Skip to main content

Advertisement

Log in

Short-term habituation of auditory evoked potential and neuromagnetic field components in dependence of the interstimulus interval

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Repeated auditory stimulation results usually in a response decrement of event-related potential components. In the current study, we investigated the impact of the interstimulus interval (ISI) on the response decrement. Healthy subjects were stimulated with trains of five tones, with an ISI of 600, 1,200, or 1,800 ms within the trains. Auditory evoked potentials (AEP) were recorded from the vertex, as well as neuromagnetic auditory evoked fields (AEF) from the left temporal region. Stimulus repetition led to a response decrement for the studied AEP components (N100 and P200) and AEF components (N100m and P200m). However, for all used ISIs, there was no further response decrement after the 2nd stimulus. The ISI affected only the magnitude but not the kind of the response decrement. No evidence for a gradual response decrement was revealed at any used ISI. This finding indicates that the response decrement is probably due to the refractoriness of cell assemblies involved in the generation of AEP and AEF components, rather than the result of a genuine habituation process. The finding questions habituation as the mechanism behind short-term decrements of AEP/AEF components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barry RJ, Cocker KI, Anderson JW, Gordon E, Rennie C (1992) Does the N100 evoked potential really habituate? Evidence from a paradigm appropriate to a clinical setting. Int J Psychophysiol 13:9–16

    Article  CAS  PubMed  Google Scholar 

  • Bourbon WT, Will KW, Gary HE Jr, Papanicolaou AC (1987) Habituation of auditory event-related potentials: a comparison of self-initiated and automated stimulus trains. Electroencephalogr Clin Neurophysiol 66:160–166

    Article  CAS  PubMed  Google Scholar 

  • Bramon E, Rabe-Hesketh SA, Sham P, Murray RM, Frangou S (2004) Meta-analysis of the P300 and P50 waveforms in schizophrenia. Schizophr Res 70:315–329

    Article  PubMed  Google Scholar 

  • Budd TW, Michie PT (1994) Facilitation of the N1 peak of the auditory ERP at short stimulus intervals. Neuroreport 5:2513–2516

    Article  CAS  PubMed  Google Scholar 

  • Budd TW, Barry RJ, Gordon E, Rennie C, Michie PT (1998) Decrement of the N1 auditory event-related potential with stimulus repetition: habituation vs. refractoriness. Int J Psychophysiol 31:51–68

    Article  CAS  PubMed  Google Scholar 

  • Christoffersen GR (1997) Habituation: events in the history of its characterization and linkage to synaptic depression. A new proposed kinetic criterion for its identification. Prog Neurobiol 53:45–66

    Article  CAS  PubMed  Google Scholar 

  • Clementz BA, Blumenfeld LD, Cobb S (1997) The gamma band response may account for poor P50 suppression in schizophrenia. Neuroreport 8:3889–3893

    Article  CAS  PubMed  Google Scholar 

  • Cohen D, Cuffin BN (1983) Demonstration of useful differences between magnetoencephalogram and electroencephalogram. Electroencephalogr Clin Neurophysiol 56:38–51

    Article  CAS  PubMed  Google Scholar 

  • Cowan N (1984) On short and long auditory stores. Psychol Bull 96:341–370

    Article  CAS  PubMed  Google Scholar 

  • Crowley KE, Colrain IM (2004) A review of the evidence for P2 being an independent component process: age, sleep and modality. Clin Neurophysiol 115:732–744

    Article  PubMed  Google Scholar 

  • Davis PA (1939) Effects of acoustic stimuli on the waling human brain. J Neurophysiol 2:494–499

    Google Scholar 

  • Davis H, Mast T, Yoshie N, Zerlin S (1966) The slow response of the human cortex to auditory stimuli: recovery process. Electroencephalogr Clin Neurophysiol 21:105–113

    Article  CAS  PubMed  Google Scholar 

  • Fruhstorfer H, Soveri P, Jarvilehto T (1970) Short-term habituation of the auditory evoked response in man. Electroencephalogr Clin Neurophysiol 28:153–161

    Article  CAS  PubMed  Google Scholar 

  • Fuentemilla L, Marco-Pallares J, Gual A, Escera C, Polo MD, Grau C (2009) Impaired theta phase-resetting underlying auditory N1 suppression in chronic alcoholism. Neuroreport 20:337–342

