Skip to main content
Log in

Neuronal activity related to anticipated and elapsed time in macaque supplementary eye field

  • Research Note
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

It is essential to sense anticipated and elapsed time in our daily life. Several areas of the brain including parietal cortex, prefrontal cortex, basal ganglia and olivo-cerebellar system are known to be related to this temporal processing. We now describe a number of cells in the supplementary eye field (SEF) with phasic, delay activity and postdelay activity modulation that varied with the length of the delay period. This variation occurred in two manners. First, cells became active with the shorter delay periods (GO signal presented earlier). We call these cells “short-delay cells”. Second, cells became active with the longer delay periods (GO signal presented later). We call these cells “long-delay cells”. However, such changed neuronal activity did not correlate with reaction time. These results suggest that the delay-dependent activity may reflect anticipated and elapsed time during performance of a delayed saccadic eye movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amador N, Schlag-Rey M, Schlag J (2000) Reward-predicting and reward-detecting neuronal activity in the primate supplementary eye field. J Neurophysiol 84:2166–2170

    PubMed  CAS  Google Scholar 

  • Amador N, Schlag-Rey M, Schlag J (2004) Primate antisaccade. II. Supplementary eye field neuronal activity predicts correct performance. J Neurophysiol 91:1672–1689

    Article  PubMed  Google Scholar 

  • Artieda J, Pastor MA, Lacruz F, Obeso JA (1992) Temporal discrimination is abnormal in Parkinson’s disease. Brain 115(Pt 1):199–210

    Article  PubMed  Google Scholar 

  • Braitenberg V (1967) Is the cerebellar cortex a biological clock in the millisecond range? Prog Brain Res 25:334–346

    Article  PubMed  CAS  Google Scholar 

  • Brody CD, Hernandez A, Zainos A, Romo R (2003) Timing and neural encoding of somatosensory parametric working memory in macaque prefrontal cortex. Cereb Cortex 13:1196–1207

    Article  PubMed  Google Scholar 

  • Chen LL, Wise SP (1995a) Neuronal activity in the supplementary eye field during acquisition of conditional oculomotor associations. J Neurophysiol 73:1101–1121

    PubMed  CAS  Google Scholar 

  • Chen LL, Wise SP (1995b) Supplementary eye field contrasted with the frontal eye field during acquisition of conditional oculomotor associations. J Neurophysiol 73:1122–1134

    PubMed  CAS  Google Scholar 

  • Chen LL, Wise SP (1996) Evolution of directional preferences in the supplementary eye field during acquisition of conditional oculomotor associations. J Neurosci 16:3067–3081

    PubMed  CAS  Google Scholar 

  • Chen LL, Wise SP (1997) Conditional oculomotor learning: population vectors in the supplementary eye field. J Neurophysiol 78:1166–1169

    PubMed  CAS  Google Scholar 

  • De Zeeuw CI, Simpson JI, Hoogenraad CC, Galjart N, Koekkoek SK, Ruigrok TJ (1998) Microcircuitry and function of the inferior olive. Trends Neurosci 21:391–400

    Article  PubMed  Google Scholar 

  • Dorris MC, Pare M, Munoz DP (1997) Neuronal activity in monkey superior colliculus related to the initiation of saccadic eye movements. J Neurosci 17:8566–8579

    PubMed  CAS  Google Scholar 

  • Everling S, Munoz DP (2000) Neuronal correlates for preparatory set associated with pro-saccades and anti-saccades in the primate frontal eye field. J Neurosci 20:387–400

    PubMed  CAS  Google Scholar 

  • Fukushima J, Akao T, Takeichi N, Kurkin S, Kaneko CR, Fukushima K (2004) Pursuit-related neurons in the supplementary eye fields: discharge during pursuit and passive whole body rotation. J Neurophysiol 91:2809–2825

    Article  PubMed  Google Scholar 

  • Genovesio A, Tsujimoto S, Wise SP (2006) Neuronal activity related to elapsed time in prefrontal cortex. J Neurophysiol 95:3281–3285

