Skip to main content
Log in

Immunoreactivity for calcium-binding proteins defines subregions of the vestibular nuclear complex of the cat

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The vestibular nuclear complex (VNC) is classically divided into four nuclei on the basis of cytoarchitectonics. However, anatomical data on the distribution of afferents to the VNC and the distribution of cells of origin of different efferent pathways suggest a more complex internal organization. Immunoreactivity for calcium-binding proteins has proven useful in many areas of the brain for revealing structure not visible with cell, fiber or Golgi stains. We have looked at the VNC of the cat using immunoreactivity for the calcium-binding proteins calbindin, calretinin and parvalbumin. Immunoreactivity for calretinin revealed a small, intensely stained region of cell bodies and processes just beneath the fourth ventricle in the medial vestibular nucleus. A presumably homologous region has been described in rodents. The calretinin-immunoreactive cells in this region were also immunoreactive for choline acetyltransferase. Evidence from other studies suggests that the calretinin region contributes to pathways involved in eye movement modulation but not generation. There were focal dense regions of fibers immunoreactive to calbindin in the medial and inferior nuclei, with an especially dense region of label at the border of the medial nucleus and the nucleus prepositus hypoglossi. There is anatomical evidence that suggests that the likely source of these calbindin-immunoreactive fibers is the flocculus of the cerebellum. The distribution of calbindin-immunoreactive fibers in the lateral and superior nuclei was much more uniform. Immunoreactivity to parvalbumin was widespread in fibers distributed throughout the VNC. The results suggest that neurochemical techniques may help to reveal the internal complexity in VNC organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BC:

brachium conjunctivum

BP:

brachium pontis

CD:

dorsal cochlear nucleus

CGL:

cochlear granular layer

CUR:

cuneate nucleus, rostral division

CVA:

ventral cochlear nucleus

CX:

external cuneate nucleus

DMV:

dorsal motor nucleus of the vagus

FTG:

gigantocellular tegmental field of the reticular formation

FTL:

lateral tegmental field of the reticular formation

INT:

nucleus intercalatus

MLF:

medial longitudinal fasciculus

PT:

pyramidal tract

PH:

nucleus prepositus hypoglossi

RB:

restiform body

S:

solitary tract

SA:

stria acoustica

SM:

medial nucleus of the solitary tract

TB:

trapezoid body

VIN:

inferior vestibular nucleus

VLD:

lateral vestibular nucleus, dorsal division

VLV:

lateral vestibular nucleus, ventral division

VMN:

medial vestibular nucleus

VNC:

vestibular nuclear complex

VSL:

superior vestibular nucleus, lateral division

VSM:

superior vestibular nucleus, medial division

5P:

principal sensory trigeminal nucleus

5SM:

alaminar spinal trigeminal nucleus, magnocellular division

5ST:

spinal trigeminal tract

6:

sixth cranial nerve nucleus

7N:

seventh cranial nerve

7G:

genu of the seventh cranial nerve

8N:

eighth cranial nerve

12:

twelfth cranial nerve nucleus

References

  • Adams JC (1981) Heavy metal enhancement of DAB-based HRP reaction product. J Histochem Cytochem 29:775

    CAS  PubMed  Google Scholar 

  • Akaike T (1983) Neuronal organization of the vestibulospinal system in the cat. Brain Res 259:217–227

    Article  Google Scholar 

  • Angaut P, Brodal A (1967) The projection of the “vestibulocerebellum” onto the vestibular nuclei in the cat. Arch Ital Biol 105:441–479

    Google Scholar 

  • Arai R, Winsky L, Arai M, Jacobowitz DM (1991) Immunohistochemical localization of calretinin in the rat hindbrain. J Comp Neurol 310:21–44

    Google Scholar 

  • Baimbridge KG, Celio MR, Rogers JH (1992) Calcium-binding proteins in the nervous system. Trends Neurosci 15:303–308

    Article  Google Scholar 

  • Baizer J, Baker J (2000) Calretinin immunoreactivity in the vestibular nuclear complex of the cat. Neurosci Abstr 26:1493

    Google Scholar 

  • Baizer JS, Baker JF (2001) Distribution of cholinergic cells in the vestibular nuclear complex of the cat. Neurosci Abstr 27:785

