Skip to main content

Advertisement

Log in

Neural dynamics of cross-modal and cross-temporal associations

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We have studied a neurodynamic model of cross-modal and cross-temporal associations. We show that a network of integrate-and-fire neurons can generate spiking activity with realistic dynamics during the delay period of a paired associates task. In particular, the activity of the model resembles reported data from single-cell recordings in the prefrontal cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amit DJ (1995) The hebbian paradigm reintegrated: local reverberations as internal representations. Behav Brain Sci 18:617–657

    Google Scholar 

  • Amit DJ, Brunel N (1997) Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb Cortex 7:237–252

    Article  PubMed  Google Scholar 

  • Amit DJ, Mongillo G (2003) Selective delay activity in the cortex: phenomena and interpretation. Cereb Cortex 13:1139–1150

    Article  PubMed  Google Scholar 

  • Asaad WF, Rainer G, Miller EK (1998) Neural activity in the primate prefrontal cortex during associative learning. Neuron 21:1399–1407

    Article  PubMed  Google Scholar 

  • Brunel N (2003) Dynamics and plasticity of stimulus-selective persistent activity in cortical network models. Cereb Cortex 13:1151–1161

    Article  PubMed  Google Scholar 

  • Brunel N, Wang XJ (2001) Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J Comput Neurosci 11:63–85

    Article  PubMed  Google Scholar 

  • Dayan P, Abbott L (2001) Theoretical neuroscience. MIT Press, Cambridge

    Google Scholar 

  • Deco G, Rolls ET (2004a) A neurodynamical cortical model of visual attention and invariant object recognition. Vision Res 44:621–642

    Article  Google Scholar 

  • Deco G, Rolls ET (2004b) Synaptic and spiking dynamics underlying reward reversal in the orbitofrontal cortex. Cereb Cortex (in press)

  • Deco G, Rolls ET, Horwitz B (2004) “What” and “where” in visual working memory: a computational neurodynamical perspective for integrating and single-neuron data. J Cogn Neurosci 16:683–701

    Article  PubMed  Google Scholar 

  • Erickson CA, Desimone R (1999) Responses of macaque perirhinal neurons during and after visual stimulus association learning. J Neurosci 19:10404–10416

    PubMed  Google Scholar 

  • Fuster JM (1997) The prefrontal cortex. Lippincott–Raven, Philadelphia

    Google Scholar 

  • Fuster JM, Bodner M, Kroger JK (2000) Cross-modal and cross-temporal association in neurons of frontal cortex. Nature 405:347–351

    Article  PubMed  Google Scholar 

  • Miyashita Y, Hayashi T (2000) Neural representation of visual objects: encoding and top-down activation. Curr Opin Neurobiol 10:187–194

    Article  PubMed  Google Scholar 

  • Mongillo G, Amit DJ, Brunel N (2003) Retrospective and prospective persistent activity induced by Hebbian learning in a recurrent cortical network. Eur J Neurosci 18:2011–2024

    Article  PubMed  Google Scholar 

  • Naya Y, Sakai K, Miyashita Y (1996) Activity of primate inferotemporal neurons related to a sought target in pair-association task. Proc Natl Acad Sci USA 93:2664–2669

    Article  PubMed  Google Scholar 

  • Naya Y, Yoshida M, Takeda M, Fujimichi R, Miyashita Y (2003) Delay-period activities in two subdivisions of monkey inferotemporal cortex during pair association memory task. Eur J Neurosci 18:2915–2918

    Article  PubMed  Google Scholar 

  • Rainer G, Rao SC, Miller EK (1999) Prospective coding for objects in primate prefrontal cortex. J Neurosci 19:5493–5505

    PubMed  Google Scholar 

  • Renart A, Song P, Wang XJ (2003) Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks. Neuron 38:473–485

    Article  PubMed  Google Scholar 

  • Thorpe SJ, Rolls ET, Maddison S (1983) The orbitofrontal cortex: neuronal activity in the behaving monkey. Exp Brain Res 49:93–115

    Article  PubMed  Google Scholar 

  • White IM, Wise SP (1999) Rule-dependent neuronal activity in the prefrontal cortex. Exp Brain Res 126:315–335

    Article  PubMed  Google Scholar 

  • Zhou YD, Fuster JM (2000) Visuo-tactile cross-modal associations in cortical somatosensory cells. Proc Natl Acad Sci USA 97:9777–9782

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Gustavo Deco was supported by Institució Catalana de Recerca i Estudis Avançats (ICREA). Rita Almeida was supported by a Marie Curie Individual Fellowship, QLK6-CT-2002-51439.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Deco.

