Skip to main content
Log in

Short-interval cortical inhibition and intracortical facilitation during submaximal voluntary contractions changes with fatigue

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

This study determined whether short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) change during a sustained submaximal isometric contraction. On 2 days, 12 participants (6 men, 6 women) performed brief (7-s) elbow flexor contractions before and after a 10-min fatiguing contraction; all contractions were performed at the level of integrated electromyographic activity (EMG) which produced 25 % maximal unfatigued torque. During the brief 7-s and 10-min submaximal contractions, single (test) and paired (conditioning–test) transcranial magnetic stimuli were applied over the motor cortex (5 s apart) to elicit motor-evoked potentials (MEPs) in biceps brachii. SICI and ICF were elicited on separate days, with a conditioning–test interstimulus interval of 2.5 and 15 ms, respectively. On both days, integrated EMG remained constant while torque fell during the sustained contraction by ~51.5 % from control contractions, perceived effort increased threefold, and MVC declined by 21–22 %. For SICI, the conditioned MEP during control contractions (74.1 ± 2.5 % of unconditioned MEP) increased (less inhibition) during the sustained contraction (last 2.5 min: 86.0 ± 5.1 %; P < 0.05). It remained elevated in recovery contractions at 2 min (82.0 ± 3.8 %; P < 0.05) and returned toward control at 7-min recovery (76.3 ± 3.2 %). ICF during control contractions (conditioned MEP 129.7 ± 4.8 % of unconditioned MEP) decreased (less facilitation) during the sustained contraction (last 2.5 min: 107.6 ± 6.8 %; P < 0.05) and recovered to 122.8 ± 4.3 % during contractions after 2 min of recovery. Both intracortical inhibitory and facilitatory circuits become less excitable with fatigue when assessed during voluntary activity, but their different time courses of recovery suggest different mechanisms for the fatigue-related changes of SICI and ICF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baumer T, Munchau A, Weiller C, Liepert J (2002) Fatigue suppresses ipsilateral intracortical facilitation. Exp Brain Res 146:467–473. doi:10.1007/s00221-002-1202-x

    Article  CAS  PubMed  Google Scholar 

  • Benwell NM, Sacco P, Hammond GR, Byrnes ML, Mastaglia FL, Thickbroom GW (2006) Short-interval cortical inhibition and corticomotor excitability with fatiguing hand exercise: a central adaptation to fatigue? Exp Brain Res 170:191–198

    Article  PubMed  Google Scholar 

  • Borg GA (1998) Borg’s perceived exertion and pain scales. Human Kinetics, Champaign

    Google Scholar 

  • Carpentier A, Duchateau J, Hainaut K (2001) Motor unit behaviour and contractile changes during fatigue in the human first dorsal interosseus. J Physiol 534:903–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R, Tam A, Butefisch C, Corwell B, Ziemann U, Rothwell JC, Cohen LG (1998) Intracortical inhibition and facilitation in different representations of the human motor cortex. J Neurophysiol 80:2870–2881

    CAS  PubMed  Google Scholar 

  • Di Lazzaro V, Restuccia D, Oliviero A et al (1998) Magnetic transcranial stimulation at intensities below active motor threshold activates intracortical inhibitory circuits. Exp Brain Res 119:265–268

    Article  PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Meglio M, Cioni B, Tamburrini G, Tonali P, Rothwell JC (2000) Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin Neurophysiol 111:794–799

    Article  PubMed  Google Scholar 

  • Fisher RJ, Nakamura Y, Bestmann S, Rothwell JC, Bostock H (2002) Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking. Exp Brain Res 143:240–248. doi:10.1007/s00221-001-0988-2

    Article  CAS  PubMed  Google Scholar 

  • Fuglevand AJ, Zackowski KM, Huey KA, Enoka RM (1993) Impairment of neuromuscular propagation during human fatiguing contractions at submaximal forces. J Physiol 460:549–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789

    CAS  PubMed  Google Scholar 

  • Gandevia SC, Allen GM, Butler JE, Taylor JL (1996) Supraspinal factors in human muscle fatigue: evidence for suboptimal output from the motor cortex. J Physiol 490:529–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanajima R, Ugawa Y, Terao Y, Sakai K, Furubayashi T, Machii K, Kanazawa I (1998) Paired-pulse magnetic stimulation of the human motor cortex: differences among I waves. J Physiol 509:607–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanajima R, Ugawa Y, Terao Y et al (2002) Mechanisms of intracortical I-wave facilitation elicited with paired-pulse magnetic stimulation in humans. J Physiol 538:253–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter SK, Todd G, Butler JE, Gandevia SC, Taylor JL (2008) Recovery from supraspinal fatigue is slowed in old adults after fatiguing maximal isometric contractions. J Appl Physiol 105:1199–1209

