Skip to main content
Log in

Proteomic analysis of the presynaptic active zone

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Synaptic vesicles are key organelles in chemical signaling, allowing neurons to communicate with each other and with neighboring cells. Vesicle integral or membrane-associated proteins mediate the various tasks the organelle fulfills during its life cycle. These include organelle transport, interaction with the nerve terminal cytoskeleton, uptake and storage of low molecular weight constituents, and the regulated interaction with the presynaptic plasma membrane, the active zone, during exo- and endocytosis. Converging work from several laboratories within the last 30 years resulted in the molecular and functional characterization of the protein inventory of the synaptic vesicle compartment. Nowadays advances in membrane protein separation and mass spectrometry have dramatically promoted this field resulting in a detailed description of the synaptic vesicle proteome and making synaptic vesicles the best characterized organelles. Recently, the proteome of the active zone was identified using the docked synaptic vesicles as target for immunoisolation. Combining gel-based protein separation techniques, mass spectrometry, and immunodetection, a considerable variety of proteins has been detected in the active zone. This includes synaptic vesicle proteins, components of the presynaptic fusion and retrieval machinery, proteins involved in intracellular signal transduction, a large variety of adhesion molecules and proteins potentially involved in regulating the functional and structural dynamics of the presynapse. Here, we discuss recent information concerning the proteome of the presynaptic active zone, focusing on proteins that are potentially involved in the short- and long-term structural modulation of the mature presynaptic compartment. In addition, we discuss the functional relevance of amyloid precursor protein in these membrane fractions and the putative interplay with direct or indirect interaction partners in the active zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

APP:

Amyloid precursor protein

APLP1:

Amyloid precursor-like protein 1

APLP2:

Amyloid precursor-like protein 2

References

  • Almqvist P, Carlsson SR, Hardy JA, Winblad B (1986) Regional and subcellular distribution of Thy-1 in human brain assayed by a solid-phase radioimmunoassay. J Neurochem 46:681–685

    PubMed  CAS  Google Scholar 

  • Anliker B, Müller U (2006) The functions of mammalian amyloid precursor protein and related amyloid precursor—like proteins. Neurodegener Dis 3:239–246

    PubMed  CAS  Google Scholar 

  • Bahamonde MI, Valverde MA (2003) Voltage-dependent anion channel localises to the plasma membrane and peripheral but not perinuclear mitochondria. Pflugers Arch 446:309–313

    PubMed  CAS  Google Scholar 

  • Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389:1017–1031

    PubMed  CAS  Google Scholar 

  • Barth J, Volknandt W (2011) Proteomic investigations of the synaptic vesicle interactome. Exp Rev Proteomics 20:211–220

    Google Scholar 

  • Barth J, Zimmermann H, Volknandt W (2011) SV31 is a Zn2+ -binding synaptic vesicle protein. J Neurochem 118:558–570

    PubMed  CAS  Google Scholar 

  • Beguin P, Crambert G, Monnet-Tschudi F, Uldry M, Horisberger JD, Garty H, Geering K (2002) FXYD7 is a brain-specific regulator of Na, K-ATPase α1-β isozymes. EMBO J 21:3264–3273

    PubMed  CAS  Google Scholar 

  • Bhat MA, Rios JC, Lu Y, Garcia-Fresco GP, Ching W, St Martin M, Li J, Einheber S, Chesler M, Rosenbluth J, Salzer JL, Bellen HJ (2001) Axon-glia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/Paranodin. Neuron 30:369–383

    PubMed  CAS  Google Scholar 

  • Blondeau F, Ritter B, Allaire PD, Wasiak S, Girard M, Hussain NK, Angers A, Legendre-Guillemin V, Roy L, Boismenu D, Kearney RE, Bell AW, Bergeron JJ, McPherson PS (2004) Tandem MS analysis of brain clathrin-coated vesicles reveals their critical involvement in synaptic vesicle recycling. Proc Natl Acad Sci USA 101:3833–3838

    PubMed  CAS  Google Scholar 

  • Bomze HM, Bulsara KR, Iskandar BJ, Caroni P, Skene JH (2001) Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons. Nat Neurosci 4:38–43

    PubMed  CAS  Google Scholar 

  • Bowen MA, Patel DD, Li X, Modrell B, Malacko AR, Wang WC, Marquardt H, Neubauer M, Pesando JM, Francke U et al (1995) Cloning, mapping, and characterization of activated leukocyte-cell adhesion molecule (ALCAM), a CD6 ligand. J Exp Med 181:2213–2220

    PubMed  CAS  Google Scholar 

  • Burgoyne RD, Clague MJ (1994) Annexins in the endocytic pathway. Trends Biochem Sci 19:231–232

    PubMed  CAS  Google Scholar 

  • Burré J, Volknandt W (2007) The synaptic vesicle proteome. J Neurochem 101:1448–1462

    PubMed  Google Scholar 

  • Burré J, Beckhaus T, Corvey C, Karas M, Zimmermann H, Volknandt W (2006a) Synaptic vesicle proteins under conditions of rest and activation: analysis by 2-D difference gel electrophoresis. Electrophoresis 27:3488–3496

    PubMed  Google Scholar 

  • Burré J, Beckhaus T, Schägger H, Corvey C, Hofmann S, Karas M, Zimmermann H, Volknandt W (2006b) Analysis of the synaptic vesicle proteome using three gel-based protein separation techniques. Proteomics 6:6250–6262

    PubMed  Google Scholar 

  • Burré J, Zimmermann H, Volknandt W (2007a) Identification and characterization of SV31, a novel synaptic vesicle membrane protein and potential transporter. J Neurochem 103:276–287

    PubMed  Google Scholar 

  • Burré J, Zimmermann H, Volknandt W (2007b) Immunoisolation and subfractionation of synaptic vesicle proteins. Anal Biochem 362:172–181

    PubMed  Google Scholar 

  • Buttner B, Kannicht C, Reutter W, Horstkorte R (2003) The neural cell adhesion molecule is associated with major components of the cytoskeleton. Biochem Biophys Res Commun 310:967–971