    Google Scholar 

  • Baker J, Goldberg J, Hermann G, Peterson B (1984) Spatial and temporal response properties of secondary neurons that receive convergent input in vestibular nuclei of alert cats. Brain Res 294:138–143

    Article  Google Scholar 

  • Baker R, Berthoz A (1975) Is the prepositus hypoglossi nucleus the source of another vestibulo-ocular pathway? Brain Res 86:121–127

    Article  Google Scholar 

  • Bankoul S, Neuhuber WL (1992) A direct projection from the medial vestibular nucleus to the cervical spinal dorsal horn of the rat, as demonstrated by anterograde and retrograde tracing. Anat Embryol (Berl) 185:77–85

    Google Scholar 

  • Barmack NH (2003) Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull 60:511–541

    Article  Google Scholar 

  • Barmack NH, Baughman RW, Eckenstein FP (1992a) Cholinergic innervation of the cerebellum of rat, rabbit, cat, and monkey as revealed by choline acetyltransferase activity and immunohistochemistry. J Comp Neurol 317:233–249

    Google Scholar 

  • Barmack NH, Baughman RW, Eckenstein FP (1992b) Cholinergic innervation of the cerebellum of the rat by secondary vestibular afferents. Ann NY Acad Sci 656:566–579

    Google Scholar 

  • Barmack NH, Baughman RW, Eckenstein FP, Shojaku H (1992c) Secondary vestibular cholinergic projection to the cerebellum of rabbit and rat as revealed by choline acetyltransferase immunohistochemistry, retrograde and orthograde tracers. J Comp Neurol 317:250–270

    Google Scholar 

  • Batini C (1990) Cerebellar localization and colocalization of GABA and calcium binding protein-D28K. Arch Ital Biol 128:127–149

    Google Scholar 

  • Bäurle J, Vogten H, Grüsser-Cornehls U (1998) Course and targets of the calbindin D-28k subpopulation of primary vestibular afferents. J Comp Neurol 402:111–128

    Google Scholar 

  • Berman A (1968) The brain stem of the cat. University of Wisconsin Press, Madison, WI

  • Blessing WW, Goodchild AK, Dampney RA, Chalmers JP (1981) Cell groups in the lower brain stem of the rabbit projecting to the spinal cord, with special reference to catecholamine-containing neurons. Brain Res 221:35–55

    Article  Google Scholar 

  • Blessing WW, Hedger SC, Oertel WH (1987) Vestibulospinal pathway in rabbit includes GABA-synthesizing neurons. Neurosci Lett 80:158–162

    Article  Google Scholar 

  • Boyle R (2000) Morphology of lumbar-projecting lateral vestibulospinal neurons in the brainstem and cervical spinal cord in the squirrel monkey. Arch Ital Biol 138:107–122

    Google Scholar 

  • Boyle R, Belton T, McCrea RA (1996) Responses of identified vestibulospinal neurons to voluntary eye and head movements in the squirrel monkey. Ann NY Acad Sci 781:244–263

    Google Scholar 

  • Brodal A (1984) The vestibular nuclei in the macaque monkey. J Comp Neurol 227:252–266

    Google Scholar 

  • Brodal A, Pompeiano O (1957) The vestibular nuclei in the cat. J Anatomy 91:438–454

    Google Scholar 

  • Carleton SC, Carpenter MB (1984) Distribution of primary vestibular fibers in the brainstem and cerebellum of the monkey. Brain Res 294:281–298

    Article  Google Scholar 

  • Carpenter MB, Huang Y, Pereira AB, Hersh LB (1990) Immunocytochemical features of the vestibular nuclei in the monkey and cat. J Hirnforsch 31:585–599

    Google Scholar 

  • Celio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35:375–475

    Article  Google Scholar 

  • Chevalier G, Mana S (2000) Honeycomb-like structure of the intermediate layers of the rat superior colliculus, with additional observations in several other mammals: AChE patterning. J Comp Neurol 419:137–153

    Article  Google Scholar 

  • Condé F, Lund JS, Jacobowitz DM, Baimbridge KG, Lewis DA (1994) Local circuit neurons immunoreactive for calretinin, calbindin D-28k or parvalbumin in monkey prefrontal cortex: distribution and morphology. J Comp Neurol 341:95–116

