Skip to main content
Log in

Influence of gaze elevation on estimating the possibility of passing under high obstacles during body tilt

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We investigated the influence of gaze elevation on judging the possibility of passing under high obstacles during pitch body tilts, while stationary, in absence of allocentric cues. Specifically, we aimed at studying the influence of egocentric references upon geocentric judgements. Seated subjects, orientated at various body orientations, were asked to perceptually estimate the possibility of passing under a projected horizontal line while keeping their gaze on a fixation target and imagining a horizontal body displacement. The results showed a global overestimation of the possibility of passing under the line, and confirmed the influence of body orientation reported by Bringoux et al. (Exp Brain Res 185(4):673–680, 2008). More strikingly, a linear influence of gaze elevation was found on perceptual estimates. Precisely, downward eye elevation yielded increased overestimations, and conversely upward gaze elevation yielded decreased overestimations. Furthermore, body and gaze orientation effects were independent and combined additively to yield a global egocentric influence with a weight of 45 and 54%, respectively. Overall, our data suggest that multiple egocentric references can jointly affect the estimated possibility of passing under high obstacles. These results are discussed in terms of “interpenetrability” between geocentric and egocentric reference frames and clearly demonstrate that gaze elevation is involved, as body orientation, in geocentric spatial localization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Becker W, Jürgens R, Boß T (2000) Vestibular perception of self-rotation in different postures: a comparison between sitting and standing subjects. Exp Brain Res 131(4):468–476

    Article  PubMed  CAS  Google Scholar 

  • Benson AJ (1990) Sensory functions and limitations of the vestibular system. In: Warren R, Wertheim AH (eds) Perception and control of self-motion. Erlbaum, Hillsdale, pp 145–170

    Google Scholar 

  • Bertelson P, Radeau M (1981) Cross-modal bias and perceptual fusion with auditory-visual discordance. Percept Psychophys 29(6):578–584

    PubMed  CAS  Google Scholar 

  • Bishof N (1974) Optic-vestibular orientation to the vertical. In: Kornhuber HH (ed) Handbook of sensory physiology, vestibular system part 2: psychophysics, applied aspects and general interpretations, vol 6. Springer, New York, pp 155–190

    Google Scholar 

  • Bock O (1993) Localization of objects in the peripheral visual field. Behav Brain Res 56:77–84

    Article  PubMed  CAS  Google Scholar 

  • Bortolami SB, Pierobon A, DiZio P, Lackner JR (2006) Localization of the subjective vertical during roll, pitch, and recumbent yaw body tilt. Exp Brain Res 173(3):364–373

    Article  PubMed  Google Scholar 

  • Braithwaite MG, Douglass PK, Durnford SJ, Lucas G (1998) The hazard of spatial disorientation during helicopter flight using night vision devices. Aviat Space Environ Med 69(11):1038–1044

    PubMed  CAS  Google Scholar 

  • Bringoux L, Tamura K, Faldon M, Gresty MA, Bronstein AM (2004) Influence of whole-body pitch tilt and kinesthetic cues on the perceived gravity-referenced eye level. Exp Brain Res 155(3):385–392

    Article  PubMed  CAS  Google Scholar 

  • Bringoux L, Mezey LE, Faldon M, Gresty MA, Bronstein AM (2007) Influence of pitch tilts on the perception of gravity-referenced eye level in labyrinthine defective subjects. Neuropsychologia 45(2):350–356

    Article  PubMed  CAS  Google Scholar 

  • Bringoux L, Robic G, Gauthier GM, Vercher JL (2008) Judging beforehand the possibility of passing under obstacles without motion: the influence of egocentric and geocentric frames of reference. Exp Brain Res 185(4):673–680

    Article  PubMed  CAS  Google Scholar 

  • Coello Y, Iwanow O (2006) Effect of structuring the workspace on cognitive and sensorimotor distance estimation: no dissociation between perception and action. Percept Psychophys 68(2):278–289

    PubMed  Google Scholar 

  • DiLorenzo JR, Rock I (1982) The rod-and-frame effect as a function of the righting of the frame. J Exp Psychol Hum Percept Perform 8(4):536–546

    Article  PubMed  CAS  Google Scholar 

  • Flanders M, Soechting JF (1995) Frames of reference for hand orientation. J Cogn Neurosci 7(2):182–195