    PubMed  Google Scholar 

  • Cai Y, Saiyin H, Lin Q, Zhang P, Tang L, Pan X, Yu L (2005) Identification of a new RTN3 transcript, RTN3-A1, and its distribution in adult mouse brain. Brain Res Mol Brain Res 138:236–243

    PubMed  CAS  Google Scholar 

  • Campbell HD, Kamei M, Claudianos C, Woollatt E, Sutherland GR, Suzuki Y, Hida M, Sugano S, Young IG (2000) Human and mouse homologues of the Drosophila melanogaster tweety (tty) gene: a novel gene family encoding predicted transmembrane proteins. Genomics 68:89–92

    PubMed  CAS  Google Scholar 

  • Chamberlain LH, Roth D, Morgan A, Burgoyne RD (1995) Distinct effects of α-SNAP, 14–3-3 proteins, and calmodulin on priming and triggering of regulated exocytosis. J Cell Biol 130:1063–1070

    PubMed  CAS  Google Scholar 

  • Cheng HJ, Bagri A, Yaron A, Stein E, Pleasure SJ, Tessier-Lavigne M (2001) Plexin-A3 mediates semaphorin signaling and regulates the development of hippocampal axonal projections. Neuron 32:249–263

    PubMed  CAS  Google Scholar 

  • Chernova OB, Somerville RP, Cowell JK (1998) A novel gene, LGI1, from 10q24 is rearranged and downregulated in malignant brain tumors. Oncogene 17:2873–2881

    PubMed  CAS  Google Scholar 

  • Cottrell BA, Galvan V, Banwait S, Gorostiza O, Lombardo CR, Williams T, Schilling B, Peel A, Gibson B, Koo EH, Link CD, Bredesen DE (2005) A pilot proteomic study of amyloid precursor interactors in Alzheimer’s disease. Ann Neurol 58:277–289

    PubMed  CAS  Google Scholar 

  • Coughenour HD, Spaulding RS, Thompson CM (2004) The synaptic vesicle proteome: a comparative study in membrane protein identification. Proteomics 4:3141–3155

    PubMed  CAS  Google Scholar 

  • Coulsen EJ, Paliga K, Beyreuther K, Masters CL (2000) What the evolution of the amyloid protein precursor supergene family tells us about its function. Neurochem Int 36:175–184

    Google Scholar 

  • Dahms SO, Hoefgen S, Roeser D, Schlott B, Gührs KH, Than ME (2010) Structure and biochemical analysis of the heparin-induced E1 dimer of the amyloid precursor protein. PNAS 107:5381–5386

    PubMed  CAS  Google Scholar 

  • Degen WG, van Kempen LC, Gijzen EG, van Groningen JJ, van Kooyk Y, Bloemers HP, Swart GW (1998) MEMD, a new cell adhesion molecule in metastasizing human melanoma cell lines, is identical to ALCAM (activated leukocyte cell adhesion molecule). Am J Pathol 152:805–813

    PubMed  CAS  Google Scholar 

  • Dityatev A, Bukalo O, Schachner M (2008) Modulation of synaptic transmission and plasticity by cell adhesion and repulsion molecules. Neuron Glia Biol 4:197–209

    PubMed  Google Scholar 

  • Dougherty MK, Morrison DK (2004) Unlocking the code of 14-3-3. J Cell Sci 117:1875–1884

    PubMed  CAS  Google Scholar 

  • Dunkley PR, Jarvie PE, Robinson PJ (2008) A rapid Percoll gradient procedure for preparation of synaptosomes. Nat Protoc 3:17181728

    Google Scholar 

  • Einheber S, Zanazzi G, Ching W, Scherer S, Milner TA, Peles E, Salzer JL (1997) The axonal membrane protein Caspr, a homologue of neurexin IV, is a component of the septate-like paranodal junctions that assemble during myelination. J Cell Biol 139:1495–1506

    PubMed  CAS  Google Scholar 

  • Elinder F, Akanda N, Tofighi R, Shimizu S, Tsujimoto Y, Orrenius S, Ceccatelli S (2005) Opening of plasma membrane voltage-dependent anion channels (VDAC) precedes caspase activation in neuronal apoptosis induced by toxic stimuli. Cell Death Differ 12:1134–1140

    PubMed  CAS  Google Scholar 

  • Elliott MH, Smith DS, Parker CE, Borchers C (2009) Current trends in quantitative proteomics. J Mass Spectrom 44:1637–1660

    PubMed  CAS  Google Scholar 

  • Falk J, Bonnon C, Girault JA, Faivre-Sarrailh C (2002) F3/contactin, a neuronal cell adhesion molecule implicated in axogenesis and myelination. Biol Cell 94:327–334

    PubMed  CAS  Google Scholar 

  • Fan H, Josic D, Lim YP, Reutter W (1995) cDNA cloning and tissue-specific regulation of expression of rat calcium-binding protein 65/67. Identification as a homologue of annexin VI. Eur J Biochem 230:741–751

    PubMed  CAS  Google Scholar 

  • Frey D, Laux T, Xu L, Schneider C, Caroni P (2000) Shared and unique roles of CAP23 and GAP43 in actin regulation, neurite outgrowth, and anatomical plasticity. J Cell Biol 149:1443–1454

    PubMed  CAS  Google Scholar 

  • Fukata Y, Adesnik H, Iwanaga T, Bredt DS, Nicoll RA, Fukata M (2006) Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission. Science 313:1792–1795

    PubMed  CAS  Google Scholar 

  • Funakoshi T, Hendrickson LE, McMullen BA, Fujikawa K (1987) Primary structure of human placental anticoagulant protein. Biochemistry 26:8087–8092

    PubMed  CAS  Google Scholar 

  • Galkin A, Meyer B, Wittig I, Karas M, Schägger H, Vinogradov A, Brandt U (2008) Identification of the mitochondrial ND3 subunit as a structural component involved in the active/deactive enzyme transition of respiratory complex I. J Biol Chem 283:20907–20913