    Google Scholar 

  • Cusick CG, Scripter JL, Darensbourg JG, Weber JT (1993) Chemoarchitectonic subdivisions of the visual pulvinar in monkeys and their connectional relations with the middle temporal and rostral dorsolateral visual areas, MT and DLr. J Comp Neurol 336:1–30

    Google Scholar 

  • de Venecia RK, Smelser CB, Lossman SD, McMullen NT (1995) Complementary expression of parvalbumin and calbindin D-28k delineates subdivisions of the rabbit medial geniculate body. J Comp Neurol 359:595–612

    Google Scholar 

  • De Zeeuw CI, Wylie DR, DiGiorgi PL, Simpson JI (1994) Projections of individual Purkinje cells of identified zones in the flocculus to the vestibular and cerebellar nuclei in the rabbit. J Comp Neurol 349: 428–447

    Google Scholar 

  • Dickman JD, Angelaki DE (2002) Vestibular convergence patterns in vestibular nuclei neurons of alert primates. J Neurophysiol 88:3518–3533

    Google Scholar 

  • Donevan AH, MacDonald JA, Brennan PA, Rose PK (1992) Morphology of single vestibulospinal collaterals in the upper cervical spinal cord of the cat. II. Collaterals originating from axons outside the ventral funiculi. J Comp Neurol 322:343–359

    Google Scholar 

  • Edmonds B, Reyes R, Schwaller B, Roberts WM (2000) Calretinin modifies presynaptic calcium signaling in frog saccular hair cells. Nat Neurosci 3:786–790

    Google Scholar 

  • Epema AH, Gerrits NM, Voogd J (1988) Commissural and intrinsic connections of the vestibular nuclei in the rabbit: a retrograde labeling study. Exp Brain Res 71:129–146

    Article  Google Scholar 

  • Epema AH, Gerrits NM, Voogd J (1990) Secondary vestibulocerebellar projections to the flocculus and uvulo-nodular lobule of the rabbit: a study using HRP and double fluorescent tracer techniques. Exp Brain Res 80:72–82

    Article  Google Scholar 

  • Fortin M, Marchand R, Parent A (1998) Calcium-binding proteins in primate cerebellum. Neurosci Res 30:155–168

    Google Scholar 

  • Gacek RR (1977) Location of brain stem neurons projecting to the oculomotor nucleus in the cat. Exp Neurol 57:725–749

    Article  CAS  PubMed  Google Scholar 

  • Gacek RR, Lyon M (1974) The localization of vestibular efferent neurons in the kitten with horseradish peroxidase. Acta Otolaryngol 77:92–101

    Google Scholar 

  • Gerrits N (1990) Vestibular nuclear complex. In: The human nervous system. Academic, Philadelphia, PA, pp 863–888

  • Graybiel AM (1983) Compartmental organization of the mammalian striatum. Prog Brain Res 58:247–256

    CAS  PubMed  Google Scholar 

  • Graybiel AM, Hartwieg EA (1974) Some afferent connections of the oculomotor complex in the cat: an experimental study with tracer techniques. Brain Res 81:543–551

    Article  Google Scholar 

  • Graybiel AM, Ragsdale CW Jr (1978) Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining. P Natl Acad Sci USA 75:5723–5726

    Google Scholar 

  • Hauglie-Hanssen E (1968) Intrinsic neuronal organization of the vestibular nuclear complex in the cat. A Golgi study. Ergeb Anat Entwicklungsgesch 40:3-105

    Google Scholar 

  • Highstein SM, Ito M (1971) Differential localization within the vestibular nuclear complex of the inhibitory and excitatory cells innervating 3d nucleus oculomotor neurons in rabbit. Brain Res 29:358–362

    Article  Google Scholar 

  • Hikosaka O, Kawakami T (1977) Inhibitory reticular neurons related to the quick phase of vestibular nystagmus -their location and projection. Exp Brain Res 27:377–386

    Google Scholar 

  • Hockfield S (1993) Selected methods for antibody and nucleic acid probes. Cold Spring Harbor Laboratory Press, Plainview, NY

