Skip to main content
Log in

Functional subdivisions in low-frequency primary auditory cortex (AI)

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We wished to test the hypothesis that there are modules in low-frequency AI that can be identified by their responsiveness to communication calls or particular regions of space. Units were recorded in anaesthetised guinea pig AI and stimulated with conspecific vocalizations and a virtual motion stimulus (binaural beats) presented via a closed sound system. Recording tracks were mainly oriented orthogonally to the cortical surface. Some of these contained units that were all time-locked to the structure of the chutter call (14/22 tracks) and/or the purr call (12/22 tracks) and/or that had a preference for stimuli from a particular region of space (8/20 tracks with four contralateral, two ipsilateral and two midline), or where there was a strong asymmetry in the response to beats of different direction (two tracks). We conclude that about half of low-frequency AI is organized into modules that are consistent with separate “what” and “where” pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abeles M, Goldstein MH Jr (1970) Functional architecture in cat primary auditory cortex: columnar organization and organization according to depth. J Neurophysiol 33:172–187

    PubMed  CAS  Google Scholar 

  • Barbour DL, Callaway EM (2008) Excitatory local connections of superficial neurons in rat auditory cortex. J Neurosci 28:11174–11185

    Article  PubMed  CAS  Google Scholar 

  • Bullock D, Palmer AR, Rees A (1988) A compact and easy to use tungsten in glass microelectrode manufacturing workstation. Med Biol Eng Comput 26:669–672

    Article  PubMed  CAS  Google Scholar 

  • Cheung SW, Bedenbaugh PH, Nagarajan SS, Schreiner CE (2001) Functional organization of squirrel monkey primary auditory cortex: Responses to pure tones. J Neurophysiol 85:1732–1749

    PubMed  CAS  Google Scholar 

  • Culling JF, Darwin CJ (1994) Perceptual and computational separation of simultaneous vowels—cues arising from low-frequency beating. J Acoust Soc Am 95:1559–1569

    Article  PubMed  CAS  Google Scholar 

  • DeFelipe J (2002) Cortical interneurons: from Cajal to 2001. Prog Brain Res 136:215–238

    Article  PubMed  Google Scholar 

  • Doan DE, Saunders JC (1999) Sensitivity to simulated directional sound motion in the rat primary auditory cortex. J Neurophysiol 81:2075–2087

    PubMed  CAS  Google Scholar 

  • Ehret G (1997) The auditory cortex. J Comp Physiol A 181:547–557

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick DC, Kuwada S, Batra R (2000) Neural sensitivity to interaural time differences: beyond the Jeffress model. J Neurosci 20:1605–1615

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Brown PB (1969) Responses of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 22:613–636

    Google Scholar 

  • Horikawa J, Hess A, Nasu M, Hosokawa Y, Scheich H, Taniguchi I (2001) Optical imaging of neural activity in multiple auditory cortical fields of guinea pigs. Neuroreport 12:3335–3339

    Article  PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1997) Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B 198:1–59

    Article  Google Scholar 

  • Jenkins WM, Merzenich MM (1984) Role of cat primary auditory cortex for sound-localization behavior. J Neurophysiol 52:819–847

    PubMed  CAS  Google Scholar 

  • Jones EG (2000) Microcolumns in the cerebral cortex. Proc Natl Acad Sci USA 97:5019–5021

    Article  PubMed  CAS  Google Scholar 

  • Kaas J, Hackett TA (2000) Subdivisions of auditory cortex and processing streams in primates. Proc Natl Acad Sci USA 97:11793–11799

    Article  PubMed  CAS  Google Scholar 

  • Linden JF, Schreiner CE (2003) Columnar transformations in auditory cortex? A comparison to visual and somatosensory cortices. Cerebr Cortex 13:83–89

    Article  Google Scholar 

  • Lomber SG, Malhotra S (2008) Double dissociation of “what” and “where” processing in auditory cortex. Nat Neurosci 11:609–616

    Article  PubMed  CAS  Google Scholar 

  • Macpherson EA, Middlebrooks JC (2002) Listener weighting of cues from lateral angle: the duplex theory of sound localization revisited. J Acoust Soc Am 91:1648–1661

    Google Scholar 

  • Malhotra S, Hall AJ, Lomber SG (2004) Cortical control of sound localization in the cat: unilateral cooling deactivation of 19 cerebral areas. J Neurophysiol 92:1625–1643

    Article  PubMed  Google Scholar 

  • Malhotra S, Stecker GC, Middlebrooks JC, Lomber SG (2008) Sound localization deficits during reversible deactivation of primary auditory cortex and/or the dorsal zone. J Neurophysiol 99:1628–1642

    Article  PubMed  Google Scholar 

  • Malone BJ, Scott BH, Semple MN (2002) Context-dependent adaptive coding of interaural phase disparity in the auditory cortex of macaques. J Neurosci 22:4625–4638

    PubMed  CAS  Google Scholar 

  • McAlpine D, Jiang D, Palmer AR (1996) Interaural delay sensitivity and the classification of low best-frequency binaural responses in the inferior colliculus of the guinea pig. Hear Res 97:136–152

    Article  PubMed  CAS  Google Scholar 

  • McAlpine D, Jiang D, Shackleton TM, Palmer AR (1998) Convergent input from brainstem coincidence detectors onto delay-sensitive neurons in the inferior colliculus. J Neurosci 18:6026–6039

    PubMed  CAS  Google Scholar 

  • McAlpine D, Jiang D, Palmer AR (2001) A neural code for low-frequency sound localization in mammals. Nat Neurosci 4:396–401