Appendices

Appendix 1

We used the mathematical formulation of the IF neurons and synaptic currents described in Brunel and Wang (2001). Here we provide a brief summary of their framework. The dynamics of the sub-threshold membrane potential V of a neuron are given by the equation:

$$ C_{{\text{m}}} \frac{{{\text{d}}V(t)}} {{{\text{d}}t}}=- g_{{\text{m}}} (V(t) - V_{{\text{L}}} ) - I_{{{\text{syn}}}} (t), $$

where Cm is the membrane capacitance, taken to be 0.5 nF for excitatory neurons and 0.2 nF for inhibitory neurons; gm is the membrane leak conductance, taken to be 25 nS for excitatory neurons and 20 nS for inhibitory neurons; VL is the resting potential of −70 mV and Isyn is the synaptic current. The firing threshold is taken to be Vthr=−50 mV and the reset potential Vreset=−55 mV.

The synaptic current is given by a sum of glutamatergic, AMPA (IAMPA,rec) and NMDA (INMDA,rec) mediated, recurrent excitatory currents, one AMPA (IAMPA,ext) mediated external excitatory current, and one inhibitory GABAergic current (IGABA):

$$ I_{{{\text{syn}}}} (t)=I_{{{\text{AMPA}},{\text{ext}}}} (t)+I_{{{\text{AMPA}},{\text{rec}}}} (t)+I_{{{\text{NMDA}},{\text{rec}}}} (t)+I_{{{\text{GABA}}}} (t). $$

The currents are defined by:

$$ I_{{{\text{AMPA}},{\text{ext}}}} (t)=g_{{{\text{AMPA}},{\text{ext}}}} (V(t) - V_{E} ){\sum\limits_{j=1}^{N_{{{\text{ext}}}} } {s^{{{\text{AMPA}},{\text{ext}}}}_{j} (t)} } $$
$$ I_{{{\text{AMPA}},{\text{rec}}}} (t)=g_{{{\text{AMPA}},{\text{rec}}}} (V(t) - V_{E} ){\sum\limits_{j=1}^{N_{E} } {w_{j} s^{{{\text{AMPA}},{\text{rec}}}}_{j} (t)} } $$
$$ I_{{{\text{NMDA}},{\text{rec}}}} (t)=\frac{{g_{{{\text{NMDA}}}} (V(t) - V_{E} )}} {{1+[Mg^{{++ }} ]\exp ( - 0.062V(t))/3.57}} \times {\sum\limits_{j=1}^{N_{E} } {w_{j} s^{{{\text{NMDA}}}}_{j} (t)} } $$
$$ I_{{{\text{GABA}}}} (t)=g_{{{\text{GABA}}}} (V(t) - V_{I} ){\sum\limits_{j=1}^{N_{I} } {s^{{{\text{GABA}}}}_{j} (t)} } $$

where V E =0 mV, V I =−70 mV, w j are the synaptic weights, s j the fractions of open channels for the different receptors, and g the synaptic conductances for the different channels. The NMDA synaptic current depends on the membrane potential and is controlled by the extracellular concentration of magnesium ([Mg2+]=1 mmol L−1). The values for the synaptic conductances for excitatory neurons are gAMPA,ext=2.08 nS, gAMPA, rec=0.104 nS, gNMDA=0.327 nS, and gGABA=1.25 nS and for inhibitory neurons gAMPA,ext=1.62 nS, gAMPA,rec=0.081 nS, gNMDA=0.258 nS, and gGABA=0.973 nS. These values are the same as in Brunel and Wang (2001). In their work the conductances were calculated so that in an unstructured network the excitatory neurons have a spontaneous spiking rate of 3 Hz and the inhibitory neurons a spontaneous rate of 9 Hz. The fractions of open channels are described by:

$$ \frac{{{\text{d}}s^{{{\text{AMPA}},{\text{ext}}}}_{j} (t)}} {{{\text{d}}t}}=- \frac{{s^{{{\text{AMPA}},{\text{ext}}}}_{j} (t)}} {{\tau _{{{\text{AMPA}}}} }}+{\sum\limits_k {\delta {\left( {t - t^{k}_{j} } \right)}} } $$
$$ \frac{{{\text{d}}s^{{{\text{AMPA}},{\text{rec}}}}_{j} (t)}} {{{\text{d}}t}}=- \frac{{s^{{{\text{AMPA}},{\text{rec}}}}_{j} (t)}} {{\tau _{{{\text{AMPA}}}} }}+{\sum\limits_k {\delta {\left( {t - t^{k}_{j} } \right)}} } $$
$$\frac{{{\text{d}}s^{{{\text{NMDA}}}}_{j} (t)}} {{{\text{d}}t}}=- \frac{{s^{{{\text{NMDA}}}}_{j} (t)}} {{\tau _{{{\text{NMDA}},{\text{decay}}}} }}+\alpha x_{j} (t){\left( {1 - s^{{{\text{NMDA}}}}_{j} (t)} \right)} $$
$$\frac{{{\text{d}}x_{j} (t)}} {{{\text{d}}t}}=- \frac{{x_{j} (t)}} {{\tau _{{{\text{NMDA}},{\text{rise}}}} }}+{\sum\limits_k {\delta {\left( {t - t^{k}_{j} } \right)}} } $$
$$ \frac{{{\text{d}}s^{{{\text{GABA}}}}_{j} (t)}} {{{\text{d}}t}}=- \frac{{s^{{{\text{GABA}}}}_{j} (t)}} {{\tau _{{{\text{GABA}}}} }}+{\sum\limits_k {\delta {\left( {t - t^{k}_{j} } \right)}} }, $$