    PubMed  CAS  Google Scholar 

  • Gil OD, Zanazzi G, Struyk AF, Salzer JL (1998) Neurotrimin mediates bifunctional effects on neurite outgrowth via homophilic and heterophilic interactions. J Neurosci 18:9312–9325

    PubMed  CAS  Google Scholar 

  • Greenwood IA, Leblanc N (2007) Overlapping pharmacology of Ca2+-activated Cl and K+ channels. Trends Pharmacol Sci 28:1–5

    PubMed  CAS  Google Scholar 

  • Groemer TW, Thiel CS, Holt M, Riedel D, Hua Y, Hüve J, Wilhelm BG, Klingauf J (2011) Amyloid precursor protein is trafficked and secreted via synaptic vesicles. PLoS ONE 6:e18754

    PubMed  CAS  Google Scholar 

  • Grønborg M, Pavlos NJ, Brunk I, Chua JJ, Münster-Wandowski A, Riedel D, Ahnert-Hilger G, Urlaub H, Jahn R (2010) Quantitative comparison of glutamatergic and GABAergic synaptic vesicles unveils selectivity for few proteins including MAL2, a novel synaptic vesicle protein. J Neurosci 30:2–12

    PubMed  Google Scholar 

  • Gundelfinger ED, Kessels MM, Qualmann B (2003) The exploration of the proteinaceous composition of the synaptic vesicle is essential for an understanding of the molecular mechanisms of neurotransmitter release. Natl Rev Mol Cell Biol 4:127–138

    CAS  Google Scholar 

  • Harrison SM, Jarvie PE, Dunkley PR (1988) A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: viability of subcellular fractions. Brain Res 411:72–80

    Google Scholar 

  • Hartinger J, Stenius K, Högemann D, Jahn R (1996) 16-BAC/SDS-PAGE: A two-dimensional gel electrophoresis system suitable for the separation of integral membrane proteins. Anal Biochem 240:126–133

    PubMed  CAS  Google Scholar 

  • Hortsch M (2000) Structural and functional evolution of the L1 family: are four adhesion molecules better than one? Mol Cell Neurosci 15:1–10

    PubMed  CAS  Google Scholar 

  • Hosoya H, Kobayashi R, Tsukita S, Matsumura F (1992) Ca(2+)-regulated actin and phospholipid binding protein (68 kD-protein) from bovine liver: identification as a homologue for annexin VI and intracellular localization. Cell Motil Cytoskeleton 22:200–210

    PubMed  CAS  Google Scholar 

  • Huttner WB, Schiebler W, Greengard P, Camilli PD (1983) Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J Cell Biol 96:1374–1388

    PubMed  CAS  Google Scholar 

  • Iino S, Kobayashi S, Maekawa S (1999) Immunohistochemical localization of a novel acidic calmodulin-binding protein, NAP-22, in the rat brain. Neuroscience 91:1435–1444

    PubMed  CAS  Google Scholar 

  • Inui M, Watanabe T, Sobue K (1994) Annexin VI binds to a synaptic vesicle protein, synapsin I. J Neurochem 63:1917–1923

    PubMed  CAS  Google Scholar 

  • Iwasaki A, Suda M, Nakao H, Nagoya T, Saino Y, Arai K, Mizoguchi T, Sato F, Yoshizaki H, Hirata M et al (1987) Structure and expression of cDNA for an inhibitor of blood coagulation isolated from human placenta: a new lipocortin-like protein. J Biochem (Tokyo) 102:1261–1273

    CAS  Google Scholar 

  • Jacob J, Haspel J, Kane-Goldsmith N, Grumet M (2002) L1 mediated homophilic binding and neurite outgrowth are modulated by alternative splicing of exon 2. J Neurobiol 51:177–189

    PubMed  CAS  Google Scholar 

  • Jacobsen KT, Iverfeldt K (2009) Amyloid precursor protein and its homologues: a family of proteolysis-dependent receptors. Cell Mol Life Sci 66:2299–2318

    PubMed  CAS  Google Scholar 

  • Jaskolla TW, Lehmann WD, Karas M (2008) 4-Chloro-α-cyanocinnamic acid is an advanced, rationally designed MALDI matrix. PNAS 105:12200–12205

    PubMed  CAS  Google Scholar 

  • Jeng CJ, McCarroll SA, Martin TF, Floor E, Adams J, Krantz D, Butz S, Edwards R, Schweitzer ES (1998) Thy-1 is a component common to multiple populations of synaptic vesicles. J Cell Biol 140:685–698

    PubMed  CAS  Google Scholar 

  • Jordan BA, Fernholz BD, Boussac M, Xu C, Grigorean G, Ziff EB, Neubert TA (2004) Identification and verification of novel rodent postsynaptic density proteins. Mol. Cell Proteomics 3:857–871

    PubMed  CAS  Google Scholar 

  • Kaden D, Munter LM, Reif B, Multhaup G (2011) The amyloid precursor protein and its homologues: structural and functional aspects of native and pathogenic oligomerization. Eur J Cell Biol. doi:10.1016/j.ejcb.2011.01.017

    PubMed  Google Scholar 

  • Kalachikov S, Evgrafov O, Ross B, Winawer M, Barker-Cummings C, Boneschi MF, Choi C, Morozov P, Das K, Teplitskaya E, Yu A, Cayanis E, Penchaszadeh G, Kottmann AH, Pedley TA, Hauser WA, Ottman R, Gilliam TC (2002) Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features. Nat Genet 30:335–341

    PubMed  Google Scholar 

  • Kamal A, Ying Y, Anderson RG (1998) Annexin VI-mediated loss of spectrin during coated pit budding is coupled to delivery of LDL to lysosomes. J Cell Biol 142:937–947

