Skip to main content

Advertisement

Log in

Response properties of temporomandibular joint mechanosensitive neurons in the trigeminal sensory complex of the rabbit

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The neurophysiological properties of neurons sensitive to TMJ movement (TMJ neurons) in the trigeminal sensory complex (Vcomp) during passive movement of the isolated condyle were examined in 46 rabbits. Discharges of TMJ neurons from the rostral part of the Vcomp were recorded with a microelectrode when the isolated condyle was moved manually and with a computer-regulated mechanostimulator. A total of 443 neurons responding to mechanical stimulation of the face and oral cavity were recorded from the brainstem. Twenty-one TMJ neurons were detected rostrocaudally from the dorsal part of the trigeminal principal sensory nucleus (NVsnpr), subnucleus oralis of the trigeminal spinal nucleus, and reticular formation surrounding the trigeminal motor nucleus. Most of the TMJ neurons were located in the dorso-rostral part of the NVsnpr. Of the TMJ units recorded, 90 % were slowly adapting and 26 % had an accompanying resting discharge. The majority (86 %) of the TMJ units responded to the movement of the isolated condyle in the anterior and/or ventral directions, and half were sensitive to the condyle movement in a single direction. The discharge frequencies of TMJ units increased as the condyle displacement and constant velocity (5 mm/s) increased within a 5-mm anterior displacement of the isolated condyle. Based on these results, we conclude that sensory information is processed by TMJ neurons encoding at least joint position and displacement in the physiological range of mandibular displacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Appenteng K, Lund JP, Seguin JJ (1982) Behavior of cutaneous mechanoreceptors recorded in mandibular division of Gasserian ganglion of the rabbit during movements of lower jaw. J Neurophysiol 47:151–166

    PubMed  CAS  Google Scholar 

  • Athanassiadis T, Westberg KG, Olsson KA, Kolta A (2005) Physiological characterization, localization and synaptic inputs of bursting and nonbursting neurons in the trigeminal principal sensory nucleus of the rat. Eur J Neurosci 22:3099–3110

    Article  PubMed  CAS  Google Scholar 

  • Bellavance MA, Demers M, Deschênes M (2010) Feedforward inhibition determines the angular tuning of vibrissal responses in the principal trigeminal nucleus. J Neurosci 30:1057–1063

    Article  PubMed  CAS  Google Scholar 

  • Bernier AP, Arsenault I, Lund JP, Kolta A (2010) Effect of the stimulation of sensory inputs on the firing of neurons of the trigeminal main sensory nucleus in the rat. J Neurophysiol 103:915–923

    Article  PubMed  CAS  Google Scholar 

  • Bishop PO, Burke W, Davis R (1962) Single-unit recording from antidromically activated optic radiation neurons. J Physiol 162:432–450

    PubMed  CAS  Google Scholar 

  • Bourque MJ, Kolta A (2001) Properties and interconnections of trigeminal interneurons of the lateral pontine reticular formation in the rat. J Neurophysiol 86:2583–2596

    PubMed  CAS  Google Scholar 

  • Boyd IA (1954) The histological structure of the receptors in the knee-joint of the cat correlated with their physiological response. J Physiol 124:476–488

    PubMed  CAS  Google Scholar 

  • Brown AG (1968) Cutaneous afferent fiber collaterals in the dorsal columns of the cat. Exp Brains Res 5:293–305

    CAS  Google Scholar 

  • Buisseret-Delmas C, Pinganaud G, Compoint C, Buisseret P (1997) Projection from trigeminal nuclei to neurons of the mesencephalic trigeminal nucleus in rat. Neurosci Lett 229:189–192

    Article  PubMed  CAS  Google Scholar 

  • Burgess PR, Clark FJ (1969a) Characteristics of knee joint receptors in the cat. J Physiol 203:317–335

    PubMed  CAS  Google Scholar 

  • Burgess PR, Clark FJ (1969b) Dorsal column projection of fibres from the cat knee joint. J Physiol 203:301–315