where τNMDA,decay, =100 ms, is the decay time for NMDA synapses, τAMPA, =2 ms, the decay time for AMPA synapses, and τGABA, =10 ms, the decay time for GABA synapses; τNMDA,rise, =2 ms, is the rise time for NMDA synapses (the rise times for AMPA and GABA are neglected because they are smaller than 1 ms) and α=0.5 ms−1. The sums over k represent a sum over spikes formulated as δ-Peaks (δ(t)) emitted by presynaptic neuron j at time t k j . The equations were integrated numerically using the second order Runge–Kutta method with step size 0.05 ms.

Appendix 2

The mean-field approximation used in this work was derived from Brunel and Wang 2001, assuming that the network of integrate-and-fire neurons is in a stationary state. In this formulation the potential of a neuron is calculated as:

$$ \tau _{x} \frac{{{\text{d}}V(t)}} {{{\text{d}}t}}=- V(t)+\mu _{x}+\sigma _{x} {\sqrt {\tau _{x} } }\eta (t) $$

where V(t) is the membrane potential, x labels the populations, τ x is the effective membrane time constant, μ x is the mean value the membrane potential would have in the absence of spiking and fluctuations, σ x measures the magnitude of the fluctuations, and η is a Gaussian process with absolute exponentially decaying correlation function with time constant τAMPA. The quantities μ x and σ 2 x are given by:

$$ \mu _{x}=\frac{{{\left( {T_{{{\text{ext}}}} \nu _{{{\text{ext}}}}+T_{{{\text{AMPA}}}} n_{x}+\rho _{1} N_{x} } \right)}V_{E}+\rho _{2} N_{x} {\left\langle V \right\rangle }+T_{I} w_{{I,x}} \nu _{I} V_{I}+V_{L} }} {{S_{x} }} $$
$$ \sigma ^{2}_{x}=\frac{{{\left( {g^{2}_{{{\text{AMPA}},{\text{ext}}}} \nu _{{{\text{ext}}}}+g^{2}_{{{\text{AMPA}},{\text{rec}}}} \nu _{x} } \right)}{\left( {{\left\langle V \right\rangle } - V_{E} } \right)}^{2} \tau ^{2}_{{{\text{AMPA}}}} \tau _{x} }}{{g^{2}_{m} \tau ^{2}_{m} }}.$$

where wI,x are the weights from the inhibitory neurons to the pool x, ν ext is the external impinging spiking rate (including spontaneously activity and eventually external stimuli or attentional bias), ν I is the population-averaged spiking rate of the inhibitory pool, τ m =C m /g m with the values for the excitatory or inhibitory neurons depending on the pool considered, and the other quantities are given by:

$$ S_{x}=1+T_{{{\text{ext}}}} \nu _{{{\text{ext}}}}+T_{{A{\text{MPA}}}} n_{x}+(\rho _{1}+\rho _{2} )N_{x}+T_{I} w_{{I,x}} \nu _{I} $$
$$ \tau _{x}=\frac{{C_{{\text{m}}} }} {{g_{m} S_{x} }} $$
$$ n_{x}={\sum\limits_{j=1}^p {f_{j} w_{{j,x}} \nu _{j} } } $$
$$N_{x}={\sum\limits_{j=1}^p {f_{j} w_{{j,x}} \psi (\nu _{j} )} }$$
$$ \psi (\nu )=\frac{{\nu \tau _{{{\text{NMDA}}}} }} {{1+\nu \tau _{{{\text{NMDA}}}} }}{\left( {1+\frac{1} {{1+\nu \tau _{{{\text{NMDA}}}} }}{\sum\limits_{n=1}^\infty {\frac{{{\left( { - \alpha \tau _{{{\text{NMDA}},{\text{rise}}}} } \right)}^{n} T_{n} (\nu )}} {{(n+1)!}}} }} \right)} $$
$$ T_{n} (\nu )={\sum\limits_{k=0}^n {( - 1)^{k} {\left( {\begin{array}{*{20}c} {n} \\ {k} \\ \end{array} } \right)}} }\frac{{\tau _{{{\text{NMDA}},{\text{rise}}}} (1+\nu \tau _{{{\text{NMDA}}}} )}} {{\tau _{{{\text{NMDA}},{\text{rise}}}} (1+\nu \tau _{{{\text{NMDA}}}})+k\tau _{{{\text{NMDA}},{\text{decay}}}}}} $$
$$ \tau _{{{\text{NMDA}}}}=\alpha \tau _{{{\text{NMDA}},{\text{rise}}}} \tau _{{{\text{NMDA}},{\text{decay}}}} $$
$$ T_{{{\text{ext}}}}=\frac{{g_{{{\text{AMPA}},{\text{ext}}}} \tau _{{{\text{AMPA}}}} }} {{g_{m} }} $$
$$ T_{{{\text{AMPA}}}}=\frac{{g_{{{\text{AMPA}},{\text{rec}}}} N_{E} \tau _{{{\text{AMPA}}}} }} {{g_{m} }} $$
$$ \rho _{1}=\frac{{g_{{{\text{NMDA}}}} N_{E} }} {{g_{m} J}} $$
$$ \rho _{2}=\beta \frac{{g_{{{\text{NMDA}}}} N_{E} {\left( {{\left\langle {V_{x} } \right\rangle } - V_{E} } \right)}(J - 1)}} {{g_{m} J^{2} }} $$
$$ J=1+\gamma \exp {\left( { - \beta {\left\langle {V_{x} } \right\rangle }} \right)} $$
$$ T_{I}=\frac{{g_{{{\text{GABA}}}} N_{I} \tau _{{{\text{GABA}}}} }} {{g_{m} }} $$
$$ {\left\langle {V_{x} } \right\rangle }=\mu _{x} - {\left( {V_{{{\text{thr}}}} - V_{{{\text{reset}}}} } \right)}\nu _{x} \tau _{x} , $$
(1)

where p is the number of excitatory pools, f x is the fraction of neurons in the excitatory x pool, wj,x the weight of the connections from pool x to pool j, ν x is the population-averaged spiking rate of the x excitatory pool, γ=1/3.57, β=0.062 and the average membrane potential 〈V x 〉 has a value between −55 mV and −50 mV.

The spiking rate of a pool as a function of the defined quantities is then given by:

$$ \nu _{x}=\phi {\left( {\mu _{x} ,\sigma _{x} } \right)}, $$
(2)

where

$$ \phi {\left( {\mu _{{x,}} \sigma _{x} } \right)}={\left( {\tau _{{{\text{rp}}}}+\tau _{x} {\int_{\beta (\mu _{x} ,\alpha _{x} )}^{\alpha (\mu _{x} ,\alpha _{x} )} {{\text{d}}u{\sqrt \pi }\exp (u^{2} )[1+{\text{erf}}(u)]} }} \right)}^{{ - 1}} $$
$$ \alpha {\left( {\mu _{x} ,\sigma _{x} } \right)}=\frac{{{\left( {V_{{{\text{thr}}}} - \mu _{x} } \right)}}} {{\sigma _{x} }}{\left( {1+0.5\frac{{\tau _{{{\text{AMPA}}}} }} {{\tau _{x} }}} \right)}+1.03{\sqrt {\frac{{\tau _{{{\text{AMPA}}}} }} {{\tau _{x} }}} } - 0.5\frac{{\tau _{{{\text{AMPA}}}} }} {{\tau _{x} }} $$
$$ \beta {\left( {\mu _{x} ,\sigma _{x} } \right)}=\frac{{{\left( {V_{{{\text{reset}}}} - \mu _{x} } \right)}}} {{\sigma _{x} }} $$

where erf(u) is the error function and τrp the refractory period, which is regarded as 2 ms for excitatory neurons and 1 ms for inhibitory neurons. To solve the equations defined by Eq. (2) for all values of x we integrate Eq. (1) numerically and the differential equation below, describing a fake dynamics of the system, which has fixed point solutions corresponding to Eqs. (2):

$$ \tau _{x} \frac{{{\text{d}}\nu _{x} }} {{{\text{d}}t}}=- \nu _{x}+\phi {\left( {\mu _{x} ,\sigma _{x} } \right)}. $$
(3)

For all simulation periods studied, the mean-field equations, Eqs. (1) and (3) were integrated using the Euler method with step size 0.1 and 4,000 iterations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deco, G., Ledberg, A., Almeida, R. et al. Neural dynamics of cross-modal and cross-temporal associations. Exp Brain Res 166, 325–336 (2005). https://doi.org/10.1007/s00221-005-2374-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-2374-y

Keywords

Navigation