Skip to main content
Log in

Contribution of intracortical inhibition in voluntary muscle relaxation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Terminating a voluntary muscle contraction is an important aspect of motor control, and yet, its neurophysiology is unclear. The objective of this study was to determine the role of short-interval intracortical inhibition (SICI) by comparing SICIs during relaxation from a power grip versus during a sustained power grip at the matching muscle activity level. Right-handed healthy young adults gripped and relaxed from power grip following auditory cues. The relaxation period was determined as the time for the flexor digitorum superficialis (FDS) muscle to reach its pre-contraction baseline level after the cue to relax. SICI during relaxation was obtained at different times into the relaxation period in two separate studies (70, 80, 90 % into relaxation in Study 1; 25, 50, 75 % into relaxation in Study 2). In addition, SICI during sustained contraction was assessed while subjects maintained a power grip at the matching FDS EMG levels (obtained during relaxation, for both Studies). Results showed that the mean SICI was greater during relaxation than during sustained contraction at the matching muscle activity level in both Studies (p < 0.05), indicating increased activation of intracortical inhibitory circuits for muscle relaxation. SICI gradually increased from 25 to 50 and 75 % into relaxation (Study 2, p < 0.05), but did not change from 70 to 80 and 90 % into relaxation (Study 1). MEP decreased with progression of relaxation (p < 0.05) in both Studies, reflecting gradual decreases in corticomotor excitability. This work supports the hypothesis that relaxation from a voluntary muscle contraction involves inhibitory activity in the primary motor cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Basmajian JV (1989) Biofeedback: principles and practice for clinicians, 3rd edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Begum T, Mima T, Oga T, Hara H, Satow T, Ikeda A, Nagamine T, Fukuyama H, Shibasaki H (2005) Cortical mechanisms of unilateral voluntary motor inhibition in humans. Neurosci Res 53(4):428–435. doi:10.1016/j.neures.2005.09.002

    Article  PubMed  Google Scholar 

  • Buccolieri A, Abbruzzese G, Rothwell JC (2004a) Relaxation from a voluntary contraction is preceded by increased excitability of motor cortical inhibitory circuits. J Physiol 558(Pt 2):685–695. doi:10.1113/jphysiol.2004.064774

    Article  PubMed  CAS  Google Scholar 

  • Buccolieri A, Avanzino L, Marinelli L, Trompetto C, Marchese R, Abbruzzese G (2004b) Muscle relaxation is impaired in dystonia: a reaction time study. Mov Disord 19(6):681–687. doi:10.1002/mds.10711

    Article  PubMed  Google Scholar 

  • Chae J, Yang G, Park BK, Labatia I (2002) Delay in initiation and termination of muscle contraction, motor impairment, and physical disability in upper limb hemiparesis. Muscle Nerve 25(4):568–575. doi:10.1002/mus.10061

    Article  PubMed  Google Scholar 

  • Christova M, Pondev N, Christova L, Wolf W, Kossev A (2003) Dependence of intracortical inhibition and facilitation on the level of CO-activity of antagonist muscles. Comptes Rendus de l’Academie Bulgare des Sciences 56(9):77

    Google Scholar 

  • Coxon JP, Stinear CM, Byblow WD (2006) Intracortical inhibition during volitional inhibition of prepared action. J Neurophysiol 95(6):3371–3383. doi:10.1152/jn.01334.2005

    Article  PubMed  Google Scholar 

  • De Luca CJ, LeFever RS, McCue MP, Xenakis AP (1982) Behaviour of human motor units in different muscles during linearly varying contractions. J Physiol 329:113–128

    PubMed  Google Scholar 

  • Di Lazzaro V, Rothwell JC, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P (1999) Intracortical origin of the short latency facilitation produced by pairs of threshold magnetic stimuli applied to human motor cortex. Exp Brain Res 129(4):494–499

    Article  PubMed  Google Scholar 

  • Dimitrov B (1985) Brain potentials related to the beginning and to the termination of voluntary flexion and extension in man. Int J Psychophysiol 3(1):13–22