    PubMed  CAS  Google Scholar 

  • Capra NF, Ro JY, Wax TD (1994) Physiological identification of jaw-movement-related neurons in the trigeminal nucleus of cats. Somatosens Mot Res 11:77–88

    Article  PubMed  CAS  Google Scholar 

  • Casatti CA, Frigo L, Bauer JA (1999) Origin of sensory and autonomic innervation of the rat temporomandibular joint: a retrograde axonal tracing study with the fluorescent dye fast blue. J Dent Res 78:776–783

    Article  PubMed  CAS  Google Scholar 

  • Chiang CY, Dostrovsky JO, Sessle BJ (1990) Role of anterior pretectal nucleus in somatosensory cortical descending modulation of jaw-opening reflex in rats. Brain Res 515:219–226

    Article  PubMed  CAS  Google Scholar 

  • Collins DF, Refshauge KM, Todd G, Gandevia SG (2005) Cutaneous receptors contribute to kinesthesia at the index finger, elbow, and knee. J Neurophysiol 94:1699–1706

    Article  PubMed  CAS  Google Scholar 

  • Donga R, Lund JP (1991) Discharge patterns of trigeminal commissural last-order interneurons during fictive mastication in the rabbit. J Neurophysiol 66:1564–1578

    PubMed  CAS  Google Scholar 

  • Dubner R, Sessle BJ, Storey AT (1978) Temporomandibular joint. Periodontium and temporomandibular joint, chap 6. In: Dubner R (ed) The neural bases of oral and facial function. Plenum Press, New York, pp 160–174

    Google Scholar 

  • Eisenman J, Landgren S, Novin D (1963) Functional organization in the main sensory trigeminal nucleus and in the rostral subdivision of the nucleus of the spinal trigeminal tract in the cat. Acta Physiol Scand 214(Suppl):1–44

    Google Scholar 

  • Fort P, Luppi PH, Jouvet M (1994) Afferents to the nucleus reticularis parvicellularis of the cat medulla oblongata: a tract-tracing study with cholera toxin B subunit. J Comp Neurol 342:603–618

    Article  PubMed  CAS  Google Scholar 

  • Furuta T, Urbain N, Kaneko T, Deschênes M (2010) Corticofugal control of vibrissa-sensitive neurons in the interpolaris nucleus of the trigeminal complex. J Neurosci 30:1832–1838

    Article  PubMed  CAS  Google Scholar 

  • Hamann W (1995) Mammalian cutaneous mechanoreceptors. Prog Biophys Mol Biol 64:81–104

    Article  PubMed  CAS  Google Scholar 

  • Hidaka O, Morimoto T, Kato T, Masuda Y, Inoue T, Takada K (1999) Behavior of jaw muscle spindle afferents during cortically induced rhythmic jaw movements in the anesthetized rabbit. J Neurophysiol 82:2633–2640

    PubMed  CAS  Google Scholar 

  • Jänig W, Schmidt RF, Zimmermann M (1968) Two specific feedback pathways to the central afferent terminals of phasic and tonic mechanoreceptors. Exp Brain Res 6:116–129

    PubMed  Google Scholar 

  • Johnson KO (2001) The roles and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol 11:455–461

    Article  PubMed  CAS  Google Scholar 

  • Kawamura Y, Abe K (1974) Role of sensory information from temporomandibular joint. Bull Tokyo Med Dent Univ 21:78–82

    PubMed  Google Scholar 

  • Kawamura Y, Majima T, Kato I (1967) Physiologic role of deep mechanoreceptor in temporomandibular joint capsule. J Osaka Univ Dent Sch 7:63–76

    PubMed  CAS  Google Scholar 

  • Kirkpatrick DB, Kruger L (1975) Physiological properties of neurons in the principal sensory trigeminal nucleus of the cat. Exp Neurol 48:664–690

    Article  PubMed  CAS  Google Scholar 

  • Klineberg IJ, Greenfield BE, Wyke BD (1971) Afferent discharges from temporomandibular articular mechanoreceptors. An experimental analysis of their behavioural characteristics in the cat. Arch Oral Biol 16:1463–1479

