Skip to main content
Log in

Cortical and behavioral adaptations in response to short-term inphase versus antiphase bimanual movement training

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Bimanual movement training (BMT) may be an effective rehabilitative protocol for movement-related deficits following a stroke; however, it is unclear how varying types of BMT induce cortical adaptations in the healthy population. Moreover, we lack a methodology to measure cortical adaptations in response to modes of movement training. Therefore, the present study measured the cued movement-related potential (MRP) to investigate cortical adaptations during cued inphase versus antiphase BMT that transferred to a unimanual task and how cortical modulations related to behavior. Three specific hypotheses were investigated: (1) cued inphase BMT would induce cortical adaptations within regions subserving motor preparation and movement execution, (2) repetitive cued unimanual training would induce cortical activity modulations associated with motor execution, and (3) increased cortical activity would be associated with enhanced performance. On three separate days, EEG was recorded from 22 electrodes during three types of cued movement training: inphase BMT, antiphase BMT and repetitive unimanual movement, in addition to pre- and post-training unimanual movement trials involving cued right wrist flexion. The MRP was measured for each repetition during each trial. Results showed a significant training-related increase in preparatory activation correlated with a behavioral enhancement following cued inphase BMT. This effect was not attributable to a change in arousal. No significant training-related modulation occurred in response to cued antiphase BMT or repetitive unimanual movement training. These results suggest that cortical adaptations in relation to the preparation of a cued movement enhance in response to cued inphase BMT, and the MRP is an effective measurement tool to assess training-related adaptations in response to inphase BMT specifically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida QJ, Wishart LR, Lee TD (2002) Bimanual coordination deficits with Parkinson’s disease: the influence of movement speed and external cueing. Mov Disord 17:30–37

    Article  PubMed  Google Scholar 

  • Almeida QJ, Wishart LR, Lee TD (2003) Disruptive influences of a cued voluntary shift on coordinated movement in Parkinson’s disease. Neuropsychologia 41:442–452

    Article  PubMed  Google Scholar 

  • Burgess JK, Bareither R, Patton JL (2007) Single limb performance following contralateral bimanual limb training. IEEE Trans Neural Syst Rehabil Eng 15:347–355. doi:10.1109/TNSRE.2007.903908

    Article  PubMed  Google Scholar 

  • Cauraugh JH, Kim S (2002) Two coupled motor recovery protocols are better than one: electromyogram-triggered neuromuscular stimulation and bilateral movements. Stroke 33:1589–1594

    Article  PubMed  Google Scholar 

  • Classen J, Liepert J, Wise SP, Hallett M, Cohen LG (1998) Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol 79:1117–1123

    CAS  PubMed  Google Scholar 

  • Cuadrado ML, Arias JA (2001) Bilateral movement enhances ipsilesional cortical activity in acute stroke: a pilot functional MRI study. Neurology 57:1740–1741

    CAS  PubMed  Google Scholar 

  • Deecke L (1987) Bereitschaftspotential as an indicator of movement preparation in supplementary motor area and motor cortex. Ciba Found Symp 132:231–250

    CAS  PubMed  Google Scholar 

  • Deecke L, Lang W (1996) Generation of movement-related potentials and fields in the supplementary sensorimotor area and the primary motor area. Adv Neurol 70:127–146

    CAS  PubMed  Google Scholar 

  • Deecke L, Scheid P, Kornhuber HH (1969) Distribution of readiness potential, pre-motion positivity, and motor potential of the human cerebral cortex preceding voluntary finger movements. Exp Brain Res 7:158–168

    Article  CAS  PubMed  Google Scholar 

  • Di Russo F, Incoccia C, Formisano R, Sabatini U, Zoccolotti P (2005) Abnormal motor preparation in severe traumatic brain injury with good recovery. J Neurotrauma 22:297–312. doi:10.1089/neu.2005.22.297

    Article  CAS  PubMed  Google Scholar 

  • Doyon J, Song AW, Karni A, Lalonde F, Adams MM, Ungerleider LG (2002) Experience-dependent changes in cerebellar contributions to motor sequence learning. Proc Natl Acad Sci USA 99:1017–1022. doi:10.1073/pnas.022615199

    Article  CAS  PubMed  Google Scholar 

  • Filipovic SR, Covickovic-Sternic N, Radovic VM, Dragasevic N, Stojanovic-Svetel M, Kostic VS (1997) Correlation between Bereitschaftspotential and reaction time measurements in patients with Parkinson’s disease. Measuring the impaired supplementary motor area function? J Neurol Sci 147:177–183

    Article  CAS  PubMed  Google Scholar 

  • Hill H (2009) An event-related potential evoked by movement planning is modulated by performance and learning in visuomotor control. Exp Brain Res 195:519–529. doi:10.1007/s00221-009-1821-6

    Article  PubMed  Google Scholar 

  • Hoshi E, Tanji J (2006) Differential involvement of neurons in the dorsal and ventral premotor cortex during processing of visual signals for action planning. J Neurophysiol 95:3596–3616. doi:10.1152/jn.01126.2005