    Article  PubMed  CAS  Google Scholar 

  • Flament D, Goldsmith P, Buckley CJ, Lemon RN (1993) Task dependence of responses in first dorsal interosseous muscle to magnetic brain stimulation in man. J Physiol 464:361–378

    PubMed  CAS  Google Scholar 

  • Furubayashi T, Ugawa Y, Terao Y, Hanajima R, Sakai K, Machii K, Mochizuki H, Shiio Y, Uesugi H, Enomoto H, Kanazawa I (2000) The human hand motor area is transiently suppressed by an unexpected auditory stimulus. Clin Neurophysiol 111(1):178–183

    Article  PubMed  CAS  Google Scholar 

  • Garry MI, Thomson RH (2009) The effect of test TMS intensity on short-interval intracortical inhibition in different excitability states. Exp Brain Res 193(2):267–274. doi:10.1007/s00221-008-1620-5

    Article  PubMed  CAS  Google Scholar 

  • Grasso M, Mazzini L, Schieppati M (1996) Muscle relaxation in Parkinson’s disease: a reaction time study. Mov Disord 11(4):411–420. doi:10.1002/mds.870110410

    Article  PubMed  CAS  Google Scholar 

  • Kamper DG, Harvey RL, Suresh S, Rymer WZ (2003) Relative contributions of neural mechanisms versus muscle mechanics in promoting finger extension deficits following stroke. Muscle Nerve 28(3):309–318. doi:10.1002/mus.10443

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann RA, Kozin SH, Mirarchi A, Holland B, Porter S (2007) Biomechanical analysis of flexor digitorum profundus and superficialis in grip-strength generation. Am J Orthop (Belle Mead NJ) 36(9):E128–E132

    Google Scholar 

  • Kimura T, Gomi H (2009) Temporal development of anticipatory reflex modulation to dynamical interactions during arm movement. J Neurophysiol 102(4):2220–2231. doi:10.1152/jn.90907.2008

    Article  PubMed  Google Scholar 

  • Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519

    PubMed  CAS  Google Scholar 

  • Kutz DF, Wölfel A, Timmann D, Kolb FP (2007) Detection of changes in grip forces on a sliding object. J Neurosci Methods 166(2):250–258

    Article  PubMed  Google Scholar 

  • Long C II, Conrad PW, Hall EA, Furler SL (1970) Intrinsic-extrinsic muscle control of the hand in power grip and precision handling. An electromyographic study. J Bone Joint Surg Am 52(5):853–867

    PubMed  Google Scholar 

  • Moerchen VA, Lazarus JC, Gruben KG (2007) Task-dependent organization of pinch grip forces. Exp Brain Res 180(2):367–376. doi:10.1007/s00221-007-0864-9

    Article  PubMed  Google Scholar 

  • Ngomo S, Leonard G, Moffet H, Mercier C (2012) Comparison of transcranial magnetic stimulation measures obtained at rest and under active conditions and their reliability. J Neurosci Methods 205(1):65–71. doi:10.1016/j.jneumeth.2011.12.012

    Article  PubMed  Google Scholar 

  • Nowak DA, Hermsdorfer J, Topka H (2003) Deficits of predictive grip force control during object manipulation in acute stroke. J Neurol 250(7):850–860. doi:10.1007/s00415-003-1095-z

    Article  PubMed  Google Scholar 

  • Nowak DA, Grefkes C, Dafotakis M, Kust J, Karbe H, Fink GR (2007) Dexterity is impaired at both hands following unilateral subcortical middle cerebral artery stroke. Eur J Neurosci 25(10):3173–3184. doi:10.1111/j.1460-9568.2007.05551.x

    Article  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113

    Article  PubMed  CAS  Google Scholar 

  • Ortu E, Deriu F, Suppa A, Tolu E, Rothwell JC (2008) Effects of volitional contraction on intracortical inhibition and facilitation in the human motor cortex. J Physiol 586(Pt 21):5147–5159. doi:10.1113/jphysiol.2008.158956