    Article  PubMed  CAS  Google Scholar 

  • Kolta A, Westberg KG, Lund JP (2000) Identification of brainstem interneurons projecting to the trigeminal motor nucleus and adjacent structures in the rabbit. J Chem Neuroanat 19:175–195

    Article  PubMed  CAS  Google Scholar 

  • Landgren S, Olsson KÅ, Westberg KG (1986) Bulbar neurones with axonal projections to the trigeminal motor nucleus in the cat. Exp Brain Res 65:98–111

    Article  PubMed  CAS  Google Scholar 

  • Lende RA, Poulos DA (1970) Functional localization in the trigeminal ganglion in the monkey. J Neurosurg 32:336–343

    Article  PubMed  CAS  Google Scholar 

  • Li YQ, Takada M, Kaneko T, Mizuno N (1995) Premotor neurons for trigeminal motor nucleus neurons innervating the jaw-closing and jaw-opening muscles: differential distribution in the lower brainstem of the rat. J Comp Neurol 356:563–579

    Article  PubMed  CAS  Google Scholar 

  • Lovick TA, Wolstencroft JH (1983) Projections from brain stem nuclei to the spinal trigeminal nucleus in the cat. Neuroscience 9:411–420

    Article  PubMed  CAS  Google Scholar 

  • Lund JP, Kolta A (2006) Generation of the central masticatory pattern and its modification by sensory feedback. Dysphagia 21:167–174

    Article  PubMed  Google Scholar 

  • Lund JP, Matthews B (1981) Responses of temporomandibular joint afferents recorded in the Gasserian ganglion of the rabbit to passive movements of the mandible. In: Kawamura Y, Dubner R (eds) Oral-facial sensory and motor functions. Quintessence, Tokyo, pp 117–128

    Google Scholar 

  • Lund JP, Kolta A, Westberg KG, Scott G (1998) Brainstem mechanisms underlying feeding behaviors. Curr Opin Neurobiol 8:718–724

    Article  PubMed  CAS  Google Scholar 

  • Luo PF, Wang BR, Peng ZZ, Li JS (1991) Morphological characteristics and terminating patterns of masseteric neurons of the mesencephalic trigeminal nucleus in the rat: an intracellular horseradish peroxidase labeling study. J Comp Neurol 303:286–299

    Article  PubMed  CAS  Google Scholar 

  • Macefield G, Gandevia SC, Burke D (1990) Perceptual responses to microstimulation of single afferents innervating joints, muscles and skin of the human hand. J Physiol 429:113–129

    PubMed  CAS  Google Scholar 

  • Meessen H, Olszewski J (1949) Cytoarchitektonischer atlas des rautenhirns des kaninchens. Karger, Basel

    Google Scholar 

  • Millar J (1975) Flexion-extension sensitivity of elbow joint afferents in cat. Exp Brain Res 24:209–214

    Article  PubMed  CAS  Google Scholar 

  • Min MY, Hsu PC, Yang HW (2003) The physiological and morphological characteristics of interneurons caudal to the trigeminal motor nucleus in rats. Eur J Neurosci 18:2981–2998

    Article  PubMed  Google Scholar 

  • Minnery BS, Simons DJ (2003) Response properties of whisker-associated trigeminothalamic neurons in rat nucleus principalis. J Neurophysiol 89:40–56

    Article  PubMed  Google Scholar 

  • Mizuno N, Yasui Y, Nomura S, Itoh K, Konishi A, Takada M, Kudo M (1983) A light and electron microscopic study of premotor neurons for the trigeminal motor nucleus. J Comp Neurol 215:290–298

    Article  PubMed  CAS  Google Scholar 

  • Morita T, Fujiwara T, Negoro T, Kurata C, Maruo H, Kurita K, Goto S, Hiraba K (2008) Movement of the mandibular condyle and activity of the masseter and lateral pterygoid muscles during masticatory-like jaw movements induced by electrical stimulation of the cortical masticatory area of rabbits. Arch Oral Biol 53:462–477