    Article  CAS  PubMed  Google Scholar 

  • Fuerst DR, Gallinat J, Boutros NN (2007) Range of sensory gating values and test-retest reliability in normal subjects. Psychophysiology 44:620–626

    Article  PubMed  Google Scholar 

  • Giffin NJ, Kaube H (2002) The electrophysiology of migraine. Curr Opin Neurol 15:303–309

    Article  PubMed  Google Scholar 

  • Givois V, Pollack GS (2000) Sensory habituation of auditory receptor neurons: implications for sound localization. J Exp Biol 203:2529–2537

    CAS  PubMed  Google Scholar 

  • Gratton G, Coles MG, Donchin E (1983) A new method for off-line removal of ocular artifact. Electroencephalogr Clin Neurophysiol 55:468–484

    Article  CAS  PubMed  Google Scholar 

  • Grau C, Fuentemilla L, Marco-Pallares J (2007) Functional neural dynamics underlying auditory event-related N1 and N1 suppression response. Neuroimage 36:522–531

    Article  CAS  PubMed  Google Scholar 

  • Hackley SA, Woldorff M, Hillyard SA (1990) Cross-modal selective attention effects on retinal, myogenic, brainstem, and cerebral evoked potentials. Psychophysiology 27:195–208

    Article  CAS  PubMed  Google Scholar 

  • Hari R, Kaila K, Katila T, Tuomisto T, Varpula T (1982) Interstimulus interval dependence of the auditory vertex response and its magnetic counterpart: implications for their neural generation. Electroencephalogr Clin Neurophysiol 54:561–569

    Article  CAS  PubMed  Google Scholar 

  • Hillyard SA, Hink RF, Schwent VL, Picton TW (1973) Electrical signs of selective attention in the human brain. Science 182:177–180

    Article  CAS  PubMed  Google Scholar 

  • Hong LE, Summerfelt A, McMahon RP, Thaker GK, Buchanan RW (2004) Gamma/beta oscillation and sensory gating deficit in schizophrenia. Neuroreport 15:155–159

    Article  PubMed  Google Scholar 

  • Hong LE, Buchanan RW, Thaker GK, Shepard PD, Summerfelt A (2008) Beta (~16 Hz) frequency neural oscillations mediate auditory sensory gating in humans. Psychophysiology 45:197–204

    Article  PubMed  Google Scholar 

  • Krasne FB, Teshiba TM (1995) Habituation of an invertebrate escape reflex due to modulation by higher centers rather than local events. Proc Natl Acad Sci USA 92:3362–3366

    Article  CAS  PubMed  Google Scholar 

  • Lammertmann C, Fujiki N, Lütkenhöner B, Hari R (2001) Short-term decrement of the auditory N1m response. In: Nenonen J, Ilmoniemi RJ, Katila T (eds) Biomag 2000, Proceedings of 12th International Conference on Biomagnetism, Helsinki University of Technology, Espoo, pp 50–53

  • Loveless N (1983) The orienting response and evoked potentials in man. In: Siddle D (ed) Orienting and habituation: perspectives in human research. Wiley, New York, pp 71–108

    Google Scholar 

  • Loveless N, Hari R, Hamalainen M, Tiihonen J (1989) Evoked responses of human auditory cortex may be enhanced by preceding stimuli. Electroencephalogr Clin Neurophysiol 74:217–227

    Article  CAS  PubMed  Google Scholar 

  • Loveless N, Levänen S, Jousmäki V, Sams M, Hari R (1996) Temporal integration in auditory sensory memory: neuromagnetic evidence. Electroencephalogr Clin Neurophysiol 100:220–228

    Article  CAS  PubMed  Google Scholar 

  • Määttä S, Saavalainen P, Herrgard E, Pääkkönen A, Luoma L, Laukkanen E, Partanen J (2005) Event-related potentials to elementary auditory input in distractible adolescents. Clin Neurophysiol 116:142–150

    Article  PubMed  Google Scholar 

  • May P, Tiitinen H, Sinkkonen J, Näätänen R (1994) Long-term stimulation attenuates the transient 40-Hz response. Neuroreport 5:1918–1920