    Article  PubMed  Google Scholar 

  • Inghilleri M, Berardelli A, Cruccu G, Manfredi M (1993) Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol 466:521–534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy DS, McNeil CJ, Gandevia SC, Taylor JL (2013) Firing of antagonist small-diameter muscle afferents reduces voluntary activation and torque of elbow flexors. J Physiol 591:3591–3604. doi:10.1113/jphysiol.2012.248559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy DS, McNeil CJ, Gandevia SC, Taylor JL (2014) Fatigue-related firing of distal muscle nociceptors reduces voluntary activation of proximal muscles of the same limb. J Appl Physiol 116:385–394. doi:10.1152/japplphysiol.01166.2013

    Article  PubMed  Google Scholar 

  • Kennedy DS, Fitzpatrick SC, Gandevia SC, Taylor JL (2015) Fatigue-related firing of muscle nociceptors reduces voluntary activation of ipsilateral but not contralateral lower limb muscles. J Appl Physiol 118:408–418. doi:10.1152/japplphysiol.00375.2014

    Article  PubMed  Google Scholar 

  • Kujirai T, Caramia MD, Rothwell JC et al (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lippold O, Redfearn J, Vuco J (1960) The electromyography of fatigue. Ergomonics 3:121–131

    Article  Google Scholar 

  • Martin PG, Gandevia SC, Taylor JL (2006) Output of human motoneuron pools to corticospinal inputs during voluntary contractions. J Neurophysiol 95:3512–3518

    Article  CAS  PubMed  Google Scholar 

  • Maruyama A, Matsunaga K, Tanaka N, Rothwell JC (2006) Muscle fatigue decreases short-interval intracortical inhibition after exhaustive intermittent tasks. Clin Neurophysiol 117:864–870

    Article  PubMed  Google Scholar 

  • McNeil CJ, Martin PG, Gandevia SC, Taylor JL (2009) The response to paired motor cortical stimuli is abolished at a spinal level during human muscle fatigue. J Physiol 587:5601–5612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNeil CJ, Giesebrecht S, Gandevia SC, Taylor JL (2011a) Behaviour of the motoneurone pool in a fatiguing submaximal contraction. J Physiol 589:3533–3544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNeil CJ, Giesebrecht S, Khan SI, Gandevia SC, Taylor JL (2011b) The reduction in human motoneurone responsiveness during muscle fatigue is not prevented by increased muscle spindle discharge. J Physiol 589:3731–3738. doi:10.1113/jphysiol.2011.210252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNeil CJ, Martin PG, Gandevia SC, Taylor JL (2011c) Long-interval intracortical inhibition in a human hand muscle. Exp Brain Res 209:287–297. doi:10.1007/s00221-011-2552-z

    Article  PubMed  Google Scholar 

  • Ni Z, Gunraj C, Chen R (2007) Short interval intracortical inhibition and facilitation during the silent period in human. J Physiol 583:971–982. doi:10.1113/jphysiol.2007.135749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortu E, Deriu F, Suppa A, Tolu E, Rothwell JC (2008) Effects of volitional contraction on intracortical inhibition and facilitation in the human motor cortex. J Physiol 586:5147–5159. doi:10.1113/jphysiol.2008.158956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reis J, Swayne OB, Vandermeeren Y et al (2008) Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. J Physiol 586:325–351

    Article  CAS  PubMed  Google Scholar 

  • Reynolds C, Ashby P (1999) Inhibition in the human motor cortex is reduced just before a voluntary contraction. Neurology 53:730–735

    Article  CAS  PubMed  Google Scholar 

  • Ridding MC, Taylor JL, Rothwell JC (1995) The effect of voluntary contraction on cortico-cortical inhibition in human motor cortex. J Physiol 487:541–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riley ZA, Maerz AH, Litsey JC, Enoka RM (2008) Motor unit recruitment in human biceps brachii during sustained voluntary contractions. J Physiol 586:2183–2193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rusu CV, Murakami M, Ziemann U, Triesch J (2014) A model of TMS-induced I-waves in motor cortex. Brain Stimul 7:401–414. doi:10.1016/j.brs.2014.02.009