    Article  Google Scholar 

  • Galati G, Lobel E, Vallard G, Berthoz A, Pizzamiglio L, Le Bihan D (2000) The neural basis of egocentric and allocentric coding of space in human: a functional magnetic resonance study. Exp Brain Res 133(2):156–164

    Article  PubMed  CAS  Google Scholar 

  • Ghafouri M, Archambault PS, Adamovich SV, Feldman AG (2002) Pointing movements may be produced in different frames of reference depending on the task demand. Brain Res 929(1):117–128

    Article  PubMed  CAS  Google Scholar 

  • Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, Boston

    Google Scholar 

  • Goldberg JM, Fernandez C (1977) Conduction times and background discharge of vestibular afferents. Brain Res 122(3):545–550

    Article  PubMed  CAS  Google Scholar 

  • Goodenough DR, Cox PW, Sigman E, Strawderman WE (1985) A cognitive-style conception of the field-dependence dimension. Cah Psychol Cogn 5:687–706

    Google Scholar 

  • Guerraz M, Poquin D, Luyat M, Ohlmann T (1998) Head orientation involvement in assessment of the subjective vertical during whole body tilt. Percept Mot Skills 87(2):643–648

    PubMed  CAS  Google Scholar 

  • Howard IP (1982) Human visual orientation. Willey, New York

    Google Scholar 

  • Ito Y, Gresty MA (1997) Subjective postural orientation and visual vertical during slow pitch tilt for the seated human subject. Aviat Space Environ Med 68(1):3–12

    PubMed  CAS  Google Scholar 

  • Kappers AML (2003) Large systematic deviations in a bimanual parallelity task: further analysis of contributing factors. Acta Psychol 114(2):131–145

    Article  Google Scholar 

  • Kappers AML (2004) The contributions of egocentric and allocentric reference frames in haptic spatial tasks. Acta Psychol 117(3):333–340

    Article  Google Scholar 

  • Kirkham WR, Collins WE, Grape PM, Simpson JM, Wallace TF (1978) Spatial disorientation in general aviation accidents. Aviat Space Environ Med 49(9):1080–1086

    PubMed  CAS  Google Scholar 

  • Li W, Dallal N, Matin L (2001) Influences of visual pitch and visual yaw on visually perceived eye level (VPEL) and straight ahead (VPSA) for erect and rolled-to-horizontal observers. Vision Res 41(22):2873–2894

    Article  PubMed  CAS  Google Scholar 

  • MacDougall R (1903) The subjective horizon. Psychol Rev 4:145–166

    Google Scholar 

  • Marcilly R, Luyat M (2008) The role of eye height in judgment of an affordance of passage under a barrier. Curr Psychol Lett 24(1):12–24

    Google Scholar 

  • Mark LS (1987) Eyeheight-scaled information about affordances: a study of sitting and stair climbing. J Exp Psychol Hum Percept Perform 13(3):361–370

    Article  PubMed  CAS  Google Scholar 

  • Mars F, Vercher JL, Blouin J (2004) Perception of the vertical with a head-mounted visual frame during head tilt. Ergonomics 47:1116–1130

    Article  PubMed  Google Scholar 

  • Mars F, Bringoux L, Cian C, Barraud PA, Raphel C, Vercher JL (2005) Perception de la verticale avec un cadre visuel solidaire de la tête : implications pour l’utilisation des visiocasques. Trav Hum 68:125–152

    Article  Google Scholar 

  • Matin L, Li W (1992) Visually perceived eye level: changes induced by a pitched from—vertical 2-line visual field. J Exp Psychol Hum Percept Perform 18(1):257–289

    Article  PubMed  CAS  Google Scholar 

  • Matin L, Li W (1995) Multimodal basis for egocentric spatial localization and orientation. J Vestib Res 5(6):499–518

    Article  PubMed  CAS  Google Scholar 

  • McIntyre J, Stratta F, Lacquaniti F (1997) Viewer-centered frame of reference for pointing to memorized targets in three-dimensional space. J Neurophysiol 78(3):1601–1618

    PubMed  CAS  Google Scholar 

  • Mittelstaedt H (1983) A new solution to the problem of the subjective vertical. Naturwissenschaften 70(6):272–281

    Article  PubMed  CAS  Google Scholar 

  • Mittelstaedt H (1986) The subjective vertical as a function of visual and extraretinal cues. Acta Psychol 63:63–85

