Skip to main content
Log in

Motor unit discharge rates of the anconeus muscle during high-velocity elbow extensions

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Motor unit recruitment and motor unit discharge rate (MUDR) have been widely studied in isometric conditions but minimally during velocity-dependent contractions. For isometric contractions, surface electromyography (EMG) activity of the elbow extensors plateaus at near maximal torques (Le Bozec et al. 1980; Le Bozec and Maton 1982). One study (Maton and Bouisset 1975) recorded single motor unit (MU) activity at maximal velocities; however, only the rate of the first interspike interval (ISI) was reported and likely was not representative of the average MUDR of the MU train. The purpose was to calculate average MUDRs of the anconeus during loaded velocity-dependent contractions from zero velocity (isometric) up to maximal velocity (Vmax25) through a large range of motion. A Biodex dynamometer was used to record elbow extension torque, position, and velocity. Single MU potentials were collected from the anconeus with intramuscular EMG, and surface EMG was sampled from the lateral head of the triceps brachii during maximal voluntary isometric contractions (MVCs) and velocity-dependent contractions loaded at 25% MVC over 120° range of motion at five target velocities (0, 25, 50, 75, 100%Vmax25). Elbow extension velocities ranged from 93 to 494°/s and average MUDR ranged from 11.8 Hz at 25%MVC to 39.0 Hz at 100%Vmax25. Overall average MUDRs increased as a function of velocity, although the root mean square of triceps brachii surface EMG plateaued at 50%Vmax25. Piecewise regression analysis revealed two distinct linear ranges each described by a unique equation, suggesting that MUDRs of the anconeus enter a secondary range of firing, characterized by a steeper slope as velocity approaches maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abellaneda S, Guissard N, Duchateau J (2009) The relative lengthening of the myotendinous structures in the medial gastrocnemius during passive stretching differs among individuals. J Appl Physiol 106:169–177

    Article  PubMed  Google Scholar 

  • Altenburg TM, de Haan A, Verdijk PW, van Mechelen W, de Ruiter CJ (2009) Vastus lateralis single motor unit EMG at the same absolute torque production at different knee angles. J Appl Physiol 107:80–89

    Article  PubMed  CAS  Google Scholar 

  • Aston-Jones G, Chen S, Zhu Y, Oshinsky ML (2001) A neural circuit for circadian regulation of arousal. Nat Neurosci 4:732–738

    Article  PubMed  CAS  Google Scholar 

  • Barry BK, Pascoe MA, Jesunathadas M, Enoka RM (2007) Rate coding is compressed but variability is unaltered for motor units in a hand muscle of old adults. J Neurophysiol 97:3206–3218

    Article  PubMed  Google Scholar 

  • Basmajian JV, Griffin WR (1972) Function of anconeus muscle. An electromyographic study. J Bone Joint Surg Am 54:1712–1714

    PubMed  CAS  Google Scholar 

  • Binder-Macleod S, Kesar T (2005) Catchlike property of skeletal muscle: recent findings and clinical implications. Muscle Nerve 31:681–693

    Article  PubMed  Google Scholar 

  • Binder-Macleod SA, Lee SC (1996) Catchlike property of human muscle during isovelocity movements. J Appl Physiol 80:2051–2059

    PubMed  CAS  Google Scholar 

  • Calvin WH, Schwindt (1972) Steps in production of motoneuron spikes during rhythmic firing. J Neurophysiol 35:297–310

    PubMed  CAS  Google Scholar 

  • Cheng AJ, Rice CL (2010) Fatigue-induced reductions of torque and shortening velocity are muscle-dependent. Med Sci Sports Exerc 42:1651–1659

    Google Scholar 

  • Christensen H, Søgaard K, Jensen BR, Finsen L, Sjøgaard G (1995) Intramuscular and surface EMG power spectrum from dynamic and static contractions. J Electromyo Kinesiol 5:27–36

    Article  CAS  Google Scholar 

  • Christie A, Kamen G (2010) Short-term training adaptations in maximal motor unit firing rates and after hyperpolarization duration. Muscle Nerve 41:651–660