  • Hoddevik GH, Dietrichs E, Walberg F (1991) Afferent connections to the abducent nucleus in the cat. Arch Ital Biol 129:63–72

    Google Scholar 

  • Holstege G, Kuypers HG (1982) The anatomy of brain stem pathways to the spinal cord in cat. A labeled amino acid tracing study. Prog Brain Res 57:145–175

    Google Scholar 

  • Horn AK, Büttner-Ennever JA (1998) Premotor neurons for vertical eye movements in the rostral mesencephalon of monkey and human: histologic identification by parvalbumin immunostaining. J Comp Neurol 392:413–427

    Google Scholar 

  • Horn AK, Büttner-Ennever JA, Suzuki Y, Henn V (1995) Histological identification of premotor neurons for horizontal saccades in monkey and man by parvalbumin immunostaining. J Comp Neurol 359:350–363

    CAS  PubMed  Google Scholar 

  • Horn AK, Büttner U, Büttner-Ennever JA (1999) Brainstem and cerebellar structures for eye movement generation. Adv Oto-rhino-laryng 55:1–25

    Google Scholar 

  • Horton JC, Hubel DH (1981) Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey. Nature 292:762–764

    Article  Google Scholar 

  • Imagawa M, Isu N, Sasaki M, Endo K, Ikegami H, Uchino Y (1995) Axonal projections of utricular afferents to the vestibular nuclei and the abducens nucleus in cats. Neurosci Lett 186:87–90

    Google Scholar 

  • Isu N, Yokota J (1983) Morphophysiological study on the divergent projection of axon collaterals of medial vestibular nucleus neurons in the cat. Exp Brain Res 53:151–162

    Article  Google Scholar 

  • Isu N, Thomson DB, Wilson VJ (1996) Vestibulospinal effects on neurons in different regions of the gray matter of the cat upper cervical cord. J Neurophysiol 76:2439–2446

    Google Scholar 

  • Jeon MH, Jeon CJ (1998) Immunocytochemical localization of calretinin containing neurons in retina from rabbit, cat, and dog. Neurosci Res 32:75–84

    Google Scholar 

  • Jones EG, Dell’Anna ME, Molinari M, Rausell E, Hashikawa T (1995) Subdivisions of macaque monkey auditory cortex revealed by calcium-binding protein immunoreactivity. J Comp Neurol 362:153–170

    Google Scholar 

  • Kaneko CR (1997) Eye movement deficits after ibotenic acid lesions of the nucleus prepositus hypoglossi in monkeys. I. Saccades and fixation. J Neurophysiol 78:1753–1768

    Google Scholar 

  • Kaneko CR (1999) Eye movement deficits following ibotenic acid lesions of the nucleus prepositus hypoglossi in monkeys II. Pursuit, vestibular, and optokinetic responses. J Neurophysiol 81:668–681

    Google Scholar 

  • Kevetter GA (1996) Pattern of selected calcium-binding proteins in the vestibular nuclear complex of two rodent species. J Comp Neurol 365:575–584

    Google Scholar 

  • Kevetter GA, Leonard RB (1997) Use of calcium-binding proteins to map inputs in vestibular nuclei of the gerbil. J Comp Neurol 386:317–327

    Google Scholar 

  • Kevetter GA, Perachio AA (1985) Central projections of first order vestibular neurons innervating the sacculus and posterior canal in the gerbil. Prog Clin Biol Res 176:279–291

    Google Scholar 

  • Kimura H, McGeer PL, Peng JH, McGeer EG (1981) The central cholinergic system studied by choline acetyltransferase immunohistochemistry in the cat. J Comp Neurol 200:151–201

    CAS  PubMed  Google Scholar 

  • Kokkoroyannis T, Scudder CA, Balaban CD, Highstein SM, Moschovakis AK (1996) Anatomy and physiology of the primate interstitial nucleus of Cajal I. efferent projections. J Neurophysiol 75:725–739

    Google Scholar 

  • Korte GE (1979) The brainstem projection of the vestibular nerve in the cat. J Comp Neurol 184:279–292

    Google Scholar 

  • Krutki P, Jankowska E, Edgley SA (2003) Are crossed actions of reticulospinal and vestibulospinal neurons on feline motoneurons mediated by the same or separate commissural neurons? J Neurosci 23:8041–8050