    PubMed  CAS  Google Scholar 

  • Kameyama T, Murakami Y, Suto F, Kawakami A, Takagi S, Hirata T, Fujisawa H (1996a) Identification of a neuronal cell surface molecule, plexin, in mice. Biochem Biophys Res Commun 226:524–529

    PubMed  CAS  Google Scholar 

  • Kameyama T, Murakami Y, Suto F, Kawakami A, Takagi S, Hirata T, Fujisawa H (1996b) Identification of plexin family molecules in mice. Biochem Biophys Res Commun 226:396–402

    PubMed  CAS  Google Scholar 

  • Kanai Y, Segawa H, Miyamoto K, Uchino H, Takeda E, Endou H (1998) Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem 273:23629–23632

    PubMed  CAS  Google Scholar 

  • Kashihara M, Miyata S, Kumanogoh H, Funatsu N, Matsunaga W, Kiyohara T, Sokawa Y, Maekawa S (2000) Changes in the localization of NAP-22, a calmodulin binding membrane protein, during the development of neuronal polarity. Neurosci Res 37:315–325

    PubMed  CAS  Google Scholar 

  • Kins S, Lauther N, Szodorai A, Beyreuther K (2006) Subcellular trafficking of the amyloid precursor protein gene family and its pathogenic role in Alzheimer’s desease. Neurodegener Dis 3:218–226

    PubMed  CAS  Google Scholar 

  • Kobayashi R, Tashima Y (1990) Purification, biological properties and partial sequence analysis of 67-kDa calcimedin and its 34-kDa fragment from chicken gizzard. Eur J Biochem 188:447–453

    PubMed  CAS  Google Scholar 

  • Koshimizu H, Suzuki S, Araki T, Yamada M, Kojima M, Hatanaka H (2011) BIT/SHPS-1 promotes antiapoptotic effect of BDNF on low potassium-induced cell death of cultured cerebellar granule neurons. Cell Mol Neurobiol May 8 (Epub ahead of print)

  • Koticha D, Babiarz J, Kane-Goldsmith N, Jacob J, Raju K, Grumet M (2005) Cell adhesion and neurite outgrowth are promoted by neurofascin NF155 and inhibited by NF186. Mol Cell Neurosci 30:137–148

    PubMed  CAS  Google Scholar 

  • Langnaese K, Beesley PW, Gundelfinger ED (1997) Synaptic membrane glycoproteins gp65 and gp55 are new members of the immunoglobulin superfamily. J Biol Chem 272:821–827

    PubMed  CAS  Google Scholar 

  • Lauren J, Hu F, Chin J, Liao J, Airaksinen MS, Strittmatter SM (2007) Characterization of myelin ligand complexes with neuronal Nogo-66 receptor family members. J Biol Chem 282:5715–5725

    PubMed  CAS  Google Scholar 

  • Lawen A, Ly JD, Lane DJR, Zarschler K, Messina A, De Pinto V (2005) Voltage-dependent anion-selective channel 1 (VDAC1)—a mitochondrial protein, rediscovered as a novel enzyme in the plasma membrane. Int J Biochem Cell Biol 37:277–282

    PubMed  CAS  Google Scholar 

  • Lazarov O, Morfini GA, Lee EB, Farah MH, Szodorai A, DeBoer SR, Koliatsos VE, Kins S, Lee VM, Wong PC, Price DL, Brady ST, Sisodia SS (2005) Axonal transport, amyloid precursor protein, kinesin-1, and the processing apparatus: revisited. J Neurosci 25:2386–2395

    PubMed  CAS  Google Scholar 

  • Li L, Chen LS (2003) The molecular machinery of synaptic vesicle exocytosis. Cell Mol Life Sci 60:942–960

    PubMed  CAS  Google Scholar 

  • Lindberg FP, Gresham HD, Schwarz E, Brown EJ (1993) Molecular cloning of integrin-associated protein: an immunoglobulin family member with multiple membrane-spanning domains implicated in alpha v beta 3-dependent ligand binding. J Cell Biol 123:485–496

    PubMed  CAS  Google Scholar 

  • Lindner J, Rathjen FG, Schachner M (1983) L1 mono- and polyclonal antibodies modify cell migration in early postnatal mouse cerebellum. Nature 305:427–430

    PubMed  CAS  Google Scholar 

  • Littleton JT (2006) Mixing and matching during synaptic vesicle endocytosis. Neuron 51:149–151

    PubMed  CAS  Google Scholar 

  • Lorent K, Overbergh L, Moechars D, De Strooper B, van Leuven F, van den Berghe H (1995) Expression in mouse embryos and in adult mouse brain of three members of the amyloid precursor protein family, of the alpha-2-macroglobulin receptor/low density lipoprotein receptor-related protein and of its ligand apolipoprotein E, lipoprotein lipase, alpha-2-macroglobulin and the 40,000 molecular weight receptor-associated protein. Neuroscience 65:1009–1025

    PubMed  CAS  Google Scholar 

  • Maekawa S, Maekawa M, Hattori S, Nakamura S (1993) Purification and molecular cloning of a novel acidic calmodulin binding protein from rat brain. J Biol Chem 268:13703–13709

    PubMed  CAS  Google Scholar 

  • Maretzky T, Schulte M, Ludwig A, Rose-John S, Blobel C, Hartmann D, Altevogt P, Saftig P, Reiss K (2005) L1 is sequentially processed by two differently activated metalloproteases and presenilin/gamma-secretase and regulates neural cell adhesion, cell migration, and neurite outgrowth. Mol Cell Biol 25:9040–9053

    PubMed  CAS  Google Scholar 

  • Marin R, Ramirez CM, Gonzalez CM, Gonzales-Munoz E, Zorzano A, Camps M, Alonso R, Diaz M (2007) Voltage-dependent anion channel (VDAC) participates in amyloid beta-induced toxicity and interacts with plasma membrane estrogen receptor α in septal and hippocampal neurons. Mol Membr Biol 24:148–160

    PubMed  CAS  Google Scholar 

  • Marouga R, David S, Hawkins E (2005) The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 382:669–678