    Article  PubMed  Google Scholar 

  • Sacco P, Thickbroom GW, Thompson ML, Mastaglia FL (1997) Changes in corticomotor excitation and inhibition during prolonged submaximal muscle contractions. Muscle Nerve 20:1158–1166

    Article  CAS  PubMed  Google Scholar 

  • Seifert T, Petersen NC (2010) Changes in presumed motor cortical activity during fatiguing muscle contraction in humans. Acta Physiol (Oxf) 199:317–326

    CAS  Google Scholar 

  • Sidhu SK, Lauber B, Cresswell AG, Carroll TJ (2013) Sustained cycling exercise increases intracortical inhibition. Med Sci Sports Exerc 45:654–662. doi:10.1249/MSS.0b013e31827b119c

    Article  PubMed  Google Scholar 

  • Smith JL, Martin PG, Gandevia SC, Taylor JL (2007) Sustained contraction at very low forces produces prominent supraspinal fatigue in human elbow flexor muscles. J Appl Physiol 103:560–568

    Article  PubMed  Google Scholar 

  • Takahashi K, Maruyama A, Maeda M, Etoh S, Hirakoba K, Kawahira K, Rothwell JC (2009) Unilateral grip fatigue reduces short interval intracortical inhibition in ipsilateral primary motor cortex. Clin Neurophysiol 120:198–203. doi:10.1016/j.clinph.2008.10.003

    Article  PubMed  Google Scholar 

  • Taylor JL, Butler JE, Allen GM, Gandevia SC (1996) Changes in motor cortical excitability during human muscle fatigue. J Physiol 490:519–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor JL, Butler JE, Gandevia SC (1999) Altered responses of human elbow flexors to peripheral-nerve and cortical stimulation during a sustained maximal voluntary contraction. Exp Brain Res 127:108–115

    Article  CAS  PubMed  Google Scholar 

  • Taylor JL, Todd G, Gandevia SC (2006) Evidence for a supraspinal contribution to human muscle fatigue. Clin Exp Pharmacol Physiol 33:400–405

    Article  CAS  PubMed  Google Scholar 

  • Tergau F, Geese R, Bauer A, Baur S, Paulus W, Reimers CD (2000) Motor cortex fatigue in sports measured by transcranial magnetic double stimulation. Med Sci Sports Exerc 32:1942–1948

    Article  CAS  PubMed  Google Scholar 

  • Vucic S, Cheah BC, Kiernan MC (2011) Dissecting the mechanisms underlying short-interval intracortical inhibition using exercise. Cereb Cortex 21:1639–1644

    Article  PubMed  Google Scholar 

  • Williams PS, Hoffman RL, Clark BC (2014) Cortical and spinal mechanisms of task failure of sustained submaximal fatiguing contractions. PLoS One 9:e93284. doi:10.1371/journal.pone.0093284

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoon T, Schlinder-Delap B, Keller ML, Hunter SK (2012) Supraspinal fatigue impedes recovery from a low-intensity sustained contraction in old adults. J Appl Physiol 112:849–858

    Article  PubMed  Google Scholar 

  • Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996) The effect of lorazepam on the motor cortical excitability in man. Exp Brain Res 109:127–135

    Article  CAS  PubMed  Google Scholar 

  • Ziemann U, Tergau F, Wassermann EM, Wischer S, Hildebrandt J, Paulus W (1998) Demonstration of facilitatory I wave interaction in the human motor cortex by paired transcranial magnetic stimulation. J Physiol 511:181–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziemann U, Muellbacher W, Hallett M, Cohen LG (2001) Modulation of practice-dependent plasticity in human motor cortex. Brain 124:1171–1181

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Health and Medical Research Council of Australia (Program Grant 1055084 and Fellowships to JLT, JEB and SCG) and also in part by a National Institute of Aging award (R21AG045766) to SKH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra K. Hunter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hunter, S.K., McNeil, C.J., Butler, J.E. et al. Short-interval cortical inhibition and intracortical facilitation during submaximal voluntary contractions changes with fatigue. Exp Brain Res 234, 2541–2551 (2016). https://doi.org/10.1007/s00221-016-4658-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-016-4658-9

Keywords

Navigation