Skip to main content

Advertisement

Log in

Generation of the Central Masticatory Pattern and Its Modification by Sensory Feedback

  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

Mammalian mastication results from the interaction of an intrinsic rhythmical neural pattern and sensory feedback generated by the interaction of the effecter system (muscles, bones, joints, teeth, soft tissues) with food. The main variables that explain variation in the pattern of human mastication are the subjects themselves, their age, the type of food being eaten, and time during a sequence of movements. The intrinsic pattern of mastication is generated by a central pattern generator (CPG) located in the pons and medulla. The output of the CPG is modified by inputs that descend from higher centers of the brain and by feedback from sensory receptors. Intraoral touch receptors, muscle spindles in the jaw-closing muscles, and specialized mechanoreceptors in the periodontal ligament have especially powerful effects on movement parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Hiiemae K, Heath MR, Heath G, Kazazoglu E, Murray J, Sapper D, Hamblett K: Natural bites, food consistency and feeding behaviour in man. Arch Oral Biol 41:175–189, 1996

    Article  PubMed  CAS  Google Scholar 

  2. Peyron M-A, Lassauzay C, Woda A: Effects of increased hardness on jaw movement and muscle activity during chewing of visco-elastic model foods. Exp Brain Res 142:41–51, 2002

    Article  PubMed  CAS  Google Scholar 

  3. Peyron M-A, Blanc O, Lund JP, Woda A: Influence of age on the adaptability of human mastication. J Neurophysiol 92:773–779, 2004

    Article  PubMed  Google Scholar 

  4. Bremer F: Physiologie nerveuse de la mastication chez le chat et le lapin. Réflexes de mastication. Réponses masticatrices corticales et centre cortical du goût. Arch Int Physiol 21:308–352, 1923

    Google Scholar 

  5. Lund JP, Sasamoto K, Murakami T, Olsson KA: Analysis of rhythmical jaw movements produced by electrical stimulation of motor sensory cortex of rabbits. J Neurophysiol 52:1014–1029, 1984

    PubMed  CAS  Google Scholar 

  6. Lund JP, Lamarre Y: Activity of neurons in the lower precentral cortex during voluntary and rhythmical jaw movements in the monkey. Exp Brain Res 19:282–299, 1974

    Article  PubMed  CAS  Google Scholar 

  7. Sessle BJ, Yao D, Nishiura H, Yoshino K, Lee JC Martin RE, Murray GM: Properties and plasticity of the primate somatosensory and motor cortex related to orofacial sensorimotor function. Clin Exp Pharmacol Physiol 32:109–114, 2005

    Article  PubMed  Google Scholar 

  8. Gobel S: Axo-axonic septate junctions in the basket formations of the cat cerebellarcortex. J Cell Biol 51:328–333, 1971

    Article  PubMed  CAS  Google Scholar 

  9. Kuypers HG: An anatomical analysis of cortico-bulbar connexions to the pons and lower brain stem in the cat. J Anat 92:198–218, 1958

    PubMed  CAS  Google Scholar 

  10. Yasui Y, Itoh K, Mitani A, Takada M, Mizuno N: Cerebral cortical projections to the reticular regions around the trigeminal motor nucleus in the cat. J Comp Neurol 241:348–356, 1985

    Article  PubMed  CAS  Google Scholar 

  11. Dellow PG, Lund JP: Evidence for central timing of rhythmical mastication. J Physiol 215:1–13, 1971

    PubMed  CAS  Google Scholar 

  12. Nozaki S, Iriki A, Nakamura Y: Localization of central rhythm generator involved in cortically induced rhythmical masticatory jaw-opening movement in the guinea pig. J Neurophysiol 55:806–825, 1986

    PubMed  CAS  Google Scholar 

  13. Kogo M, Funk GD, Chandler SH: Rhythmical oral-motor activity recorded in an in vitro brainstem preparation. Somatosens Motor Res 13:39–48, 1996