    PubMed  CAS  Google Scholar 

  • Marquez-Sterling NR, Lo ACY, Sisodia SS, Koo EH (1997) Trafficking of cell-surface β-Amyloid precursor protein: evidence that sorting intermediate participates in synaptic vesicle recycling. J Neurosci 17:140–151

    PubMed  CAS  Google Scholar 

  • Martin H, Patel Y, Jones D, Howell S, Robinson K, Aitken A (1993) Antibodies against the major brain isoforms of 14-3-3 protein. An antibody specific for the N-acetylated amino-terminus of a protein. FEBS Lett 331:296–303

    PubMed  CAS  Google Scholar 

  • Maycox PR, Link E, Reetz A, Morris SA, Jahn R (1992) Clathrin-coated vesicles in nervous tissue are involved primarily in synaptic vesicle recycling. J Cell Biol 118:1379–1388

    PubMed  CAS  Google Scholar 

  • Menegoz M, Gaspar P, Le Bert M, Galvez T, Burgaya F, Palfrey C, Ezan P, Arnos F, Girault JA (1997) Paranodin, a glycoprotein of neuronal paranodal membranes. Neuron 19:319–331

    PubMed  CAS  Google Scholar 

  • Meyer B, Wittich I, Trifilieff KM, Schaegger H (2007) Identification of two proteins associated with mammalian ATP synthase. Mol Cell Proteomics 6:1690–1699

    PubMed  CAS  Google Scholar 

  • Minner S, Kraetzig F, Tachezy M, Kilic E, Graefen M, Wilczak W, Bokemeyer C, Huland H, Sauter G, Schlomm T (2011) Low activated leukocyte cell adhesion molecule expression is associated with advanced tumor stage and early prostate-specific antigen relapse in prostate cancer. Hum Pathol. Jun 16 (Epub ahead of print)

  • Miyashita M, Ohnishi H, Okazawa H, Tomonaga H, Hayashi A, Fujimoto TT, Furuya N, Matozaki T (2004) Promotion of neurite and filopodium formation by CD47: roles of integrins, Rac, and Cdc42. Mol Biol Cell 15:3950–3963

    PubMed  CAS  Google Scholar 

  • Morciano M, Burré J, Corvey C, Karas M, Zimmermann H, Volknandt W (2005) Immunoisolation of two synaptic vesicle pools from synaptosomes: a proteomics analysis. J Neurochem 95:1732–1745

    PubMed  CAS  Google Scholar 

  • Morciano M, Beckhaus T, Karas M, Zimmermann H, Volknandt W (2009) The proteome of the presynaptic zone: from docked synaptic vesicles to adhesion molecules and max-channels. J Neurochem 108:662–675

    PubMed  CAS  Google Scholar 

  • Moreira EF, Jaworski CJ, Rodriguez IR (1999) Cloning of a novel member of the reticulon gene family (RTN3): gene structure and chromosomal localization to 11q13. Genomics 58:73–81

    PubMed  CAS  Google Scholar 

  • Murai KK, Misner D, Ranscht B (2002) Contactin supports synaptic plasticity associated with hippocampal long-term depression but not potentiation. Curr Biol 12:181–190

    PubMed  CAS  Google Scholar 

  • Murakami Y, Suto F, Shimizu M, Shinoda T, Kameyama T, Fujisawa H (2001) Differential expression of plexin-A subfamily members in the mouse nervous system. Dev Dyn 220:246–258

    PubMed  CAS  Google Scholar 

  • Norstrom EM, Zhang C, Tanzi R, Sisodia SS (2010) Identification of NEEP21 as a β-amyloid precursor protein-interacting protein in vivo that modulates amyloidogenic processing in vitro. J Neurosci 30:15677–15685

    PubMed  CAS  Google Scholar 

  • Numakawa T, Ishimoto T, Suzuki S, Numakawa Y, Adachi N, Matsumoto T, Yokomaku D, Koshimizu H, Fujimori KE, Hashimoto R, Taguchi T, Kunugi H (2004) Neuronal roles of the integrin-associated protein (IAP/CD47) in developing cortical neurons. J Biol Chem 279:43245–43253

    PubMed  CAS  Google Scholar 

  • Ohnishi H, Kubota M, Ohtake A, Sato K, Sano S (1996) Activation of protein-tyrosine phosphatase SH-PTP2 by a tyrosine-based activation motif of a novel brain molecule. J Biol Chem 271:25569–25574

    PubMed  CAS  Google Scholar 

  • Ohnishi H, Kubota M, Sano S (1997) BIT (Bit) maps to mouse chromosome 2. Genomics 40:504–506

    PubMed  CAS  Google Scholar 

  • Oren R, Takahashi S, Doss C, Levy R, Levy S (1990) TAPA-1, the target of an antiproliferative antibody, defines a new family of transmembrane proteins. Mol Cell Biol 10:4007–4015

    PubMed  CAS  Google Scholar 

  • Orito A, Kumanogoh H, Yasaka K, Sokawa J, Hidaka H, Sokawa Y, Maekawa S (2001) Calcium-dependent association of annexin VI, protein kinase C alpha, and neurocalcin alpha on the raft fraction derived from the synaptic plasma membrane of rat brain. J Neurosci Res 64:235–241

    PubMed  CAS  Google Scholar 

  • Owens GC, Edelman GM, Cunningham BA (1987) Organization of the neural cell adhesion molecule (N-CAM) gene: alternative exon usage as the basis for different membrane-associated domains. Proc Natl Acad Sci USA 84:294–298

    PubMed  CAS  Google Scholar 

  • Palacin M (1994) A new family of proteins (rBAT and 4F2hc) involved in cationic and zwitterionic amino acid transport: a tale of two proteins in search of a transport function. J Exp Biol 196:123–137

    PubMed  CAS  Google Scholar 

  • Paoloni-Giacobino A, Chen H, Antonarakis SE (1997) Cloning of a novel human neural cell adhesion molecule gene (NCAM2) that maps to chromosome region 21q21 and is potentially involved in Down syndrome. Genomics 43:43–51