    PubMed  Google Scholar 

  • Christie A, Greig Inglis J, Kamen G, Gabriel DA (2009) Relationships between surface EMG variables and motor unit firing rates. Eur J Appl Physiol 107:177–185

    Article  PubMed  Google Scholar 

  • Del Valle A, Thomas CK (2005) Firing rates of motor units during strong dynamic contractions. Muscle Nerve 32:316–325

    Article  PubMed  Google Scholar 

  • Desmedt JE, Godaux E (1979) Voluntary motor commands in human ballistic movements. Ann Neurol 5:415–421

    Article  PubMed  CAS  Google Scholar 

  • Duchateau J, Enoka RM (2008) Neural control of shortening and lengthening contractions: influence of task constraints. J Physiol 15:5853–5864

    Article  Google Scholar 

  • Enoka RM (1997) Neural strategies in the control of muscle force. Muscle Nerve 5:S66–S69

    Article  PubMed  CAS  Google Scholar 

  • Farina D (2006) Interpretation of the surface electromyogram in dynamic contractions. Exerc Sport Sci Rev 34:121–127

    Article  PubMed  Google Scholar 

  • Farina D, Merletti R, Enoka RM (2004) The extraction of neural strategies from the surface EMG. J Appl Physiol 96:1486–1495

    Article  PubMed  Google Scholar 

  • Fuglevand AJ, Winter DA, Patla AE (1993) Models of recruitment and rate coding organization in motor-unit pools. J Neurophysiol 70:2470–2488

    PubMed  CAS  Google Scholar 

  • Garland SJ, Cooke JD, Miller KJ, Ohtsuki T, Ivanova T (1996) Motor unit activity during human single joint movements. J Neurophysiol 76:1982–1990

    PubMed  CAS  Google Scholar 

  • Gossen ER, Ivanova TD, Garland SJ (2003) The time course of the motoneurone afterhyperpolarization is related to motor unit twitch speed in human skeletal muscle. J Physiol 552:657–664

    Article  PubMed  CAS  Google Scholar 

  • Granit R, Kernell D, Smith RS (1963) Delayed depolarization and the repetitive response to intracellular stimulation of mammalian motoneurones. J Physiol 168:890–910

    PubMed  CAS  Google Scholar 

  • Gydikov A, Kosarov D, Kossev A, Kostov K, Trayanova N, Radicheva N (1986) Motor unit potentials at high muscle activity recorded by selective electrodes. Biomed Biochim Acta 45:S63–S68

    PubMed  CAS  Google Scholar 

  • Harwood B, Chleboun GS, Rice CL (2010) Effect of elbow joint angle on anconeus fascicle length and motor unit firing rates [Abstract]. Med Sci Sports Exerc 42:S412

    Google Scholar 

  • Heckman CJ (2009) Motoneuron excitability: the importance of neuromodulatory inputs. Clin Neurophysiol 120:2040–2054

    Article  PubMed  CAS  Google Scholar 

  • Heckman CJ, Binder MD (1991) Computer simulation of the steady-state input-output function of the cat medial gastrocnemius motoneuron pool. J Neurophysiol 65:952–967

    PubMed  CAS  Google Scholar 

  • Heckman CJ, Binder MD (1993) Computer simulations of motoneuron firing rate modulation. J Neurophysiol 69:1005–1008

    PubMed  CAS  Google Scholar 

  • Heckman CJ, Gorassini MA, Bennett DJ (2005) Persistent inward currents in motoneuron dendrites: implications for motor output. Muscle Nerve 31:135–156

    Article  CAS  Google Scholar 

  • Heckman CJ, Hyngstrom AS, Johnson MD (2008) Active properties of motoneurone dendrites: diffuse descending neuromodulation, focused local inhibition. J Physiol 586:1225–1231

    Article  PubMed  CAS  Google Scholar 

  • Hornby TG, Hornby TG, McDonagh JC, McDonagh JC, Reinking RM, Stuart DG, Stuart DG (2002) Motoneurons: a preferred firing range across vertebrate species? Muscle Nerve 25:632–648 jacobs