    Article  CAS  Google Scholar 

  • Neggers SFW, Schölvinck ML, van der Lubbe RHJ, Postma A (2005) Quantifying the interactions between allo- and egocentric representations of space. Acta Psychol (Amst) 118(1–2):25–45

    Article  Google Scholar 

  • Ooi TL, Wu B, He ZJ (2001) Distance determined by the angular declination below the horizon. Nature 414:197–200

    Article  PubMed  CAS  Google Scholar 

  • Paillard J (1991) Motor and representational framing of space. In: Paillard J (ed) Brain and space. Oxford University Press, Oxford, pp 163–182

    Google Scholar 

  • Pick HL, Warren DH, Hay JC (1969) Sensory conflict in judgment of spatial direction. Percept Psychophys 6:203–205

    Google Scholar 

  • Poljac E, Lankheet MJM, van den Berg AV (2005) Perceptual compensation for eye torsion. Vision Res 45(4):485–496

    Article  PubMed  CAS  Google Scholar 

  • Poljac E, van den Berg AV (2005) Localization of the plane of regard in space. Exp Brain Res 163(4):457–467

    Article  PubMed  Google Scholar 

  • Posner MI, Snyder CRR, Davidson BJ (1980) Attention and detection of signals. J Exp Psychol Gen 102(2):160–174

    Article  Google Scholar 

  • Raphel C, Barraud PA (1994) Perceptual thresholds of radial accelerations as indicated by visually perceived eye level. Aviat Space 65:204–208

    CAS  Google Scholar 

  • Roumes C, Grau JY (2003) Rafale: a human factors view of the man machine interface. Med Aeronaut Spat 45:23–26

    Google Scholar 

  • Rosenhal U (1972) Vestibular macular mapping in man. Ann Otol Rhnol Laryngol 81:339–351

    Google Scholar 

  • Sharp WL (1934) An experimental study concerning visual localisation in the horizontal plane. J Exp Psychol (Hum Percept) 17:787–797

    Article  Google Scholar 

  • Soechting JF, Flanders M (1992) Moving in three-dimensional space: frames of reference, vectors, and coordinate systems. Annu Rev Neurosci 15:167–191

    Article  PubMed  CAS  Google Scholar 

  • Stoper AE, Cohen MM (1986) Judgements of eye level in light and in darkness. Percept Psychophys 40:311–316

    PubMed  CAS  Google Scholar 

  • Stoper AE, Cohen MM (1989) Effect of structured visual environments on apparent eye level. Percept Psychophys 46(5):469–475

    PubMed  CAS  Google Scholar 

  • Van der Meer ALH (1997) Visual guidance of passing under a barrier. Early Dev Parent 6:149–157

    Article  Google Scholar 

  • Wagman JB, Malek EA (2008) Perception of whether an object affords walking under from different points of observation. Ecol Psychol 20:65–83

    Article  Google Scholar 

  • Warren DH (1979) Spatial localization under conflict conditions: is there a single explanation? Perception 8:323–337

    Article  PubMed  CAS  Google Scholar 

  • Warren WH Jr (1984) Perceiving affordances: visual guidance of stair climbing. J Exp Psychol Hum Percept Perform 10(5):683–703

    Article  PubMed  Google Scholar 

  • Warren WH Jr, Whang S (1987) Visual guidance of walking through apertures: body-scaled information for affordances. J Exp Psychol Hum Percept Perform 13(3):371–383

    Article  PubMed  Google Scholar 

  • Zoccolotti P, Antonucci G, Goodenough DR, Pizzamiglio L, Spinelli D (1992) The role of frame size on vertical and horizontal observers in the rod-and-frame illusion. Acta Psychol 9(2):171–187

    Article  Google Scholar 

Download references

Acknowledgments

Aurore Bourrelly was supported by a grant from DGA-CNRS (No. 2007-746). The authors are grateful to Gabriel Gauthier, Franck Buloup, and Alain Donneaud for their technical expertise and Cecile Scotto for her help during data acquisition and processing. They also thank Thelma Coyle, Julie Martin-Malivel and George Mitchell for English corrections, and the anonymous reviewers for their helpful comments in revising the current manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurore Bourrelly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourrelly, A., Bringoux, L. & Vercher, JL. Influence of gaze elevation on estimating the possibility of passing under high obstacles during body tilt. Exp Brain Res 193, 19–28 (2009). https://doi.org/10.1007/s00221-008-1589-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1589-0

Keywords

Navigation