    PubMed  CAS  Google Scholar 

  • Peles E, Nativ M, Lustig M, Grumet M, Schilling J, Martinez R, Plowman GD, Schlessinger J (1997) Identification of a novel contactin-associated transmembrane receptor with multiple domains implicated in protein–protein interactions. EMBO J 16:978–988

    PubMed  CAS  Google Scholar 

  • Perreau VM, Orchard S, Adlard PA, Bellingham SA, Cappai R, Ciccotosto GD, Cowie TF, Crouch PJ, Duce JA, Evin G, Faux NG, Hill AF, Hung YH, James SA, Li QX, Mok SS, Tew DJ, White AR, Bush AI, Hermjakob H, Masters CL (2010) A domain level interaction network of amyloid precursor protein and Abeta of Alzheimer’s disease. Proteomics 10:2377–2395

    PubMed  CAS  Google Scholar 

  • Pfeiffer R, Rossier G, Spindler B, Meier C, Kuhn L, Verrey F (1999) Amino acid transport of y + L-type by heterodimers of 4F2hc/CD98 and members of the glycoprotein-associated amino acid transporter family. EMBO J 18:49–57

    PubMed  CAS  Google Scholar 

  • Phillips GR, Florens L, Tanaka H, Khaing ZZ, Fidler L, Yates JR, Colman DR (2005) Proteomic comparison of two fractions derived from the transsynaptic scaffold. J Neurosci Res 81:762–775

    PubMed  CAS  Google Scholar 

  • Polo-Parada L, Bose CM, Landmesser LT (2001) Alterations in transmission, vesicle dynamics, and transmitter release machinery at NCAM-deficient neuromuscular junctions. Neuron 32:815–828

    PubMed  CAS  Google Scholar 

  • Polo-Parada L, Plattner F, Bose C, Landmesser LT (2005) NCAM 180 acting via a conserved C-terminal domain and MLCK is essential for effective transmission with repetitive stimulation. Neuron 46:917–931

    PubMed  CAS  Google Scholar 

  • Rahbar AM, Fenselau C (2004) Integration of Jacobson’s pellicle method into proteomic strategies for plasma membrane proteins. J Proteome Res 3:1267–1277

    PubMed  CAS  Google Scholar 

  • Rais I, Karas M, Schägger H (2004) Two-dimensional electrophoresis for the isolation of integral membrane proteins and mass spectrometric identification. Proteomics 4:2567–2571

    PubMed  CAS  Google Scholar 

  • Ranscht B (1988) Sequence of contactin, a 130-kD glycoprotein concentrated in areas of interneuronal contact, defines a new member of the immunoglobulin supergene family in the nervous system. J Cell Biol 107:1561–1573

    PubMed  CAS  Google Scholar 

  • Ranscht B, Moss DJ, Thomas C (1984) A neuronal surface glycoprotein associated with the cytoskeleton. J Cell Biol 99:1803–1813

    PubMed  CAS  Google Scholar 

  • Rathjen FG, Wolff JM, Chang S, Bonhoeffer F, Raper JA (1987) Neurofascin: a novel chick cell-surface glycoprotein involved in neurite–neurite interactions. Cell 51:841–849

    PubMed  CAS  Google Scholar 

  • Reinhardt C, Hebert SS, Strooper BD (2005) The amyloid-β precursor protein: integrating structure with biological function. EMBO J 24:3996–4005

    Google Scholar 

  • Rietschel B, Arrey TN, Meyer B, Bornemann S, Schuerken M, Karas M, Poetsch A (2009a) Elastase digests: new ammunition for shotgun proteomics. Mol Cell Proteomics 8:1029–1043

    PubMed  CAS  Google Scholar 

  • Rietschel B, Baeumlisberger D, Arrey TN, Bornemann S, Rohmer M, Schuerken M, Karas M, Meyer B (2009b) The benefit of combining nLC-MALDI-orbitrap MS data with nLC-MALDI-TOF/TOF data for proteomic analyses employing elastase. J Proteome Res 6:5317–5324

    Google Scholar 

  • Rohm B, Ottemeyer A, Lohrum M, Puschel AW (2000) Plexin/neuropilin complexes mediate repulsion by the axonal guidance signal semaphorin 3A. Mech Dev 93:95–104

    PubMed  CAS  Google Scholar 

  • Rossner S, Fuchsbrunner K, Lange-Dohna C, Hartlage-Rübsamen M, Bigl V, Betz A, Reim K, Brose N (2004) Munc 13-1-mediated vesicle priming contributes to secretory amyloid precursor protein processing. J Biol Chem 279:27841–27844

    PubMed  CAS  Google Scholar 

  • Ryan TA (2006) A pre-synaptic to-do list for coupling exocytosis to endocytosis. Curr Opin Cell Biol 18:416–421

    PubMed  CAS  Google Scholar 

  • Sánchez-Ponce D, Defelipe J, Garrido JJ, Muñoz A (2011) In vitro maturation of the cisternal organelle in the hippocampal neuron’s axon initial segment. Mol Cell Neurosci. June 24 (Epub ahead of print)

  • Sano S, Ohnishi H, Omori A, Hasegawa J, Kubota M (1997) BIT, an immune antigen receptor-like molecule in the brain. FEBS Lett 411:327–334

    PubMed  CAS  Google Scholar 

  • Schrenk-Siemens K, Perez-Alcala S, Richter J, Lacroix E, Rahuel J, Korte M, Müller U, Barde YA, Bibel M (2008) Embryonic stem cell-derived neurons as a cellular system to study gene function: lack of amyloid precursor proteins APP and APLP2 leads to defective synaptic transmission. Stem Cells 26:2153–2163

    PubMed  CAS  Google Scholar 

  • Seki M, Nawa H, Morioka T, Fukuchi T, Oite T, Abe H, Takei N (2002) Establishment of a novel enzyme-linked immunosorbent assay for Thy-1; quantitative assessment of neuronal degeneration. Neurosci Lett 329:185–188

