Skip to main content
Log in

Pedunculopontine nucleus microelectrode recordings in movement disorder patients

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The pedunculopontine nucleus (PPN) lies within the brainstem reticular formation and is involved in the motor control of gait and posture. Interest has focused recently on the PPN as a target for implantation of chronic deep brain stimulation (DBS) electrodes for Parkinson’s disease (PD) and progressive supranuclear palsy (PSP) therapy. The aim of this study was to examine the neurophysiology of the human PPN region and to identify neurophysiological landmarks that may aid the proper placement of DBS electrodes in the nucleus for the treatment of PD and PSP. Neuronal firing and local field potentials were recorded simultaneously from two independently driven microelectrodes during stereotactic neurosurgery for implantation of a unilateral DBS electrode in the PPN in five PD patients and two PSP patients. Within the PPN region, the majority (57%) of the neurons fired randomly while about 21% of the neurons exhibited ‘bursty’ firing. In addition, 21% of the neurons had a long action potential duration and significantly lower firing rate suggesting they were cholinergic neurons. A change in firing rate produced by passive and/or active contralateral limb movement was observed in 38% of the neurons that were tested in the PPN region. Interestingly, oscillatory local field potential activity in the beta frequency range (∼25 Hz) was also observed in the PPN region. These electrophysiological characteristics of the PPN region provide further support for the proposed role of this region in motor control. It remains to be seen to what extent the physiological characteristics of the neurons and the stimulation-evoked effects will permit reliable identification of PPN and determination of the optimal target for DBS therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Androulidakis AG, Mazzone P, Litvak V, Penny W, Dileone M, Doyle Gaynor LM, Tisch S, Di Lazaaro V, Brown P (2008) Oscillatory activity in the pedunculopontine area of patients with Parkinson’s disease. Exp Neurol. in press

  • Aziz TZ, Davies L, Stein J, France S (1998) The role of descending basal ganglia connections to the brain stem in parkinsonian akinesia. Br J Neurosurg 12:245–249

    Article  PubMed  CAS  Google Scholar 

  • Brown P (2003) Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Mov Disord 18:357–363

    Article  PubMed  Google Scholar 

  • Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Di LV (2001) Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci 21:1033–1038

    PubMed  CAS  Google Scholar 

  • Conde H, Dormont JF, Farin D (1998) The role of the pedunculopontine tegmental nucleus in relation to conditioned motor performance in the cat. II. Effects of reversible inactivation by intracerebral microinjections. Exp Brain Res 121:411–418

    Article  PubMed  CAS  Google Scholar 

  • Dickson DW, Rademakers R, Hutton ML (2007) Progressive supranuclear palsy: pathology and genetics. Brain Pathol 17:74–82

    Article  PubMed  CAS  Google Scholar 

  • Dormont JF, Conde H, Farin D (1998) The role of the pedunculopontine tegmental nucleus in relation to conditioned motor performance in the cat. I. Context-dependent and reinforcement-related single unit activity. Exp Brain Res 121:401–410

    Article  PubMed  CAS  Google Scholar 

  • Erro E, Gimenez-Amaya JM (1999) Pedunculopontine tegmental nucleus. Anatomy, functional considerations and physiopathological implications. An Sist Sanit Navar 22:189–201

    PubMed  CAS  Google Scholar 

  • Garcia-Rill E (1991) The pedunculopontine nucleus. Prog Neurobiol 36:363–389

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Rill E, Homma Y, Skinner RD (2004) Arousal mechanisms related to posture and locomotion: 1. Descending modulation. Prog Brain Res 143:283–290

    PubMed  Google Scholar 

  • Halliday DM, Rosenberg JR, Amjad AM, Breeze P, Conway BA, Farmer SF (1995) A framework for the analysis of mixed time series/point process data–theory and application to the study of physiological tremor, single motor unit discharges and electromyograms. Prog Biophys Mol Biol 64:237–278

    Article  PubMed  CAS  Google Scholar 

  • Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F (1987) Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci USA 84:5976–5980

    Article  PubMed  CAS  Google Scholar 

  • Honda T, Semba K (1995) An ultrastructural study of cholinergic and non-cholinergic neurons in the laterodorsal and pedunculopontine tegmental nuclei in the rat. Neuroscience 68:837–853

    Article  PubMed  CAS  Google Scholar 

  • Hutchison WD, Allan RJ, Opitz H, Levy R, Dostrovsky JO, Lang AE, Lozano AM (1998) Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson’s disease. Ann Neurol 44:622–628