    Article  PubMed  Google Scholar 

  • Immisch I, Waldvogel D, van Gelderen P, Hallett M (2001) The role of the medial wall and its anatomical variations for bimanual antiphase and in-phase movements. Neuroimage 14:674–684. doi:10.1006/nimg.2001.0856

    Article  CAS  PubMed  Google Scholar 

  • Jacobs KM, Donoghue JP (1991) Reshaping the cortical motor map by unmasking latent intracortical connections. Science 251:944–947

    Article  CAS  PubMed  Google Scholar 

  • Jahanshahi M, Jenkins IH, Brown RG, Marsden CD, Passingham RE, Brooks DJ (1995) Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain 118:913–933

    Article  PubMed  Google Scholar 

  • Jancke L, Loose R, Lutz K, Specht K, Shah NJ (2000) Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. Cogn Brain Res 10:51–66

    Article  CAS  Google Scholar 

  • Johnson KA, Cunnington R, Bradshaw JL, Phillips JG, Iansek R, Rogers MA (1998) Bimanual co-ordination in Parkinson’s disease. Brain 121:743–753

    Article  PubMed  Google Scholar 

  • Kaas JH, Merzenich MM, Killackey HP (1983) The reorganization of somatosensory cortex following peripheral nerve damage in adult and developing mammals. Annu Rev Neurosci 6:325–356. doi:10.1146/annurev.ne.06.030183.001545

    Article  CAS  PubMed  Google Scholar 

  • Karni A, Meyer G, Jezzard P, Adams MM, Turner R, Ungerleider LG (1995) Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377:155–158. doi:10.1038/377155a0

    Article  CAS  PubMed  Google Scholar 

  • Karni A, Meyer G, Rey-Hipolito C, Jezzard P, Adams MM, Turner R, Ungerleider LG (1998) The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc Natl Acad Sci 95:861–868

    Article  CAS  PubMed  Google Scholar 

  • Kleim JA, Barbay S, Nudo RJ (1998) Functional reorganization of the rat motor cortex following motor skill learning. J Neurophysiol 80:3321–3325

    CAS  PubMed  Google Scholar 

  • Koch G, Franca M, Del Olmo MF, Cheeran B, Milton R, Alvarez Sauco M, Rothwell JC (2006) Time course of functional connectivity between dorsal premotor and contralateral motor cortex during movement selection. J Neurosci 26:7452–7459. doi:10.1523/JNEUROSCI.1158-06.2006

    Article  CAS  PubMed  Google Scholar 

  • Luft AR, McCombe Waller S, Whitall J, Forrester LW, Macko R, Sorkin JD, Schulz JB, Goldberg AP, Hanley DF (2004) Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. JAMA 292:1853–1861

    Article  CAS  PubMed  Google Scholar 

  • McCombe Waller S, Whitall J (2008) Bilateral arm training: why and who benefits? NeuroRehabilitation 23:29–41

    PubMed  Google Scholar 

  • Mochizuki H, Franca M, Huang YZ, Rothwell JC (2005) The role of dorsal premotor area in reaction task: comparing the “virtual lesion” effect of paired pulse or theta burst transcranial magnetic stimulation. Exp Brain Res 167:414–421. doi:10.1007/s00221-005-0047-5

    Article  PubMed  Google Scholar 

  • Mudie MH, Matyas TA (2000) Can simultaneous bilateral movement involve the undamaged hemisphere in reconstruction of neural networks damaged by stroke? Disabil Rehabil 22:23–37

    Article  CAS  PubMed  Google Scholar 

  • Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM (1996) Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci 16:785–807

    CAS  PubMed  Google Scholar 

  • Nudo RJ, Larson D, Plautz EJ, Friel KM, Barbay S, Frost SB (2003) A squirrel monkey model of poststroke motor recovery. ILAR J 44:161–174

    CAS  PubMed  Google Scholar 

  • Plautz EJ, Milliken GW, Nudo RJ (2000) Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning. Neurobiol Learn Mem 74:27–55

    Article  CAS  PubMed  Google Scholar 

  • Riehle A, Requin J (1989) Monkey primary motor and premotor cortex: single-cell activity related to prior information about direction and extent of an intended movement. J Neurophysiol 61:534–549

    CAS  PubMed  Google Scholar 

  • Sadato N, Yonekura Y, Waki A, Yamada H, Ishii Y (1997) Role of the supplementary motor area and the right premotor cortex in the coordination of bimanual finger movements. J Neurosci 17:9667–9674

    CAS  PubMed  Google Scholar 

  • Samuel M, Ceballos-Baumann AO, Blin J, Uema T, Boecker H, Passingham RE, Brooks DJ (1997) Evidence for lateral premotor and parietal overactivity in Parkinson’s disease during sequential and bimanual movements. A PET study. Brain 120:963–976

    Article  PubMed  Google Scholar 

  • Schulze K, Luders E, Jancke L (2002) Intermanual transfer in a simple motor task. Cortex 38:805–815