    Google Scholar 

  • Kuze B, Matsuyama K, Matsui T, Miyata H, Mori S (1999) Segment-specific branching patterns of single vestibulospinal tract axons arising from the lateral vestibular nucleus in the cat: A PHA-L tracing study. J Comp Neurol 414:80–96

    Google Scholar 

  • Langer T, Fuchs AF, Chubb MC, Scudder CA, Lisberger SG (1985a) Floccular efferents in the rhesus macaque as revealed by autoradiography and horseradish peroxidase. J Comp Neurol 235:26–37

    Google Scholar 

  • Langer T, Fuchs AF, Scudder CA, Chubb MC (1985b) Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. J Comp Neurol 235:1–25

    Google Scholar 

  • Langer T, Kaneko CR, Scudder CA, Fuchs AF (1986) Afferents to the abducens nucleus in the monkey and cat. J Comp Neurol 245:379–400

    Google Scholar 

  • Leblond H, Menard A, Gossard JP (2000) Bulbospinal control of spinal cord pathways generating locomotor extensor activities in the cat. J Physiol 525(1):225–240

    Google Scholar 

  • Lenzi D, Roberts WM (1994) Calcium signalling in hair cells: multiple roles in a compact cell. Curr Opin Neurobiol 4:496–502

    Article  CAS  PubMed  Google Scholar 

  • Lisberger SG (1994) Neural basis for motor learning in the vestibuloocular reflex of primates. III. Computational and behavioral analysis of the sites of learning. J Neurophysiol 72:974–998

    Google Scholar 

  • Matsuyama K, Ohta Y, Mori S (1988) Ascending and descending projections of the nucleus reticularis gigantocellularis in the cat demonstrated by the anterograde neural tracer, Phaseolus vulgaris leucoagglutinin (PHA-L). Brain Res 460:124–141

    Article  Google Scholar 

  • McCrea RA, Strassman A, Highstein SM (1987a) Anatomical and physiological characteristics of vestibular neurons mediating the vertical vestibulo-ocular reflexes of the squirrel monkey. J Comp Neurol 264:571–594

    Google Scholar 

  • McCrea RA, Strassman A, May E, Highstein SM (1987b) Anatomical and physiological characteristics of vestibular neurons mediating the horizontal vestibulo-ocular reflex of the squirrel monkey. J Comp Neurol 264:547–570

    Google Scholar 

  • McCrea RA, Gdowski GT, Boyle R, Belton T (1999) Firing behavior of vestibular neurons during active and passive head movements: vestibulo-spinal and other non-eye-movement related neurons. J Neurophysiol 82:416–428

    Google Scholar 

  • Mitsacos A, Reisine H, Highstein SM (1983) The superior vestibular nucleus: an intracellular HRP study in the cat. I. Vestibulo-ocular neurons. J Comp Neurol 215:78–91

    Google Scholar 

  • Moreno-Lopez B, Escudero M, De Vente J, Estrada C (2001) Morphological identification of nitric oxide sources and targets in the cat oculomotor system. J Comp Neurol 435:311–324

    Article  Google Scholar 

  • Murakawa R, Kosaka T (1999) Diversity of the calretinin immunoreactivity in the dentate gyrus of gerbils, hamsters, guinea pigs, and laboratory shrews. J Comp Neurol 411:413–430

    Google Scholar 

  • Naito Y, Newman A, Lee WS, Beykirch K, Honrubia V (1995) Projections of the individual vestibular end-organs in the brain stem of the squirrel monkey. Hearing Res 87:141–155

    Article  Google Scholar 

  • Newlands SD, Perachio AA (2003) Central projections of the vestibular nerve: a review and single fiber study in the Mongolian gerbil. Brain Res Bull 60:475–495

    Article  Google Scholar 

  • Nyberg-Hansen R (1964) Origin and termination of fibers from the vestibular nuclei descending in the medial longitudinal fasciculus. An experimental study with silver impregnation methods in the cat. J Comp Neurol 122:355–367

    Google Scholar 

  • Ohgaki T, Curthoys IS, Markham CH (1988) Morphology of physiologically identified second-order vestibular neurons in cat, with intracellularly injected HRP. J Comp Neurol 276:387–411