    Article  PubMed  CAS  Google Scholar 

  • Hutchison WD, Lang AE, Dostrovsky JO, Lozano AM (2003) Pallidal neuronal activity: implications for models of dystonia. Ann Neurol 53:480–488

    Article  PubMed  Google Scholar 

  • Jarvis MR, Mitra PP (2001) Sampling properties of the spectrum and coherency of sequences of action potentials. Neural Comput 13:717–749

    Article  PubMed  CAS  Google Scholar 

  • Jellinger K (1988) The pedunculopontine nucleus in Parkinson’s disease, progressive supranuclear palsy and Alzheimer’s disease. J Neurol Neurosurg Psychiatr 51:540–543

    Article  PubMed  CAS  Google Scholar 

  • Jenkinson N, Nandi D, Miall RC, Stein JF, Aziz TZ (2004) Pedunculopontine nucleus stimulation improves akinesia in a Parkinsonian monkey. Neuroreport 15:2621–2624

    Article  PubMed  Google Scholar 

  • Kaneoke Y, Vitek JL (1996) Burst and oscillation as disparate neuronal properties. J Neurosci Methods 68:211–223

    Article  PubMed  CAS  Google Scholar 

  • Kleiner-Fisman G, Fisman DN, Sime E, Saint-Cyr JA, Lozano AM, Lang AE (2003) Long-term follow up of bilateral deep brain stimulation of the subthalamic nucleus in patients with advanced Parkinson disease. J Neurosurg 99:489–495

    PubMed  Google Scholar 

  • Kobayashi Y, Inoue Y, Yamamoto M, Isa T, Aizawa H (2002) Contribution of pedunculopontine tegmental nucleus neurons to performance of visually guided saccade tasks in monkeys. J Neurophysiol 88:715–731

    PubMed  Google Scholar 

  • Kojima J, Yamaji Y, Matsumura M, Nambu A, Inase M, Tokuno H, Takada M, Imai H (1997) Excitotoxic lesions of the pedunculopontine tegmental nucleus produce contralateral hemiparkinsonism in the monkey. Neurosci Lett 226:111–114

    Article  PubMed  CAS  Google Scholar 

  • Kuhn AA, Trottenberg T, Kivi A, Kupsch A, Schneider GH, Brown P (2005) The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with Parkinson’s disease. Exp Neurol 194:212–220

    Article  PubMed  Google Scholar 

  • Lavoie B, Parent A (1994) Pedunculopontine nucleus in the squirrel monkey: cholinergic and glutamatergic projections to the substantia nigra. J Comp Neurol 344:232–241

    Article  PubMed  CAS  Google Scholar 

  • Levy R, Hutchison WD, Lozano AM, Dostrovsky JO (2002) Synchronized neuronal discharge in the basal ganglia of parkinsonian patients is limited to oscillatory activity. J Neurosci 22:2855–2861

    PubMed  CAS  Google Scholar 

  • Levy R, Lozano AM, Hutchison WD, Dostrovsky JO (2007) Dual microelectrode technique for deep brain stereotactic surgery in humans. Neurosurgery 60:277–284

    Article  PubMed  Google Scholar 

  • Matsumura M (2005) The pedunculopontine tegmental nucleus and experimental parkinsonism. A review. J Neurol 252(Suppl 4):IV5–IV12

    Article  PubMed  Google Scholar 

  • Matsumura M, Watanabe K, Ohye C (1997) Single-unit activity in the primate nucleus tegmenti pedunculopontinus related to voluntary arm movement. Neurosci Res 28:155–165

    Article  PubMed  CAS  Google Scholar 

  • Mazzone P, Lozano A, Stanzione P, Galati S, Scarnati E, Peppe A, Stefani A (2005) Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. Neuroreport 16:1877–1881

    Article  PubMed  Google Scholar 

  • Mesulam MM, Geula C, Bothwell MA, Hersh LB (1989) Human reticular formation: cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei and some cytochemical comparisons to forebrain cholinergic neurons. J Comp Neurol 283:611–633

    Article  PubMed  CAS  Google Scholar 

  • Olszewsky J, Baxter D (1982) Cytoarchitecture of the human brain stem. Karger, Basale

    Google Scholar 

  • Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123(Pt 9):1767–1783

    Article  PubMed  Google Scholar 

  • Paxinos G, Huang XF (1995) Atlas of the human brainstem. Academic Press, San Diego

    Google Scholar 

  • Plaha P, Gill SS (2005) Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. Neuroreport 16:1883–1887