    Article  PubMed  Google Scholar 

  • Nagata K, Itoh S, Tsuboi A, Takafuji Y, Tabata T, Watanabe M (2008) Response properties of periodontal mechanosensitive neurons in the trigeminal ganglion of rabbit and neuronal activities during grinding-like jaw movement induced by cortical stimulation. Arch Oral Biol 53:1138–1148

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Katakura N (1995) Generation of masticatory rhythm in the brainstem. Neurosci Res 23:1–19

    PubMed  CAS  Google Scholar 

  • Nasution ID, Shigenaga Y (1987) Ascending and descending internuclear projections within the trigeminal sensory nuclear complex. Brain Res 425(2):234–247

    Article  PubMed  CAS  Google Scholar 

  • Ohya A, Tsuruoka M, Imai E, Fukunaga H, Shinya A, Furuya R, Kawawa T, Matsui Y (1993) Thalamic- and cerebellar-projecting interpolaris neuron responses to afferent inputs. Brain Res Bull 32:615–621

    Article  PubMed  CAS  Google Scholar 

  • Olsson KA, Landgren S, Westberg KG (1986a) Location of, and peripheral convergence on, the interneuron in the disynaptic path from the coronal gyrus of the cerebral cortex to the trigeminal motoneurons in the cat. Exp Brain Res 65:83–97

    Article  PubMed  CAS  Google Scholar 

  • Olsson KA, Sasamoto K, Lund JP (1986b) Modulation of transmission in rostral trigeminal sensory nuclei during chewing. J Neurophysiol 55:56–75

    PubMed  CAS  Google Scholar 

  • Peyron MA, Maskawi K, Woda A, Tanguay R, Lund JP (1997) Effects of food texture and sample thickness on mandibular movement and hardness assessment during biting in man. J Dent Res 76:789–795

    Article  PubMed  CAS  Google Scholar 

  • Pinganaud G, Bernat I, Buisseret P, Buisseret-Delmas C (1999) Trigeminal projections to hypoglossal and facial motor nuclei in the rat. J Comp Neurol 415:91–104

    Article  PubMed  CAS  Google Scholar 

  • Ro JY, Capra NF (1994) Receptive field properties of trigeminothalamic neurons in the rostral trigeminal sensory nuclei of cats. Somatosens Mot Res 11:119–130

    Article  PubMed  CAS  Google Scholar 

  • Ro JY, Capra NF (1995) Encoding of jaw movements by central trigeminal neurons with cutaneous receptive fields. Exp Brain Res 104:363–375

    Article  PubMed  CAS  Google Scholar 

  • Rossi A, Grigg P (1982) Characteristics of hip joint mechanoreceptors in the cat. J Neurophysiol 47:1029–1042

    PubMed  CAS  Google Scholar 

  • Sawyer CH, Everett JW, Green JD (1954) The rabbit diencephalons in stereotaxic coordinates. J Comp Neurol 101:801–824

    Article  PubMed  CAS  Google Scholar 

  • Sessle BJ, Greenwood F (1974) Influence of trigeminal nucleus caudalis on the responses of cat trigeminal brain stem neurones with orofacial mechanoreceptive fields. Brain Res 67:330–333

    Article  PubMed  CAS  Google Scholar 

  • Sessle BJ, Greenwood LF (1976) Inputs to trigeminal brain stem neurones from facial, oral, tooth pulp and pharyngolaryngeal tissues: I. Responses to innocuous and noxious stimuli. Brain Res 117:211–226

    Article  PubMed  CAS  Google Scholar 

  • Shigenaga Y, Okamoto T, Nishimori T, Suemune S, Nasution ID, Chen IC, Tsuru K, Yoshida A, Tabuchi K, Hosoi M, Tsuru H (1986) Oral and facial representation in the trigeminal principal and rostral spinal nuclei of the cat. J Comp Neurol 244:1–18

    Article  PubMed  CAS  Google Scholar 

  • Shigenaga Y, Yoshida A, Mitsuhiro Y, Doe K, Suemune S (1988) Morphology of single mesencephalic trigeminal neurons innervating periodontal ligament of the cat. Brain Res 448:331–338