    Article  PubMed  CAS  Google Scholar 

  • Mendelson JR, Schreiner CE, Sutter ML (1997) Functional topography of cat primary auditory cortex: response latencies. J Comp Physiol A 181:615–633

    Article  PubMed  CAS  Google Scholar 

  • Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120:701–722

    Article  PubMed  Google Scholar 

  • Prieto JJ, Peterson BA, Winer JA (1994) Morphology and spatial distribution of GABAergic neurons in cat primary auditory cortex (AI). J Comp Neurol 344:349–382

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (1995) A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 18:383–388

    Article  PubMed  CAS  Google Scholar 

  • Rauschecker JP, Tian B (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci USA 97:11800–11806

    Article  PubMed  CAS  Google Scholar 

  • Rayleigh L (1907) On our perception of sound direction. Philos Mag 13:214–232

    Google Scholar 

  • Read HL, Winer JA, Schreiner CE (2002) Functional architecture of auditory cortex. Curr Opin Neurobiol 12:433–440

    Article  PubMed  CAS  Google Scholar 

  • Reale RA, Brugge JF (1990) Auditory cortical neurons are sensitive to static and continuously changing interaural phase cues. J Neurophysiol 64:1247–1260

    PubMed  CAS  Google Scholar 

  • Recanzone GH (2000) Spatial processing in the auditory cortex of the macaque monkey. Proc Natl Acad Sci USA 97:11829–11835

    Article  PubMed  CAS  Google Scholar 

  • Rutkowski RG, Wallace MN, Shackleton TM, Palmer AR (2000) Organisation of binaural interactions in the primary and dorsocaudal fields of the guinea pig auditory cortex. Hear Res 145:177–189

    Article  PubMed  CAS  Google Scholar 

  • Schreiner CE, Winer JA (2007) Auditory cortex mapmaking: principles, projections, and plasticity. Neuron 56:356–365

    Article  PubMed  CAS  Google Scholar 

  • Shackleton TM, Arnott RH, Palmer AR (2005) Sensitivity to interaural correlation of single neurons in the inferior colliculus of guinea pigs. J Assoc Res Otolaryngol 6:244–259

    Article  PubMed  Google Scholar 

  • Shen J-X, Xu Z-M, Yao Y-D (1999) Evidence for columnar organization in the auditory cortex of the mouse. Hear Res 137:174–177

    Article  PubMed  CAS  Google Scholar 

  • Smith PH, Populin LC (2001) Fundamental differences between the thalamocortical recipient layers of the cat auditory and visual cortices. J Comp Neurol 436:508–519

    Article  PubMed  CAS  Google Scholar 

  • Stecker GC, Harrington IA, Middlebrooks JC (2005) Location coding by opponent neural populations in the auditory cortex. PloS Biol 3(3):e78

    Article  PubMed  CAS  Google Scholar 

  • Stevens SS, Newman EB (1936) The localization of actual sources of sound. Am J Psych 48:297–306

    Article  Google Scholar 

  • Sugimoto S, Sakurada M, Horikawa J, Taniguchi I (1997) The columnar and layer-specific response properties of neurons in the primary auditory cortex of Mongolian gerbils. Hear Res 112:175–185

    Article  PubMed  CAS  Google Scholar 

  • Syka J, Šuta D, Popelář J (2005) Responses to species-specific vocalizations in the auditory cortex of awake and anesthetised guinea pigs. Hear Res 206:177–184

    Article  PubMed  Google Scholar 

  • Tanaka H, Komatuzaki A, Taniguchi I (1994) Spatial distribution of response latency in the anterior field of the auditory cortex of the guinea pig. Audiol Jpn 37:222–228

    Google Scholar 

  • Tian B, Reser D, Durham A, Kustov A, Rauschecker JP (2001) Functional specialization in rhesus monkey auditory cortex. Science 292:290–293

    Article  PubMed  CAS  Google Scholar 

  • Velenovsky DS, Cetas JS, Price RO, Sinex DG, McMullen NT (2003) Functional subregions in primary auditory cortex defined by thalamocortical terminal arbors: an electrophysiological and anterograde labeling study. J Neurosci 23:308–316

    PubMed  CAS  Google Scholar 

  • Wallace MN, Palmer AR (2008) Laminar differences in the response properties of cells in the primary auditory cortex. Exp Brain Res 184:179–191

    Article  PubMed  CAS  Google Scholar 

  • Wallace MN, Rutkowski RG, Palmer AR (2000) Identification and localisation of auditory areas in guinea pig cortex. Exp Brain Res 132:445–456

    Article  PubMed  CAS  Google Scholar 

  • Wallace MN, Rutkowski RG, Palmer AR (2002) Interconnections of auditory areas in the guinea pig neocortex. Exp Brain Res 143:106–119

    Article  PubMed  Google Scholar 

  • Wallace MN, Shackleton TM, Anderson LA, Palmer AR (2005) Representation of the purr call in the guinea pig primary auditory cortex. Hear Res 204:115–126

    Article  PubMed  Google Scholar 

  • Wang X, Lu T, Snider RK, Liang L (2005) Sustained firing in auditory cortex evoked by preferred stimuli. Nature 435:341–346

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. T.M. Shackleton for preparing our in-house software for collecting experimental data and for providing help with the analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Wallace.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallace, M.N., Palmer, A.R. Functional subdivisions in low-frequency primary auditory cortex (AI). Exp Brain Res 194, 395–408 (2009). https://doi.org/10.1007/s00221-009-1714-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1714-8

Keywords

Navigation