Skip to main content

Advertisement

Log in

Integrative stimulus-specific adaptation of the natural sounds in the auditory cortex of the awake rat

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Using oddball stimulus with pure tones, researchers have extensively investigated stimulus-specific adaptation (SSA), which has been regarded as a method of novelty detection, from the inferior colliculus (IC) to the auditory cortex (AC). However, until now, it is not clear whether SSA is preserved for natural sounds or whether it exists for spatial cues in the AC. Moreover, it is also unclear whether SSA integrates different types of cues within a single modality such as sound location and sound identity. Here, we addressed these issues using two natural sounds presented at two different locations while simultaneously performing extracellular recordings in the AC of awake rats. Our data showed that SSA was present in the AC for the natural sounds, the pure tones, and the spatial locations in the neuronal population. We also found that the AC response to a double deviant stimulus (a deviant sound at a deviant location) was stronger than that to a single (either a deviant sound or the same sound at a deviant location); this finding suggests that detecting unexpected events benefits from the integration of different cues within the same modality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

SSA:

Stimulus-specific adaptation

AC:

Auditory cortex

IC:

Inferior colliculus

A1:

Primary auditory cortex

AAF:

Anterior auditory filed

CF:

Characteristic frequencies

FRA:

Frequency response area

IOP:

Integrative oddball paradigm

SCO:

Sound comparison oddball

FM:

Frequency-modulated

CSI:

Common stimulus-specific index

DII:

Double-identity index

DSI:

Double-spatial index

PSTHs:

Peri-stimulus time histograms

DD:

Double deviant

SID:

Single identity deviant

SSD:

Single spatial deviant

References

  • Anderson LA, Malmierca MS (2013) The effect of auditory cortex deactivation on stimulus-specific adaptation in the inferior colliculus of the rat. Eur J Neurosci 37:52–62

    Article  CAS  PubMed  Google Scholar 

  • Anderson LA, Christianson GB, Linden JF (2009) Stimulus-specific adaptation occurs in the auditory thalamus. J Neurosci 29:7359–7363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antunes FM, Malmierca MS (2014) An overview of stimulus-specific adaptation in the auditory thalamus. Brain Topogr 27:480–499

    Article  PubMed  Google Scholar 

  • Antunes FM, Nelken I, Covey E, Malmierca MS (2010) Stimulus-specific adaptation in the auditory thalamus of the anesthetized rat. PLoS One 5:e14071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayala YA, Malmierca Dr MS (2012) Stimulus-specific adaptation and deviance detection in the inferior colliculus. Front Neural Circuits 6:89

    PubMed  Google Scholar 

  • Ayala YA, Perez-Gonzalez D, Duque D, Nelken I, Malmierca MS (2012) Frequency discrimination and stimulus deviance in the inferior colliculus and cochlear nucleus. Front Neural Circuits 6:119

    PubMed  Google Scholar 

  • Bäuerle P, von der Behrens W, Kössl M, Gaese BH (2011) Stimulus-specific adaptation in the gerbil primary auditory thalamus is the result of a fast frequency-specific habituation and is regulated by the corticofugal system. J Neurosci 31:9708–9722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bregman AS (1990) Auditory scene analysis: the perceptual organization of sound. MIT Press, Cambridge

    Book  Google Scholar 

  • Duque D, Malmierca MS, Caspary DM (2014) Modulation of stimulus-specific adaptation by GABAA receptor activation or blockade in the medial geniculate body of the anaesthetized rat. J Physiol 592:729–743

    Article  CAS  PubMed  Google Scholar 

  • Duque D, Wang X, Nieto-Diego J, Krumbholz K, Malmierca MS (2016) Neurons in the inferior colliculus of the rat show stimulus-specific adaptation for frequency, but not for intensity. Sci Rep 6:24114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farley BJ, Quirk MC, Doherty JJ, Christian EP (2010) Stimulus-specific adaptation in auditory cortex is an NMDA-independent process distinct from the sensory novelty encoded by the mismatch negativity. J Neurosci 30:16475–16484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fishman YI, Steinschneider M (2012) Searching for the mismatch negativity in primary auditory cortex of the awake monkey: deviance detection or stimulus specific adaptation? J Neurosci 32:15747–15758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horikawa J, Ito S, Hosokawa Y, Homma T, Murata K (1988) Tonotopic representation in the rat auditory-cortex. Proc Jpn Acad B Phys 64:260–263

    Article  Google Scholar 

  • Khouri L, Nelken I (2015) Detecting the unexpected. Curr Opin Neurobiol 35:142–147

    Article  CAS  PubMed  Google Scholar 

  • Klein C, von der Behrens W, Gaese BH (2014) Stimulus-specific adaptation in field potentials and neuronal responses to frequency-modulated tones in the primary auditory cortex. Brain Topogr 27:599–610

    Article  PubMed  Google Scholar 

  • Malmierca MS, Cristaudo S, Pérez-González D, Covey E (2009) Stimulus-specific adaptation in the inferior colliculus of the anesthetized rat. J Neurosci 29:5483–5493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malmierca MS, Sanchez-Vives MV, Escera C, Bendixen A (2014) Neuronal adaptation, novelty detection and regularity encoding in audition. Front Syst Neurosci 8:111