    Article  PubMed  Google Scholar 

  • Ghose GM, Maunsell JH (2002) Attentional modulation in visual cortex depends on task timing. Nature 419:616–620

    Article  PubMed  CAS  Google Scholar 

  • Harrington DL, Boyd LA, Mayer AR, Sheltraw DM, Lee RR, Huang M, Rao SM (2004) Neural representation of interval encoding and decision making. Brain Res Cogn Brain Res 21:193–205

    Article  PubMed  Google Scholar 

  • Histed MH, Miller EK (2006) Microstimulation of frontal cortex can reorder a remembered spatial sequence. PLoS Biol 4:e134

    Article  PubMed  CAS  Google Scholar 

  • Isoda M, Tanji J (2003) Contrasting neuronal activity in the supplementary and frontal eye fields during temporal organization of multiple saccades. J Neurophysiol 90:3054–3065

    Article  PubMed  Google Scholar 

  • Ivry RB, Keele SW, Diener HC (1988) Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Exp Brain Res 73:167–180

    Article  PubMed  CAS  Google Scholar 

  • Ivry RB, Spencer RM (2004) The neural representation of time. Curr Opin Neurobiol 14:225–232

    Article  PubMed  CAS  Google Scholar 

  • Janssen P, Shadlen MN (2005) A representation of the hazard rate of elapsed time in macaque area LIP. Nat Neurosci 8:234–241

    Article  PubMed  CAS  Google Scholar 

  • Jones CR, Rosenkranz K, Rothwell JC, Jahanshahi M (2004) The right dorsolateral prefrontal cortex is essential in time reproduction: an investigation with repetitive transcranial magnetic stimulation. Exp Brain Res 158:366–372

    Article  PubMed  Google Scholar 

  • Judge SJ, Richmond BJ, Chu FC (1980) Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res 20:535–538

    Article  PubMed  CAS  Google Scholar 

  • Kitazawa S, Wolpert DM (2005) Rhythmicity, randomness and synchrony in climbing fiber signals. Trends Neurosci 28:611–619

    Article  PubMed  CAS  Google Scholar 

  • Koch G, Oliveri M, Carlesimo GA, Caltagirone C (2002) Selective deficit of time perception in a patient with right prefrontal cortex lesion. Neurology 59:1658–1659

    PubMed  Google Scholar 

  • Koch G, Oliveri M, Torriero S, Caltagirone C (2003) Underestimation of time perception after repetitive transcranial magnetic stimulation. Neurology 60:1844–1846

    PubMed  Google Scholar 

  • Leon MI, Shadlen MN (2003) Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 38:317–327

    Article  PubMed  CAS  Google Scholar 

  • Lewis PA, Miall RC (2006) Remembering the time: a continuous clock. Trends Cogn Sci 10:401–406

    Article  PubMed  Google Scholar 

  • Llinas R, Sasaki K (1989) The functional organization of the olivo-cerebellar system as examined by multiple purkinje cell recordings. Eur J Neurosci 1:587–602

    Article  PubMed  Google Scholar 

  • Lu X, Hikosaka O, Miyachi S (1998) Role of monkey cerebellar nuclei in skill for sequential movement. J Neurophysiol 79:2245–2254

    PubMed  CAS  Google Scholar 

  • Lu X, Matsuzawa M, Hikosaka O (2002) A neural correlate of oculomotor sequences in supplementary eye field. Neuron 34:317–325

    Article  PubMed  CAS  Google Scholar 

  • Lucchetti C, Ulrici A, Bon L (2005) Dorsal premotor areas of nonhuman primate: functional flexibility in time domain. Eur J Appl Physiol 95:121–130

    Article  PubMed  Google Scholar 

  • Malapani C, Dubois B, Rancurel G, Gibbon J (1998) Cerebellar dysfunctions of temporal processing in the seconds range in humans. Neuroreport 9:3907–3912