    Article  PubMed  Google Scholar 

  • Seitz RJ, Kleiser R, Butefisch CM, Jorgens S, Neuhaus O, Hartung HP, Wittsack HJ, Sturm V, Hermann MM (2004) Bimanual recoupling by visual cueing in callosal disconnection. Neurocase 10:316–325

    Article  PubMed  Google Scholar 

  • Serrien DJ, Brown P (2002) The functional role of interhemispheric synchronization in the control of bimanual timing tasks. Exp Brain Res 147:268–272

    Article  PubMed  Google Scholar 

  • Serrien DJ, Strens LH, Oliviero A, Brown P (2002) Repetitive transcranial magnetic stimulation of the supplementary motor area (SMA) degrades bimanual movement control in humans. Neurosci Lett 328:89–92

    Article  CAS  PubMed  Google Scholar 

  • Silvestrini M, Cupini LM, Placidi F, Diomedi M, Bernardi G (1998) Bilateral hemispheric activation in the early recovery of motor function after stroke. Stroke 29:1305–1310

    CAS  PubMed  Google Scholar 

  • Smith AL, Staines WR (2006) Cortical adaptations and motor performance improvements associated with short-term bimanual training. Brain Res 1071:165–174

    Article  CAS  PubMed  Google Scholar 

  • Staines WR, Padilla M, Knight RT (2002) Frontal-parietal event-related potential changes associated with practising a novel visuomotor task. Brain Res Cogn Brain Res 13:195–202

    Article  PubMed  Google Scholar 

  • Stewart KC, Cauraugh JH, Summers JJ (2006) Bilateral movement training and stroke rehabilitation: a systematic review and meta-analysis. J Neurol Sci 244:89–95. doi:10.1016/j.jns.2006.01.005

    Article  PubMed  Google Scholar 

  • Steyvers M, Etoh S, Sauner D, Levin O, Siebner HR, Swinnen SP, Rothwell JC (2003) High-frequency transcranial magnetic stimulation of the supplementary motor area reduces bimanual coupling during anti-phase but not in-phase movements. Exp Brain Res 151:309–317. doi:10.1007/s00221-003-1490-9

    Article  PubMed  Google Scholar 

  • Stinear JW, Byblow WD (2002) Disinhibition in the human motor cortex is enhanced by synchronous upper limb movements. J Physiol 543:307–316

    Article  CAS  PubMed  Google Scholar 

  • Stinear JW, Byblow WD (2004) An interhemispheric asymmetry in motor cortex disinhibition during bimanual movement. Brain Res 1022:81–87

    Article  CAS  PubMed  Google Scholar 

  • Stinear CM, Barber PA, Coxon JP, Fleming MK, Byblow WD (2008) Priming the motor system enhances the effects of upper limb therapy in chronic stroke. Brain 131:1381–1390. doi:10.1093/brain/awn051

    Article  PubMed  Google Scholar 

  • Sugiura M, Kawashima R, Takahashi T, Xiao R, Tsukiura T, Sato K, Kawano K, Iijima T, Fukuda H (2001) Different distribution of the activated areas in the dorsal premotor cortex during visual and auditory reaction-time tasks. Neuroimage 14:1168–1174

    Article  CAS  PubMed  Google Scholar 

  • Swinnen SP, Van Langendonk L, Verschueren S, Peeters G, Dom R, De Weerdt W (1997) Interlimb coordination deficits in patients with Parkinson’s disease during the production of two-joint oscillations in the sagittal plane. Mov Disord 12:958–968

    Article  CAS  PubMed  Google Scholar 

  • Vangheluwe S, Puttemans V, Wenderoth N, Van Baelen M, Swinnen SP (2004) Inter- and intralimb transfer of a bimanual task: generalisability of limb dissociation. Behav Brain Res 154:535–547. doi:10.1016/j.bbr.2004.03.022

    Article  PubMed  Google Scholar 

  • Walter WG, Cooper R, Aldridge VJ, McCallum WC, Winter AL (1964) Contingent negative variation: an electric sign of sensorimotor association and expectancy in the human brain. Nature 203:380–384

    Article  CAS  PubMed  Google Scholar 

  • Whitall J, McCombe Waller S, Silver KH, Macko RF (2000) Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke 31:2390–2395

    CAS  PubMed  Google Scholar 

  • Zanone PG, Kelso JA (1992) Evolution of behavioral attractors with learning: nonequilibrium phase transitions. J Exp Psychol Hum Percept Perform 18:403–421

    Article  CAS  PubMed  Google Scholar 

  • Zanone PG, Kelso JA (1997) Coordination dynamics of learning and transfer: collective and component levels. J Exp Psychol—Hum Percept Perform 23:1454–1480

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants to WRS from the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Foundation for Innovation and the Ontario Research Fund. ALS was supported by NSERC. The authors thank Mark Linseman and Meghan Linsdell for assistance with data acquisition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Richard Staines.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, A.L., Staines, W.R. Cortical and behavioral adaptations in response to short-term inphase versus antiphase bimanual movement training. Exp Brain Res 205, 465–477 (2010). https://doi.org/10.1007/s00221-010-2381-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2381-5

Keywords

Navigation