    PubMed  PubMed Central  Google Scholar 

  • Nelken I, Yaron A, Polterovich A, Hershenhoren I (2013) Stimulus-specific adaptation beyond pure tones. Adv Exp Med Biol 787:411–418

    Article  PubMed  Google Scholar 

  • Nieto-Diego J, Malmierca MS (2016) Topographic distribution of stimulus-specific adaptation across auditory cortical fields in the anesthetized rat. PLoS Biol 14:e1002397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parras GG, Nieto-Diego J, Carbajal GV, Valdes-Baizabal C, Escera C, Malmierca MS (2017) Neurons along the auditory pathway exhibit a hierarchical organization of prediction error. Nat Commun 8:2148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates, 5th edn. Elsevier Academic Press, Amsterdam

    Google Scholar 

  • Pérez-González D, Hernández O, Covey E, Malmierca MS (2012) GABA A-mediated inhibition modulates stimulus-specific adaptation in the inferior colliculus. PLoS One 7:e34297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polterovich A, Jankowski MM, Nelken I (2018) Deviance sensitivity in the auditory cortex of freely moving rats. PLoS One 13:e0197678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Profant O, Burianova J, Syka J (2013) The response properties of neurons in different fields of the auditory cortex in the rat. Hear Res 296:51–59

    Article  PubMed  Google Scholar 

  • Reches A, Gutfreund Y (2008) Stimulus-specific adaptations in the gaze control system of the barn owl. J Neurosci 28:1523–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reches A, Netser S, Gutfreund Y (2010) Interactions between stimulus-specific adaptation and visual auditory integration in the forebrain of the barn owl. J Neurosci 30:6991–6998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson BD, Hancock KE, Caspary DM (2013) Stimulus-specific adaptation in auditory thalamus of young and aged awake rats. J Neurophysiol 110:1892–1902

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Nodal F, Bajo-Lorenzana VM (2012) The role of the auditory cortex in the spatial information processing. Rev de Neurol 55:91–100

    CAS  Google Scholar 

  • Roman N, Wang D, Brown GJ (2003) Speech segregation based on sound localization. J Acoust Soc Am 114:2236–2252

    Article  PubMed  Google Scholar 

  • Rui YY, He J, Zhai YY, Sun ZH, Yu X (2018) Frequency-dependent stimulus-specific adaptation and regularity sensitivity in the rat auditory thalamus. Neuroscience 392:13–24

    Article  CAS  PubMed  Google Scholar 

  • Schwarz C, Hentschke H, Butovas S, Haiss F, Stuttgen MC, Gerdjikov TV, Bergner CG, Waiblinger C (2010) The head-fixed behaving rat–procedures and pitfalls. Somatosens Mot Res 27:131–148

    Article  PubMed  PubMed Central  Google Scholar 

  • Sollini J, Mill R, Sumner CJ (2017) Spatial processing is frequency specific in auditory cortex but not in the midbrain. J Neurosci 37:6588–6599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szymanski FD, Garcia-Lazaro JA, Schnupp JWH (2009) Current source density profiles of stimulus-specific adaptation in rat auditory cortex. J Neurophysiol 102:1483–1490

    Article  PubMed  Google Scholar 

  • Taaseh N, Yaron A, Nelken I (2011) Stimulus-specific adaptation and deviance detection in the rat auditory cortex. PLoS One 6:e23369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulanovsky N, Las L, Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nat Neurosci 6:391–398

    Article  CAS  PubMed  Google Scholar 

  • Von Der Behrens W, Bäuerle P, Kössl M, Gaese BH (2009) Correlating stimulus-specific adaptation of cortical neurons and local field potentials in the awake rat. J Neurosci 29:13837–13849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Liu J, Zhang J (2019) Early postnatal noise exposure degrades the stimulus-specific adaptation of neurons in the rat auditory cortex in adulthood. Neuroscience 404:1–13

    Article  CAS  PubMed  Google Scholar 

  • Wasmuht DF, Pena JL, Gutfreund Y (2017) Stimulus-specific adaptation to visual but not auditory motion direction in the barn owl’s optic tectum. Eur J Neurosci 45:610–621

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu X, Yu X, He J, Nelken I (2014) Across-ear stimulus-specific adaptation in the auditory cortex. Front Neural Circuits 8:89

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu XX, Zhai YY, Kou XK, Yu X (2017) Adaptation facilitates spatial discrimination for deviant locations in the thalamic reticular nucleus of the rat. Neuroscience 365:1–11

    Article  CAS  PubMed  Google Scholar 

  • Yu XJ, Xu XX, He S, He J (2009) Change detection by thalamic reticular neurons. Nat Neurosci 12:1165–1170

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Liu Y, Shen L, Feng L, Hong B (2011) Stimulus-specific adaptation and its dynamics in the inferior colliculus of rat. Neuroscience 181:163–174

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

All experiments were supported by the National Natural Science Foundation of China (31671081).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the final version of the manuscript. XY designed the experiments and analyzed and interpreted the data; YYZ, ZHS, YMG, and YT collected and analyzed the data. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Xiongjie Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution (ZJU20160246).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, YY., Sun, ZH., Gong, YM. et al. Integrative stimulus-specific adaptation of the natural sounds in the auditory cortex of the awake rat. Brain Struct Funct 224, 1753–1766 (2019). https://doi.org/10.1007/s00429-019-01880-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-019-01880-2

Keywords

Navigation