    Google Scholar 

  • Paxinos G, Carrive P, Wang H, Wang P-Y (1999) Chemoarchitectonic atlas of the rat brainstem. Academic, San Diego, CA

  • Peterson BW, Coulter JD (1977) A new long spinal projection from the vestibular nuclei in the cat. Brain Res 122:351–356

    Article  Google Scholar 

  • Pompeiano O, Mergner T, Corvaja N (1978) Commissural, perihypoglossal and reticular afferent projections to the vestibular nuclei in the cat. An experimental anatomical study with the method of the retrograde transport of horseradish peroxidase. Arch Ital Biol 116:130–172

    Google Scholar 

  • Rambold H, Churchland A, Selig Y, Jasmin L, Lisberger SG (2002) Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J Neurophysiol 87:912–924

    Google Scholar 

  • Rausell E, Jones EG (1991a) Chemically distinct compartments of the thalamic VPM nucleus in monkeys relay principal and spinal trigeminal pathways to different layers of the somatosensory cortex. J Neurosci 11:226–237

    Google Scholar 

  • Rausell E, Jones EG (1991b) Histochemical and immunocytochemical compartments of the thalamic VPM nucleus in monkeys and their relationship to the representational map. J Neurosci 11:210–225

    Google Scholar 

  • Rausell E, Bae CS, Vinuela A, Huntley GW, Jones EG (1992) Calbindin and parvalbumin cells in monkey VPL thalamic nucleus: distribution, laminar cortical projections, and relations to spinothalamic terminations. J Neurosci 12:4088–4111

    Google Scholar 

  • Résibois A, Rogers JH (1992) Calretinin in rat brain: an immunohistochemical study. Neuroscience 46:101–134

    Google Scholar 

  • Roberts WM (1993) Spatial calcium buffering in saccular hair cells. Nature 363:74–76

    Article  CAS  PubMed  Google Scholar 

  • Roberts WM (1994) Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells. J Neurosci 14:3246–3262

    Google Scholar 

  • Rogers JH, Résibois A (1992) Calretinin and calbindin-D28k in rat brain: patterns of partial co-localization. Neuroscience 51:843–865

    Google Scholar 

  • Rose PK, Tourond JA, Donevan AH (1996) Morphology of single vestibulospinal collaterals in the upper cervical spinal cord of the cat: III collaterals originating from axons in the ventral funiculus ipsilateral to their cells of origin. J Comp Neurol 364:16–31

    Article  Google Scholar 

  • Sato F, Sasaki H (1993) Morphological correlations between spontaneously discharging primary vestibular afferents and vestibular nucleus neurons in the cat. J Comp Neurol 333:554–566

    Google Scholar 

  • Sato Y, Kawasaki T, Ikarashi K (1982) Zonal organization of the floccular Purkinje cells projecting to the vestibular nucleus in cats. Brain Res 232:1–15

    Google Scholar 

  • Sato Y, Kawasaki T, Ikarashi K (1983) Afferent projections from the brainstem to the three floccular zones in cats. II. Mossy fiber projections. Brain Res 272:37–48

    Article  Google Scholar 

  • Saxon DW, Beitz AJ (2000) The normal distribution and projections of constitutive NADPH-d/NOS neurons in the brainstem vestibular complex of the rat. J Comp Neurol 425:97–120

    Article  Google Scholar 

  • Shamboul KM (1980) Lumbosacral predominance of vestibulospinal fibre projection in the rat. J Comp Neurol 192:519–530

    Google Scholar 

  • Shojaku H, Sato Y, Ikarashi K, Kawasaki T (1987) Topographical distribution of Purkinje cells in the uvula and the nodulus projecting to the vestibular nuclei in cats. Brain Res 416:100–112

    Article  Google Scholar 

  • Siegborn J, Yingcharoen K, Grant G (1991) Brainstem projections of different branches of the vestibular nerve: an experimental study by transganglionic transport of horseradish peroxidase in the cat. II. The anterior and posterior ampullar nerves. Anat Embryol (Berl) 184:291–299

    Google Scholar 

  • Sillitoe RV, Hulliger M, Dyck R, Hawkes R (2003) Antigenic compartmentation of the cat cerebellar cortex. Brain Res 977:1–15