    PubMed  CAS  Google Scholar 

  • Shiga T, Oppenheim RW, Grumet M, Edelman GM (1990) Neuron-glia cell adhesion molecule (Ng-CAM) expression in the chick embryo spinal cord: observations on the earliest developing intersegmental interneurons. Brain Res Dev Brain Res 55:209–217

    PubMed  CAS  Google Scholar 

  • Shin BK, Wang H, Yim AM, Le Naour F, Brichory F, Jang JH, Zhao R, Puravs E, Tra J, Michael CW, Misek DE, Hanash SM (2003) Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J Biol Chem 278:7607–7616

    PubMed  CAS  Google Scholar 

  • Slunt HH, Thinakram G, von Koch C, Lo AC, Tanzi RE, Sisodia SS (1994) Homo- and heterodimerization of a ubiquitous, cross reactive homologue of the mouse beta-amyloid precursor protein (APP). J Biol Chem 269:2637–2644

    PubMed  CAS  Google Scholar 

  • Smalla KH, Matthies H, Langnäse K, Shabir S, Böckers TM, Wyneken U, Staak S, Krug M, Beesley PW, Gundelfinger ED (2000) The synaptic glycoprotein neuroplastin is involved in long-term potentiation at hippocampal CA1 synapses. Proc Natl Acad Sci USA 97:4327–4332

    PubMed  CAS  Google Scholar 

  • Soba P, Eggert S, Wagner K, Zentgraf H, Siehl K, Kreger S, Lower A, Langer A, Merdes G, Paro P, Masters CL, Muller U, Kins S, Beyreuther K (2005) Homo- and heterodimerization of APP family members promotes intercellular adhesion. EMBO J 24:3624–3634

    PubMed  CAS  Google Scholar 

  • Stevens SM, Zharikova AD, Prokai L (2003) Proteomic analysis of the synaptic plasma membrane fraction isolated from rat forebrain. Brain Res Mol Brain Res 117:116–128

    PubMed  CAS  Google Scholar 

  • Stoffel W, Körner R, Wachtmann D, Keller BU (2004) Functional analysis of glutamate transporters in excitatory synaptic transmission of GLAST1 and GLAST1/EAAC1 deficient mice. Mol Brain Res 128:170–181

    PubMed  CAS  Google Scholar 

  • Strecker V, Wumaier Z, Wittig I, Schägger H (2010) Large pore gels to separate mega protein complexes larger than 10 MDa by blue native electrophoresis: isolation of putative respiratory strings or patches. Proteomics 10:3379–3387

    PubMed  CAS  Google Scholar 

  • Struyk AF, Canoll PD, Wolfgang MJ, Rosen CL, D’Eustachio P, Salzer JL (1995) Cloning of neurotrimin defines a new subfamily of differentially expressed neural cell adhesion molecules. J Neurosci 15:2141–2156

    PubMed  CAS  Google Scholar 

  • Südhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    PubMed  Google Scholar 

  • Suto F, Murakami Y, Nakamura F, Goshima Y, Fujisawa H (2003) Identification and characterization of a novel mouse plexin, plexin-A4. Mech Dev 120:385–396

    PubMed  CAS  Google Scholar 

  • Suto F, Ito K, Uemura M, Shimizu M, Shinkawa Y, Sanbo M, Shinoda T, Tsuboi M, Takashima S, Yagi T, Fujisawa H (2005) Plexin-a4 mediates axon-repulsive activities of both secreted and transmembrane semaphorins and plays roles in nerve fiber guidance. J Neurosci 25:3628–3637

    PubMed  CAS  Google Scholar 

  • Suto F, Tsuboi M, Kamiya H, Mizuno H, Kiyama Y, Komai S, Shimizu M, Sanbo M, Yagi T, Hiromi Y, Chedotal A, Mitchell KJ, Manabe T, Fujisawa H (2007) Interactions between plexin-A2, plexin-A4, and semaphorin 6A control lamina-restricted projection of hippocampal mossy fibers. Neuron 53:535–547

    PubMed  CAS  Google Scholar 

  • Suzuki M (2006) The Drosophila tweety family: molecular candidates for large-conductance Ca2+-activated Cl channels. Exp Physiol 91:141–147

    PubMed  CAS  Google Scholar 

  • Suzuki M, Mizuno A (2004) A novel human Cl(−) channel family related to Drosophila flightless locus. J Biol Chem 279:22461–22468

    PubMed  CAS  Google Scholar 

  • Suzuki M, Morita T, Iwamoto T (2006) Diversity of Cl(−) channels. Cell Mol Life Sci 63:12–24

    PubMed  CAS  Google Scholar 

  • Sweadner KJ, Rael E (2000) The FXYD gene family of small ion transport regulators or channels: cDNA sequence, protein signature sequence, and expression. Genomics 68:41–56

    PubMed  CAS  Google Scholar 

  • Szodorai A, Kuan Y-H, Sakane A, Sasaki T, Takai Y, Kirsch J, Müller U, Beyreuther K, Brady S, Morfini G, Kins S (2009) APP anterograde transport requires Rab3A GTPase activity for assembly of the transport vesicle. J Neurosci 29:14534–14544

    PubMed  CAS  Google Scholar 

  • Takahashi T, Fournier A, Nakamura F, Wang LH, Murakami Y, Kalb RG, Fujisawa H, Strittmatter SM (1999) Plexin-neuropilin-1 complexes form functional semaphorin-3A receptors. Cell 99:59–69

    PubMed  CAS  Google Scholar 

  • Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M, Riedel D, Urlaub H, Schenck S, Brügger B, Ringler P, Müller SA, Rammner B, Gräter F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmüller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846

    PubMed  CAS  Google Scholar 

  • Tannu NS, Hemby SE (2006a) Methods for proteomics in neuroscience. Prog Brain Res 158:41–82