    Article  PubMed  CAS  Google Scholar 

  • Peurala SH, Muller-Dahlhaus JF, Arai N, Ziemann U (2008) Interference of short-interval intracortical inhibition (SICI) and short-interval intracortical facilitation (SICF). Clin Neurophysiol 119(10):2291–2297. doi:10.1016/j.clinph.2008.05.031

    Article  PubMed  Google Scholar 

  • Pope PA, Holton A, Hassan S, Kourtis D, Praamstra P (2007) Cortical control of muscle relaxation: a lateralized readiness potential (LRP) investigation. Clin Neurophysiol 118(5):1044–1052. doi:10.1016/j.clinph.2007.02.002

    Article  PubMed  Google Scholar 

  • Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, Dimitrijevic MR, Hallett M, Katayama Y, Lucking CH et al (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91(2):79–92

    Article  PubMed  CAS  Google Scholar 

  • Rothwell JC, Higuchi K, Obeso JA (1998) The offset cortical potential: an electrical correlate of movement inhibition in man. Mov Disord 13(2):330–335. doi:10.1002/mds.870130221

    Article  PubMed  CAS  Google Scholar 

  • Schieppati M, Crenna P (1984) From activity to rest: gating of excitatory autogenetic afferences from the relaxing muscle in man. Exp Brain Res 56(3):448–457

    Article  PubMed  CAS  Google Scholar 

  • Schieppati M, Crenna P (1985) Excitability of reciprocal and recurrent inhibitory pathways after voluntary muscle relaxation in man. Exp Brain Res 59(2):249–256

    Article  PubMed  CAS  Google Scholar 

  • Schieppati M, Nardone A, Musazzi M (1986) Modulation of the Hoffmann reflex by rapid muscle contraction or release. Hum Neurobiol 5(1):59–66

    PubMed  CAS  Google Scholar 

  • Schieppati M, Trompetto C, Abbruzzese G (1996) Selective facilitation of responses to cortical stimulation of proximal and distal arm muscles by precision tasks in man. J Physiol 491(2):11

    Google Scholar 

  • Seo NJ, Rymer WZ, Kamper DG (2009) Delays in grip initiation and termination in persons with stroke: effects of arm support and active muscle stretch exercise. J Neurophysiol 101(6):3108–3115. doi:10.1152/jn.91108.2008

    Article  PubMed  Google Scholar 

  • Terada K, Ikeda A, Nagamine T, Shibasaki H (1995) Movement-related cortical potentials associated with voluntary muscle relaxation. Electroencephalogr Clin Neurophysiol 95(5):335–345

    Article  PubMed  CAS  Google Scholar 

  • Toma K, Honda M, Hanakawa T, Okada T, Fukuyama H, Ikeda A, Nishizawa S, Konishi J, Shibasaki H (1999) Activities of the primary and supplementary motor areas increase in preparation and execution of voluntary muscle relaxation: an event-related fMRI study. J Neurosci 19(9):3527–3534

    PubMed  CAS  Google Scholar 

  • Yazawa S, Ikeda A, Kaji R, Terada K, Nagamine T, Toma K, Kubori T, Kimura J, Shibasaki H (1999) Abnormal cortical processing of voluntary muscle relaxation in patients with focal hand dystonia studied by movement-related potentials. Brain 122(Pt 7):1357–1366

    Article  PubMed  Google Scholar 

  • Yedimenko JA, Perez MA (2010) The effect of bilateral isometric forces in different directions on motor cortical function in humans. J Neurophysiol 104(6):2922–2931. doi:10.1152/jn.00020.2010

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Jin Seo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motawar, B., Hur, P., Stinear, J. et al. Contribution of intracortical inhibition in voluntary muscle relaxation. Exp Brain Res 221, 299–308 (2012). https://doi.org/10.1007/s00221-012-3173-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3173-x

Keywords

Navigation