk position. Z Vgl Physiol 60:440–444

    Article  Google Scholar 

  • Tomko DL, Peterka RJ, Schor RH (1981) Responses to head tilt in cat eighth nerve afferents. Exp Brain Res 41:216–221

    Article  PubMed  CAS  Google Scholar 

  • Udo de Haes HA (1970) Stability of apparent vertical and ocular countertorsion as a function of lateral tilt. Percept Psychophys 8:137–142

    Google Scholar 

  • Van Beuzekom AD, Van Gisbergen JA (2000) Properties of the internal representation of gravity inferred from spatial-direction and body-tilt estimates. J Neurophysiol 84:11–27

    PubMed  Google Scholar 

  • Van Huffel S, Vandewalle J (1991) The total least squares problem. Computational aspects and analysis. Society for Industrial and Applied Mathematics, Philadelphia

    Google Scholar 

  • Wade SW, Curthoys IS (1997) The effect of ocular torsional position on perception of the roll-tilt of visual stimuli. Vis Res 37:1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Yardley L (1990) Contribution of somatosensory information to perception of the visual vertical with body tilt and rotating visual field. Percept Psychophys 48:131–134

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Albert Züger for technical assistance, Itsaso Olasagasti for statistical advice and Thomas Haslwanter for critically reading the manuscript. Funding was provided by the Swiss National Science Foundation (3200B0-105434), the Betty and David Koetser Foundation for Brain Research, Zurich, Switzerland, and the Center of Integrative Human Physiology, University of Zurich, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Tarnutzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarnutzer, A.A., Bockisch, C.J. & Straumann, D. Head roll dependent variability of subjective visual vertical and ocular counterroll. Exp Brain Res 195, 621–626 (2009). https://doi.org/10.1007/s00221-009-1823-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1823-4

Keywords

Navigation