    PubMed  CAS  Google Scholar 

  • Tannu NS, Hemby SE (2006b) Two-dimensional fluorescence difference gel electrophoresis for comparative proteomics profiling. Nat Protoc 1:1732–1742

    PubMed  CAS  Google Scholar 

  • Thiery JP, Brackenbury R, Rutishauser U, Edelman GM (1977) Adhesion among neural cells of the chick embryo. II. Purification and characterization of a cell adhesion molecule from neural retina. J Biol Chem 252:6841–6845

    PubMed  CAS  Google Scholar 

  • Turpin E, Russo-Marie F, Dubois T, de Paillerets C, Alfsen A, Bomsel M (1998) In adrenocortical tissue, annexins II and VI are attached to clathrin coated vesicles in a calcium-independent manner. Biochim Biophys Acta 1402:115–130

    PubMed  CAS  Google Scholar 

  • van Montfort BA, Canas B, Duurkens R, Godovac-Zimmermann J, Robillard GT (2002) Improved in-gel approaches to generate peptide maps of integral membrane proteins with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom 37:322–330

    PubMed  Google Scholar 

  • Volkmer H, Leuschner R, Zacharias U, Rathjen FG (1996) Neurofascin induces neurites by heterophilic interactions with axonal NrCAM while NrCAM requires F11 on the axonal surface to extend neurites. J Cell Biol 135:1059–1069

    PubMed  CAS  Google Scholar 

  • Wang XX, Pfenninger KH (2006) Functional analysis of SIRPalpha in the growth cone. J Cell Sci 119:172–183

    PubMed  CAS  Google Scholar 

  • Wang P, Yang G, Mosier DR, Chang P, Zaidi T, Gong YD, Zhao NM, Dominguez B, Gan WB, Lee KF, Zheng H (2005) Defective neuromuscular synapses in mice lacking amyloid precursor protein (APP) and APP-like protein 2. J Neurosci 25:1219–1225

    PubMed  CAS  Google Scholar 

  • Wang B, Yang L, Wang Z, Zheng H (2007) Amyloid precursor protein mediates presynaptic localization and activity of the high-affinity choline transporter. Proc Natl Acad Sci USA 104:14140–14145

    PubMed  CAS  Google Scholar 

  • Wang Z, Wang B, Yang L, Guo Q, Aithmitti N, Songyang Z, Zheng H (2009) Presynaptic and postsynaptic interaction of the amyloid precursor protein promotes peripheral and central synaptogenesis. J Neurosci 29:10788–10801

    PubMed  CAS  Google Scholar 

  • Watanabe T, Inui M, Chen BY, Iga M, Sobue K (1994) Annexin VI-binding proteins in brain. Interaction of annexin VI with a membrane skeletal protein, calspectin (brain spectrin or fodrin). J Biol Chem 269:17656–17662

    PubMed  CAS  Google Scholar 

  • Wilm M (2009) Quantitative proteomics in biological research. Proteomics 9:4590–4605

    PubMed  CAS  Google Scholar 

  • Wilson DJ, Kim DS, Clarke GA, Marshall-Clarke S, Moss DJ (1996) A family of glycoproteins (GP55), which inhibit neurite outgrowth, are members of the Ig superfamily and are related to OBCAM, neurotrimin, LAMP and CEPU-1. J Cell Sci 109:3129–3138

    PubMed  CAS  Google Scholar 

  • Wolfe MS, Guénette SY (2007) APP at a glance. J Cell Sci 120:3157–3161

    PubMed  CAS  Google Scholar 

  • Yamaguchi F, Yamaguchi K, Tai Y, Sugimoto K, Tokuda M (2001) Molecular cloning and characterization of a novel phospholemman-like protein from rat hippocampus. Brain Res Mol Brain Res 86:189–192

    PubMed  CAS  Google Scholar 

  • Yang l, Wang B, Long C, Wu G, Zheng H (2007) Increased asynchronous release and aberrant calcium channel activity in amyloid precursor protein deficient neuromuscular synapses. Neurosci 149:768–778

    CAS  Google Scholar 

  • Yap CC, Wisco D, Kujala P, Lasiecka ZM, Cannon JT, Chang MC, Hirling H, Klumperman J, Winckler B (2008) The somatodendritic endosomal regulator NEEP21 facilitates axonal targeting of L1/NgCAM. J Cell Biol 180:827–842

    PubMed  CAS  Google Scholar 

  • Yaron A, Huang PH, Cheng HJ, Tessier-Lavigne M (2005) Differential requirement for plexin-A3 and -A4 in mediating responses of sensory and sympathetic neurons to distinct class 3 semaphorins. Neuron 45:513–523

    PubMed  CAS  Google Scholar 

  • Yates JR, Gilchrist A, Howell KE, Bergeron JJ (2005) Proteomics of organelles and large cellular structures. Natl Rev Mol Cell Biol 6:702–714

    CAS  Google Scholar 

  • Yoon IS, Pietrzik CU, Kang DE, Koo EH (2005) Sequences from the low density lipoprotein receptor-related protein (LRP) cytoplasmic domain enhance amyloid beta protein production via the beta-secretase pathway without altering amyloid precursor protein/LRP nuclear signaling. J Biol Chem 20(280):20140–20147

    Google Scholar 

  • Zonta B, Desmazieres A, Rinaldi A, Tait S, Sherman DL, Nolan MF, Brophy PJ (2011) A critical role for Neurofascin in regulating action potential initiation through maintenance of the axon initial segment. Neuron 69:945–956

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the Deutsche Forschungsgemeinschaft (FOR1332/TP4). We are grateful to Melanie Laßek und Jens Weingarten for valuable suggestions and providing Fig. 1, 2, and 3. We are indebted to Dr. Herbert Zimmermann for critically reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Volknandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volknandt, W., Karas, M. Proteomic analysis of the presynaptic active zone. Exp Brain Res 217, 449–461 (2012). https://doi.org/10.1007/s00221-012-3031-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3031-x

Keywords

Navigation