    Article  PubMed  CAS  Google Scholar 

  • Missal M, Heinen SJ (2004) Supplementary eye fields stimulation facilitates anticipatory pursuit. J Neurophysiol 92:1257–1262

    Article  PubMed  CAS  Google Scholar 

  • Olson CR, Gettner SN (1995) Object-centered direction selectivity in the macaque supplementary eye field. Science 269:985–988

    Article  PubMed  CAS  Google Scholar 

  • Olson CR, Gettner SN, Ventura V, Carta R, Kass RE (2000) Neuronal activity in macaque supplementary eye field during planning of saccades in response to pattern and spatial cues. J Neurophysiol 84:1369–1384

    PubMed  CAS  Google Scholar 

  • Park J, Schlag-Rey M, Schlag J (2006) Frames of reference for saccadic command tested by saccade collision in the supplementary eye field. J Neurophysiol 95:159–170

    Article  PubMed  Google Scholar 

  • Pastor MA, Artieda J, Jahanshahi M, Obeso JA (1992) Time estimation and reproduction is abnormal in Parkinson’s disease. Brain 115(Pt 1):211–225

    Article  PubMed  Google Scholar 

  • Petrides M, Alivisatos B, Frey S (2002) Differential activation of the human orbital, mid-ventrolateral, and mid-dorsolateral prefrontal cortex during the processing of visual stimuli. Proc Natl Acad Sci USA 99:5649–5654

    Article  PubMed  CAS  Google Scholar 

  • Rainer G, Miller EK (2002) Timecourse of object-related neural activity in the primate prefrontal cortex during a short-term memory task. Eur J Neurosci 15:1244–1254

    Article  PubMed  Google Scholar 

  • Rao SM, Mayer AR, Harrington DL (2001) The evolution of brain activation during temporal processing. Nat Neurosci 4:317–323

    Article  PubMed  CAS  Google Scholar 

  • Robinson DA (1963) A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans Biomed Eng 10:137–145

    PubMed  CAS  Google Scholar 

  • Roesch MR, Olson CR (2005) Neuronal activity dependent on anticipated and elapsed delay in macaque prefrontal cortex, frontal and supplementary eye fields, and premotor cortex. J Neurophysiol 94:1469–1497

    Article  PubMed  Google Scholar 

  • Sakurai Y, Takahashi S, Inoue M (2004) Stimulus duration in working memory is represented by neuronal activity in the monkey prefrontal cortex. Eur J Neurosci 20:1069–1080

    Article  PubMed  Google Scholar 

  • Schlag-Rey M, Amador N, Sanchez H, Schlag J (1997) Antisaccade performance predicted by neuronal activity in the supplementary eye field. Nature 390:398–401

    Article  PubMed  CAS  Google Scholar 

  • Schlag J, Schlag-Rey M (1987) Evidence for a supplementary eye field. J Neurophysiol 57:179–200

    PubMed  CAS  Google Scholar 

  • Stuphorn V, Schall JD (2006) Executive control of countermanding saccades by the supplementary eye field. Nat Neurosci 9:925–931

    Article  PubMed  CAS  Google Scholar 

  • Stuphorn V, Taylor TL, Schall JD (2000) Performance monitoring by the supplementary eye field. Nature 408:857–860

    Article  PubMed  CAS  Google Scholar 

  • Xu D, Liu T, Ashe J, Bushara KO (2006) Role of the olivo-cerebellar system in timing. J Neurosci 26:5990–5995

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants-in-aid for scientific research on priority areas to S. Kitazawa (17022033), and grants-in-aid for scientific research to X. Lu (18500247) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. We are grateful to Hidetoshi Takada and Haruyo Kimizuka for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohmae, S., Lu, X., Takahashi, T. et al. Neuronal activity related to anticipated and elapsed time in macaque supplementary eye field. Exp Brain Res 184, 593–598 (2008). https://doi.org/10.1007/s00221-007-1234-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-1234-3

Keywords

Navigation