    Article  CAS  PubMed  Google Scholar 

  • Mertens R, Polich J (1997) P300 from a single-stimulus paradigm: passive versus active tasks and stimulus modality. Electroencephalogr Clin Neurophysiol 104:488–497

    Article  CAS  PubMed  Google Scholar 

  • Näätänen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24:375–425

    Article  PubMed  Google Scholar 

  • Näätänen R, Gaillard AW, Varey CA (1981) Attention effects on auditory EPs as a function of inter-stimulus interval. Biol Psychol 13:173–187

    Article  PubMed  Google Scholar 

  • Nelson DA, Lassman FM (1977) Re-examination of the effects of periodic and aperiodic stimulation on the auditory-evoked vertex response. Audiology 16:409–418

    Article  CAS  PubMed  Google Scholar 

  • Nelson DA, Lassman FM, Hoel RL (1969) The effects of variable-interval and fixed-interval signal presentation schedules on the auditory evoked response. J Speech Hear Res 12:199–209

    CAS  PubMed  Google Scholar 

  • Öhman A, Lader M (1972) Selective attention and “habituation” of the auditory averaged evoked response in humans. Physiol Behav 8:79–85

    Article  PubMed  Google Scholar 

  • Öhman A, Kaye JJ, Lader M (1972) Regular interstimulus interval as a critical determinant of short-term “habituation” of the auditory averaged evoked response. Psychon Sci 27:275–278

    Google Scholar 

  • Pantev C, Hoke M, Lütkenhöner B, Lehnertz K (1989) Tonotopic organization of the auditory cortex: pitch versus frequency representation. Science 246:486–488

    Article  CAS  PubMed  Google Scholar 

  • Picton TW, Hillyard SA, Krausz HI, Galambos R (1974) Human auditory evoked potentials. I. Evaluation of components. Electroencephalogr Clin Neurophysiol 36:179–190

    Article  CAS  PubMed  Google Scholar 

  • Picton T, Hillyard S, Galambos R (1976) Habituation and attention in the auditory system. In: Keidel W, Neff W (eds) Handbook of sensory physiology, V. Auditory system. Springer, Berlin, pp 343–389

    Google Scholar 

  • Ritter W, Vaughan HG Jr, Costa LD (1968) Orienting and habituation to auditory stimuli: a study of short term changes in average evoked responses. Electroencephalogr Clin Neurophysiol 25:550–556

    Article  CAS  PubMed  Google Scholar 

  • Roeser R, Price LL (1969) Effects of habituation on the auditory evoked response. J Aud Res 9:306–313

    Google Scholar 

  • Rojas DC, Walker JR, Sheeder JL, Teale PD, Reite ML (1998) Developmental changes in refractoriness of the neuromagnetic M100 in children. Neuroreport 9:1543–1547

    Article  CAS  PubMed  Google Scholar 

  • Rosburg T (2004) Effects of tone repetition on auditory evoked neuromagnetic fields. Clin Neurophysiol 115:898–905

    Article  PubMed  Google Scholar 

  • Rosburg T, Kreitschmann-Andermahr I, Nowak H, Sauer H (2000) Habituation of the auditory evoked field component N100m in male patients with schizophrenia. J Psychiatr Res 34:245–254

    Article  CAS  PubMed  Google Scholar 

  • Rosburg T, Haueisen J, Sauer H (2002) Habituation of the auditory evoked field component N100m and its dependence on stimulus duration. Clin Neurophysiol 113:421–428

    Article  CAS  PubMed  Google Scholar 

  • Rosburg T, Trautner P, Korzyukov OA, Boutros NN, Schaller C, Elger CE, Kurthen M (2004) Short-term habituation of the intracranially recorded auditory evoked potentials P50 and N100. Neurosci Lett 372:245–249

    Article  CAS  PubMed  Google Scholar 

  • Rosburg T, Trautner P, Dietl T, Korzyukov OA, Boutros NN, Schaller C, Elger CE, Kurthen M (2005) Subdural recordings of the mismatch negativity (MMN) in patients with focal epilepsy. Brain 128:819–828

    Article  PubMed  Google Scholar 

  • Rosburg T, Trautner P, Boutros NN, Korzyukov OA, Schaller C, Elger CE, Kurthen M (2006) Habituation of auditory evoked potentials in intracranial and extracranial recordings. Psychophysiology 43:137–144