    Article  PubMed  Google Scholar 

  • Hwang K, Han JY, Chung IH (2004) Topographical anatomy of the anconeus muscle for use as a free flap. J Reconstr Microsurg 20:631–636

    Article  PubMed  Google Scholar 

  • Jacobs BL, Martin-Cora FJ, Fornal CA (2002) Activity of medullary serotonergic neurons in freely moving animals. Brain Res Rev 40:45–52

    Article  PubMed  CAS  Google Scholar 

  • Kanosue K, Yoshida M, Akazawa K, Fujii K (1979) The number of active motor units and their firing rates in voluntary contraction of human brachialis muscle. Jpn J Physiol 29:427–443

    PubMed  CAS  Google Scholar 

  • Kato M, Murakami S, Yasuda K (1985) Behavior of single motor units of human tibialis anterior muscle during voluntary shortening contraction under constant load torque. Exp Neurol 90:238–253

    Article  PubMed  CAS  Google Scholar 

  • Keenan KG, Farina D, Maluf KS, Merletti R, Enoka RM (2005) Influence of amplitude cancellation on the simulated surface electromyogram. J Appl Physiol 98:120–131

    Article  PubMed  Google Scholar 

  • Kernell D (1965) High-frequency repetitive firing of cat lumbrosacral motoneurones stimulated by long-lasting injected currents. Acta Physiol Scand 65:74–86

    Article  Google Scholar 

  • Kernell D (1979) Rhythmic properties of motoneurones innervating muscle fibres of different speed in m. gastrocnemius medialis of the cat. Brain Res 160:159–162

    Article  PubMed  CAS  Google Scholar 

  • Kiehn O, Eken T (1997) Prolonged firing in motor units: evidence of plateau potentials in human motoneurons? J Neurophysiol 78:3061–3068

    PubMed  CAS  Google Scholar 

  • Klass M, Baudry S, Duchateau J (2008) Age-related decline in rate of torque development is accompanied by lower maximal motor unit discharge frequency during fast contractions. J Appl Physiol 104:739–746

    Article  PubMed  Google Scholar 

  • Le Bozec S, Maton B (1982) The activity of anconeus during voluntary elbow extension: the effect of lidocaine blocking of the muscle. Electromyogr Clin Neurophysiol 22:265–275

    PubMed  CAS  Google Scholar 

  • Le Bozec S, Maton B (1987) Differences between motor unit firing rate, twitch characteristics and fibre type composition in an agonistic muscle group in man. Eur J Appl Physiol Occup Physiol 56:350–355

    Article  PubMed  CAS  Google Scholar 

  • Le Bozec S, Maton B, Cnockaert JC (1980) The synergy of elbow extensor muscles during dynamic work in man. I. Elbow extension. Eur J Appl Physiol Occup Physiol 44:255–269

    Article  PubMed  CAS  Google Scholar 

  • Lee RH, Heckman CJ (2000) Adjustable amplification of synaptic input in the dendrites of spinal motoneurons in vivo. J Neurosci 20:6734–6740

    PubMed  CAS  Google Scholar 

  • Linnamo V, Moritani T, Nicol C, Komi PV (2003) Motor unit activation patterns during isometric, concentric and eccentric actions at different force levels. J Electromyogr Kinesiol 13:93–101

    Article  PubMed  CAS  Google Scholar 

  • MacDonell CW, Ivanova TD, Garland SJ (2008) Afterhyperpolarization time-course and minimal discharge rate in low threshold motor units in humans. Exp Brain Res 189:23–33

    Article  PubMed  Google Scholar 

  • Masakado Y, Akaboshi K, Nagata KimuraA, Chino N (1995) Motor unit firing behavior in slow and fast contractions of the first dorsal interosseous muscle of healthy men. Electroencephalogr Clin Neurophysiol 97:290–295