    Article  PubMed  Google Scholar 

  • Rivlin-Etzion M, Ritov Y, Heimer G, Bergman H, Bar-Gad I (2006) Local shuffling of spike trains boosts the accuracy of spike train spectral analysis. J Neurophysiol 95:3245–3256

    Article  PubMed  Google Scholar 

  • Rosenberg JR, Amjad AM, Breeze P, Brillinger DR, Halliday DM (1989) The Fourier approach to the identification of functional coupling between neuronal spike trains. Prog Biophys Mol Biol 53:1–31

    Article  PubMed  CAS  Google Scholar 

  • Rye DB, Saper CB, Lee HJ, Wainer BH (1987) Pedunculopontine tegmental nucleus of the rat: cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum. J Comp Neurol 259:483–528

    Article  PubMed  CAS  Google Scholar 

  • Scarnati E, Proia A, Di LS, Pacitti C (1987) The reciprocal electrophysiological influence between the nucleus tegmenti pedunculopontinus and the substantia nigra in normal and decorticated rats. Brain Res 423:116–124

    Article  PubMed  CAS  Google Scholar 

  • Shink E, Sidibe M, Smith Y (1997) Efferent connections of the internal globus pallidus in the squirrel monkey: II. Topography and synaptic organization of pallidal efferents to the pedunculopontine nucleus. J Comp Neurol 382:348–363

    Article  PubMed  CAS  Google Scholar 

  • Spann BM, Grofova I (1992) Cholinergic and non-cholinergic neurons in the rat pedunculopontine tegmental nucleus. Anat Embryol (Berl) 186:215–227

    CAS  Google Scholar 

  • Starr PA, Rau GM, Davis V, Marks WJ Jr, Ostrem JL, Simmons D, Lindsey N, Turner RS (2005) Spontaneous pallidal neuronal activity in human dystonia: comparison with Parkinson’s disease and normal macaque. J Neurophysiol 93:3165–3176

    Article  PubMed  Google Scholar 

  • Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, Pierantozzi M, Brusa L, Scarnati E, Mazzone P (2007) Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 130:1596–1607

    Article  PubMed  Google Scholar 

  • Takakusaki K, Shiroyama T, Kitai ST (1997) Two types of cholinergic neurons in the rat tegmental pedunculopontine nucleus: electrophysiological and morphological characterization. Neuroscience 79:1089–1109

    Article  PubMed  CAS  Google Scholar 

  • Tang JK, Moro E, Lozano AM, Lang AE, Hutchison WD, Mahant N, Dostrovsky JO (2005) Firing rates of pallidal neurons are similar in Huntington’s and Parkinson’s disease patients. Exp Brain Res 166:230–236

    Article  PubMed  Google Scholar 

  • Weinberger M, Mahant N, Hutchison WD, Lozano AM, Moro E, Hodaie M, Lang AE, Dostrovsky JO (2006) Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. J Neurophysiol 96:3248–3256

    Article  PubMed  Google Scholar 

  • Winn P (2006) How best to consider the structure and function of the pedunculopontine tegmental nucleus: evidence from animal studies. J Neurol Sci 248:234–250

    Article  PubMed  Google Scholar 

  • Yelnik J (2007) PPN or PPD, what is the target for deep brain stimulation in Parkinson’s disease? Brain 130:e79

    Article  PubMed  Google Scholar 

  • Zrinzo L, Zrinzo LV, Hariz M (2007a) The pedunculopontine and peripeduncular nuclei: a tale of two structures. Brain 130(Pt 6):e73

    Article  PubMed  Google Scholar 

  • Zrinzo L, Zrinzo LV, Hariz M (2007b) The peripeduncular nucleus: a novel target for deep brain stimulation? Neuroreport 18:1301–1302

    Article  PubMed  Google Scholar 

  • Zweig RM, Jankel WR, Hedreen JC, Mayeux R, Price DL (1989) The pedunculopontine nucleus in Parkinson’s disease. Ann Neurol 26:41–46

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank all the patients who participated in this study and Yu Yan Poon for her help with acquiring clinical data. The work was supported by the Canadian Institutes of Health Research grant to JOD (MOP-42505). AML holds a Tier 1 Canada Research Chair in Neurosciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan O. Dostrovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinberger, M., Hamani, C., Hutchison, W.D. et al. Pedunculopontine nucleus microelectrode recordings in movement disorder patients. Exp Brain Res 188, 165–174 (2008). https://doi.org/10.1007/s00221-008-1349-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1349-1

Keywords

Navigation