    Google Scholar 

  • Spencer RF, Wenthold RJ, Baker R (1989) Evidence for glycine as an inhibitory neurotransmitter of vestibular, reticular, and prepositus hypoglossi neurons that project to the cat abducens nucleus. J Neurosci 9:2718–2736

    Google Scholar 

  • Stein BM, Carpenter MB (1967) Central projections of portions of the vestibular ganglia innervating specific parts of the labyrinth of the rhesus monkey. Am J Anat 120:281–318

    Google Scholar 

  • Taber E (1961) The cytoarchitecture of the brain stem of the cat. I. Brain stem nuclei of cat. J Comp Neurol 116:27–69

    Google Scholar 

  • Tan H, Gerrits NM (1992) Laterality in the vestibulo-cerebellar mossy fiber projection to flocculus and caudal vermis in the rabbit: a retrograde fluorescent double-labeling study. Neuroscience 47:909–919

    Google Scholar 

  • Tan J, Gerrits NM, Nanhoe R, Simpson JI, Voogd J (1995) Zonal organization of the climbing fiber projection to the flocculus and nodulus of the rabbit: a combined axonal tracing and acetylcholinesterase histochemical study. J Comp Neurol 356:23–50

    Google Scholar 

  • Uchino Y, Hirai N, Suzuki S (1982) Branching pattern and properties of vertical- and horizontal-related excitatory vestibuloocular neurons in the cat. J Neurophysiol 48:891–903

    Google Scholar 

  • Umetani T (1992) Efferent projections from the flocculus in the albino rat as revealed by an autoradiographic orthograde tracing method. Brain Res 586:91–103

    Article  Google Scholar 

  • Van Brederode JF, Mulligan KA, Hendrickson AE (1990) Calcium-binding proteins as markers for subpopulations of GABAergic neurons in monkey striate cortex. J Comp Neurol 298:1–22

    Google Scholar 

  • Walberg F, Dietrichs E (1988) The interconnection between the vestibular nuclei and the nodulus: a study of reciprocity. Brain Res 449:47–53

    Article  Google Scholar 

  • Wilson VJ, Melvill Jones G (1979) Mammalian vestibular physiology. Plenum, New York

  • Wilson VJ, Schor RH (1999) The neural substrate of the vestibulocollic reflex. What needs to be learned. Exp Brain Res 129:483–493

    Article  Google Scholar 

  • Wilson VJ, Zarzecki P, Schor RH, Isu N, Rose PK, Sato H, Thomson DB, Umezaki T (1999) Cortical influences on the vestibular nuclei of the cat. Exp Brain Res 125:1–13

    Google Scholar 

  • Xiong G, Matsushita M (2000) Connections of Purkinje cell axons of lobule X with vestibulocerebellar neurons projecting to lobule X or IX in the rat. Exp Brain Res 133:219–228

    Article  Google Scholar 

  • Zhang X, Zakir M, Meng H, Sato H, Uchino Y (2001) Convergence of the horizontal semicircular canal and otolith afferents on cat single vestibular neurons. Exp Brain Res 140:1–11

    Google Scholar 

  • Zhang Y, Partsalis AM, Highstein SM (1993) Properties of superior vestibular nucleus neurons projecting to the cerebellar flocculus in the squirrel monkey. J Neurophysiol 69:642–645

    Google Scholar 

  • Zhang Y, Partsalis AM, Highstein SM (1995) Properties of superior vestibular nucleus flocculus target neurons in the squirrel monkey. I. General properties in comparison with flocculus projecting neurons. J Neurophysiol 73:2261–2278

    Google Scholar 

Download references

Acknowledgements

Supported by NIH grants R01 EY07342 and DC01559. We thank Dr. Wade Sigurdson for use of, and help with, the confocal microscope. We thank Dr. Enrico Mugnaini for use of the Nikon microscope and camera.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan S. Baizer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baizer, J.S., Baker, J.F. Immunoreactivity for calcium-binding proteins defines subregions of the vestibular nuclear complex of the cat. Exp Brain Res 164, 78–91 (2005). https://doi.org/10.1007/s00221-004-2211-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-2211-8

Keywords

Navigation