    Article  PubMed  CAS  Google Scholar 

  • Shigenaga Y, Mitsuhiro Y, Shirana Y, Tsuru H (1990) Two types of jaw-muscle spindle afferents in the cat as demonstrated by intra-axonal staining with HRP. Brain Res 514:219–237

    Article  PubMed  CAS  Google Scholar 

  • Shipley MT (1974) Response characteristics of single units in the rat’s trigeminal nuclei to vibrissa displacements. J Neurophysiol 37:73–90

    PubMed  CAS  Google Scholar 

  • Skoglund S (1956) Anatomical and physiological studies of knee joint innervation in the cat. Acta Physiol Scand 124(Suppl):1–101

    Google Scholar 

  • Smith RL (1975) Axonal projections and connections of the principal sensory trigeminal nucleus in the monkey. J Comp Neurol 163:347–375

    Article  PubMed  CAS  Google Scholar 

  • Stevens SS (1957) On the psychophysical law. Psychol Rev 64:153–181

    Article  PubMed  CAS  Google Scholar 

  • Sunada T, Kurasawa I, Hirose Y, Nakamura Y (1990) Intracellular response properties of neurons in the spinal trigeminal nucleus to peripheral and cortical stimulation in the cat. Brain Res 514:189–197

    Article  PubMed  CAS  Google Scholar 

  • Tabata T, Karita K (1991a) Response properties of the periodontal mechanosensitive neurons in the trigeminal main sensory nucleus of the cat. Exp Brain Res 84:583–590

    Article  PubMed  CAS  Google Scholar 

  • Tabata T, Karita K (1991b) Response properties of periodontal mechanosensitive neurons in the trigeminal spinal tract nucleus of the cat. Somatosens Mot Res 8:261–269

    Article  PubMed  CAS  Google Scholar 

  • Takemura M, Sugimoto T, Shigenaga Y (1991) Difference in central projection of primary afferents innervating facial and intraoral structures in the rat. Exp Neurol 111:324–331

    Article  PubMed  CAS  Google Scholar 

  • Tamai Y, Iwamoto M, Tsujimoto T (1986) Pathway of the blink reflex in the brainstem of the cat: interneurons between the trigeminal nuclei and the facial nucleus. Brain Res 380:19–25

    Article  PubMed  CAS  Google Scholar 

  • Thilander B (1961) Innervation of the temporomandibular joint capsule in man. Trans R Sch Dent 2:1–67

    Google Scholar 

  • Tracey DJ (1979) Characteristics of wrist joint receptors in the cat. Exp Brain Res 34:165–176

    Article  PubMed  CAS  Google Scholar 

  • Trulsson M (2007) Force encoding by human periodontal mechanoreceptors during mastication. Arch Oral Biol 52:357–360

    Article  PubMed  Google Scholar 

  • Tsuboi A, Kolta A, Chen CC, Lund JP (2003) Neurons of the trigeminal main sensory nucleus participate in the generation of rhythmic motor patterns. Eur J Neurosci 17(2):229–238

    Article  PubMed  CAS  Google Scholar 

  • Tsuboi A, Takafuji Y, Itoh S, Nagata K, Tabata T, Watanabe M (2009) Response properties of trigeminal ganglion mechanosensitive neurons innervating the temporomandibular joint of the rabbit. Exp Brain Res 199:107–116

    Article  PubMed  Google Scholar 

  • Veinante P, Deschênes M (1999) Single- and multi-whisker channels in the ascending projections from the principal trigeminal nucleus in the rat. J Neurosci 19:5085–5095

    PubMed  CAS  Google Scholar 

  • Yoshida A, Hiraga T, Moritani M, Chen K, Takatsuki Y, Hirose Y, Bae YC, Shigenaga Y (1998) Morphologic characteristics of physiologically defined neurons in the cat trigeminal nucleus principalis. J Comp Neurol 401:308–328

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akito Tsuboi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, O., Tsuboi, A., Tabata, T. et al. Response properties of temporomandibular joint mechanosensitive neurons in the trigeminal sensory complex of the rabbit. Exp Brain Res 222, 113–123 (2012). https://doi.org/10.1007/s00221-012-3200-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3200-y

Keywords

Navigation