    Article  CAS  Google Scholar 

  14. Nakamura Y, Katakura N, Nakajima M, Liu J: Rhythm generation for food-ingestive movements. Prog Brain Res 143:97–103, 2004

    Article  PubMed  Google Scholar 

  15. Lund JP, Kolta A, Westberg KG, Scott G: Brainstem mechanisms underlying feeding behaviours. Curr Opin Neurobiol 8:718–714,1998

    Article  PubMed  CAS  Google Scholar 

  16. Nakamura Y, Katakura N: Generation of masticatory rhythm in the brainstem. Neurosci Res 23:1–19, 1995

    Article  PubMed  CAS  Google Scholar 

  17. Travers JB, Norgren R: Afferent projections to the oral motor nuclei in the rat. J Comp Neurol 220:280–298, 1983

    Article  PubMed  CAS  Google Scholar 

  18. Landgren S, Olsson KA, Westberg KG: Bulbar neurones with axonal projections to the trigeminal motor nucleus in the cat. Exp Brain Res 65:98–111, 1986

    Article  PubMed  CAS  Google Scholar 

  19. Donga R, Lund JP: Discharge patterns of trigeminal commissural last-order interneurons during fictive mastication in the rabbit. J Neurophysiol 66:1564–1578, 1991

    PubMed  CAS  Google Scholar 

  20. Bourque M-J, Kolta A: Properties and interconnections of trigeminal interneurons of the lateral pontine reticular formation in the rat. J Neurophysiol 86:2583–2596, 2001

    PubMed  CAS  Google Scholar 

  21. Kolta A, Westberg KG, Lund JP: Identification of brainstem interneurons projecting to the trigeminal motor nucleus and adjacent structures in the rabbit. J Chem Neuroanat 19:175–195, 2000

    Article  PubMed  CAS  Google Scholar 

  22. Travers JB, Norgren R: Electromyographic analysis of the ingestion and rejection of rapid stimuli in the rat. Behav Neurosci 100:544–555, 1986

    Article  PubMed  CAS  Google Scholar 

  23. Pinganaud G, Bernat I, Buisseret P, Buisseret-Delmas C: Trigeminal projections to hypoglossal and facial motor nuclei in the rat. J Comp Neurol 415:91–104, 1999

    Article  PubMed  CAS  Google Scholar 

  24. Athanassiadis T, Olsson KA, Kolta A, Westberg KG: Identification of c-Fos immunoreactive brainstem neurons activated during fictive mastication in the rabbit. Exp Brain Res 165:478–489

  25. Inoue T, Masuda Y, Nagashima T, Yoshikawa K, Morimoto T: Properties of rhythmically active reticular neurons around the trigeminal motor nucleus during fictive mastication in the rat. Neurosci Res 14:275–294, 1992

    Article  PubMed  CAS  Google Scholar 

  26. Westberg KG, Clavelou P, Sandstrom G, Lund JP: Evidence that trigeminal interneurons form subpopulations to produce different forms of mastication. J Neurosci 18:6466–6479, 1998

    PubMed  CAS  Google Scholar 

  27. Tsuboi A, Kolta A, Chen CC, Lund JP: Neurons of the trigeminal main sensory nucleus participate in the generation of rhythmic motor patterns. Eur J Neurosci 17:229–238, 2003

    Article  PubMed  CAS  Google Scholar 

  28. Westberg KG, Scott G, Olsson KÅ, Lund JP: Discharge patterns of neurons in the medial pontobulbar reticular formation during fictive mastication in the rabbit. Eur J Neurosci 14:1709–1718, 2001

    Article  PubMed  CAS  Google Scholar 

  29. Scott G, Westberg KG, Vrentzos N, Kolta A, Lund JP: Effect of lidocaine and NMDA injections into the medial pontobulbar reticular formation on mastication evoked by cortical stimulation in anaesthetized rabbits. Eur J Neurosci 17:2156–2162, 2003