    Article  PubMed  CAS  Google Scholar 

  • Maton B, Bouisset S (1975) Motor unit activity and preprogramming of movement in man. Electroencephalogr Clin Neurophysiol 38:658–660

    Article  PubMed  CAS  Google Scholar 

  • Monster AW, Chan H (1977) Isometric force production by motor units of extensor digitorum communis muscle in man. J Neurophysiol 40:1432–1443

    PubMed  CAS  Google Scholar 

  • Moritz CT, Barry BK, Pascoe MA, Enoka RM (2005) Discharge rate variability influences the variation in force fluctuations across the working range of a hand muscle. J Neurophysiol 93:2449–2459

    Article  PubMed  Google Scholar 

  • Murray WM, Buchanan TS, Delp SL (2000) The isometric functional capacity of muscles that cross the elbow. J Biomech 33:943–952

    Article  PubMed  CAS  Google Scholar 

  • Nussbaumer RM, Ruegg DG, Studer LM, Gabriel JP (2002) Computer simulation of the motoneuron pool–muscle complex. I. Input system and motoneuron pool. Biol Cybern 86:317–333

    Article  PubMed  CAS  Google Scholar 

  • Pasquet B, Carpentier A, Duchateau J (2006) Specific modulation of motor unit discharge for a similar change in fascicle length during shortening and lengthening contractions in humans. J Physiol 577:753–765

    Article  PubMed  CAS  Google Scholar 

  • Søgaard K, Christensen H, Jensen BR, Finsen L, Sjøgaard G (1996) Motor control and kinetics during low level concentric and eccentric contractions in man. Electroencephalogr Clin Neurophysiol 101:453–460

    PubMed  Google Scholar 

  • Søgaard K, Christensen H, Fallentin N, Mizuno M, Quistorff Sjøgaard G (1998) Motor unit activation patterns during concentric wrist flexion in humans with different muscle fibre composition. Eur J Appl Physiol Occup Physiol 78:411–416

    Article  PubMed  Google Scholar 

  • Studer LM, Ruegg DG, Gabriel JP (1999) A model for steady isometric muscle activation. Biol Cybern 80:339–355

    Article  PubMed  CAS  Google Scholar 

  • Theeuwen M, Gielen CC, Miller LE (1994) The relative activation of muscles during isometric contractions and low-velocity movements against a load. Exp Brain Res 101:493–505

    Article  PubMed  CAS  Google Scholar 

  • Thomas CK, Ross BH, Calancie B (1987) Human motor-unit recruitment during isometric contractions and repeated dynamic movements. J Neurophysiol 57:311–324

    PubMed  CAS  Google Scholar 

  • Travill AA (1962) Electromyographic study of the extensor apparatus of the forearm. Anat Rec 144:373–376

    Article  PubMed  CAS  Google Scholar 

  • van Bolhuis BM, Medendorp WP, Gielen CC (1997) Motor unit firing behavior in human arm flexor muscles during sinusoidal isometric contractions and movements. Exp Brain Res 117:120–130

    Article  PubMed  Google Scholar 

  • Van Cutsem M, Duchateau J (2005) Preceding muscle activity influences motor unit discharge and rate of torque development during ballistic contractions in humans. J Physiol 562:635–644

    Google Scholar 

  • Van Cutsem M, Duchateau J, Hainaut K (1998) Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol 513:295–305

    Article  PubMed  Google Scholar 

  • Webber SC, Porter MM, Gardiner PF (2009) Modeling age-related neuromuscular changes in humans. Appl Physiol Nutr Metab 34:732–744

    Article  PubMed  Google Scholar 

  • Zhang LQ, Nuber GW (2000) Moment distribution among human elbow extensor muscles during isometric and submaximal extension. J Biomech 33:145–154

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. Rice.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harwood, B., Davidson, A.W. & Rice, C.L. Motor unit discharge rates of the anconeus muscle during high-velocity elbow extensions. Exp Brain Res 208, 103–113 (2011). https://doi.org/10.1007/s00221-010-2463-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2463-4

Keywords

Navigation