    Article  PubMed  Google Scholar 

  • Rosburg T, Trautner P, Elger CE, Kurthen M (2009a) Attention effects on sensory gating—intracranial and scalp recordings. Neuroimage 48:554–563

    Article  PubMed  Google Scholar 

  • Rosburg T, Trautner P, Fell J, Moxon KA, Elger CE, Boutros NN (2009b) Sensory gating in intracranial recordings—the role of phase locking. Neuroimage 44:1041–1049

    Article  PubMed  Google Scholar 

  • Rothman HH, Davis H, Hay IS (1970) Slow evoked cortical potentials and temporal features of stimulation. Electroencephalogr Clin Neurophysiol 29:225–232

    Article  CAS  PubMed  Google Scholar 

  • Sams M, Hari R, Rif J, Knuutila J (1993) The human auditory sensory memory trace persists about 10 sec. J Cogn Neurosci 5:363–370

    Article  Google Scholar 

  • Simons-Weidenmaier NS, Weber M, Plappert CF, Pilz PK, Schmid S (2006) Synaptic depression and short-term habituation are located in the sensory part of the mammalian startle pathway. BMC Neurosci 7:38

    Article  PubMed  Google Scholar 

  • Soininen HS, Karhu J, Partanen J, Paakkonen A, Jousmaki V, Hanninen T, Hallikainen M, Partanen K, Laakso MP, Koivisto K, Riekkinen P Sr (1995) Habituation of auditory N100 correlates with amygdaloid volumes and frontal functions in age-associated memory impairment. Physiol Behav 57:927–935

    Article  CAS  PubMed  Google Scholar 

  • Sokolov EN (1960) Nervous model of stimulus and the orienting reflex. Voprosy Psichologii 4:128–137

    Google Scholar 

  • Sörös P, Knecht S, Manemann E, Teismann I, Imai T, Lütkenhöner B, Pantev C (2001) Hemispheric asymmetries for auditory short-term habituation of tones? In: Nenonen J, Ilmoniemi RJ, Katila T (eds) Biomag 2000, Proceedings of 12th International Conference on Biomagnetism, Helsinki University of Technology, Espoo, pp 47–49

  • Sörös P, Michael N, Tollkötter M, Pfleiderer B (2006) The neurochemical basis of human cortical auditory processing: combining proton magnetic resonance spectroscopy and magnetoencephalography. BMC Biol 4:25

    Article  PubMed  Google Scholar 

  • Sörös P, Teismann IK, Manemann E, Lütkenhöner B (2009) Auditory temporal processing in healthy aging: a magnetoencephalographic study. BMC Neurosci 10:34

    Article  PubMed  Google Scholar 

  • Thoma RJ, Hanlon FM, Moses SN, Edgar JC, Huang M, Weisend MP, Irwin J, Sherwood A, Paulson K, Bustillo J, Adler LE, Miller GA, Canive JM (2003) Lateralization of auditory sensory gating and neuropsychological dysfunction in schizophrenia. Am J Psychiatry 160:1595–1605

    Article  PubMed  Google Scholar 

  • Thompson RF, Spencer WA (1966) Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychol Rev 73:16–43

    Article  CAS  PubMed  Google Scholar 

  • Wehr M, Zador AM (2005) Synaptic mechanisms of forward suppression in rat auditory cortex. Neuron 47:437–445

    Article  CAS  PubMed  Google Scholar 

  • Woldorff MG, Hillyard SA (1991) Modulation of early auditory processing during selective listening to rapidly presented tones. Electroencephalogr Clin Neurophysiol 79:170–191

    Article  CAS  PubMed  Google Scholar 

  • Woods DL, Elmasian R (1986) The habituation of event-related potentials to speech sounds and tones. Electroencephalogr Clin Neurophysiol 65:447–459

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The first two authors contributed equally to the manuscript. The authors greatly appreciate the assistance of Dominikus Zimmerer in preparing the artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timm Rosburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosburg, T., Zimmerer, K. & Huonker, R. Short-term habituation of auditory evoked potential and neuromagnetic field components in dependence of the interstimulus interval. Exp Brain Res 205, 559–570 (2010). https://doi.org/10.1007/s00221-010-2391-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2391-3

Keywords

Navigation