    Article  PubMed  CAS  Google Scholar 

  30. Westberg KG, Kolta A, Clavelou P, Sandstrom G, Lund JP: Evidence for functional compartmentalization of trigeminal muscle spindle afferents during fictive mastication in the rabbit. Eur J Neurosci 12:1145–1154, 2000

    Article  PubMed  CAS  Google Scholar 

  31. Turman J Jr, Chandler SH: Immunohistochemical evidence for GABA and glycine-containing trigeminal premotoneurons in the guinea pig. Synapse 18:7–20, 1994

    Article  PubMed  CAS  Google Scholar 

  32. Li YQ, Takada M, Kaneko T, Mizuno N: GABAergic and glycinergic neurons projecting to the trigeminal motor nucleus: a double labeling study in the rat. J Comp Neurol 373:498–510, 1996

    Article  PubMed  CAS  Google Scholar 

  33. Alford S, Schwartz E, Viana di Prisco G: The pharmacology of vertebrate spinal central pattern generators. Neuroscientist 9:217–228, 2003

    Article  PubMed  CAS  Google Scholar 

  34. Hooper SL, Di Caprio R: Crustacean motor pattern generator networks. Neurosignals 13:50–69, 2004

    Article  PubMed  CAS  Google Scholar 

  35. Sandler VM, Puil E, Schwarz DWF: Intrinsic response properties of bursting neurons in the nucleus principalis trigemini of the gerbil. Neuroscience 83:891–904, 1998

    Article  PubMed  CAS  Google Scholar 

  36. Athanassiadis T, Kolta A: Localization of rhythmic neurons in the trigeminal principal sensory nucleus and their synaptic input. J Dent Res 82 (Spec No. B):0240, 2003 [abstract]

  37. Brocard F, Lund JP, Kolta A: Firing properties of trigeminal principal sensory nucleus neurons change during the emergence of mastication in weaning rats. Soc Neurosci Abstr 879:7, 2004

    Google Scholar 

  38. Lavigne G, Kim JS, Valiquette C, Lund JP: Evidence that periodontal pressoreceptors provide positive feedback to jaw closing muscles during mastication. J Neurophysiol 58:342–358, 1987

    PubMed  CAS  Google Scholar 

  39. Morimoto T, Inoue T, Masuda Y, Nagashima T: Sensory components facilitating jaw-closing muscle activities in the rabbit. Exp Brain Res 76:424–440, 1989

    Article  PubMed  CAS  Google Scholar 

  40. Liu ZJ, Masuda Y, Inoue T, Fuchihata H, Sumida A, Takada K, Morimoto T: Coordination of cortically induced rhythmic jaw and tongue movements in the rabbit. J Neurophysiol 69:569–584, 1993

    PubMed  CAS  Google Scholar 

  41. Hidaka O, Morimoto T, Kato T, Masuda Y, Inoue T, Takada K: Behavior of jaw muscle spindle afferents during cortically induced rhythmic jaw movements in the anesthetized rabbit. J Neurophysiol 82:2633–2640, 1999

    PubMed  CAS  Google Scholar 

  42. Hidaka O, Morimoto T, Masuda Y, Kato T, Matsuo R, Inoue T, Kobayashi M, Takada K: Regulation of masticatory force during cortically induced rhythmic jaw movements in the anesthetized rabbit. J Neurophysiol 77:3168–3179, 1997

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Lund BDS, PhD.

Additional information

Presented as the Dodds Donner Lecture at the Dysphagia Research Society Annual Meeting, 2004

This work was supported by grants from the Canadian Institutes of Health Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lund, J.P., Kolta, A. Generation of the Central Masticatory Pattern and Its Modification by Sensory Feedback. Dysphagia 21, 167–174 (2006). https://doi.org/10.1007/s00455-006-9027-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-006-9027-6

Keywords

Navigation