Skip to main content
Log in

Visual feedback alters the variations in corticospinal excitability that arise from rhythmic movements of the opposite limb

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Augmented visual feedback can have a profound bearing on the stability of bimanual coordination. Indeed, this has been used to render tractable the study of patterns of coordination that cannot otherwise be produced in a stable fashion. In previous investigations (Carson et al. 1999), we have shown that rhythmic movements, brought about by the contraction of muscles on one side of the body, lead to phase-locked changes in the excitability of homologous motor pathways of the opposite limb. The present study was conducted to assess whether these changes are influenced by the presence of visual feedback of the moving limb. Eight participants performed rhythmic flexion–extension movements of the left wrist to the beat of a metronome (1.5 Hz). In 50% of trials, visual feedback of wrist displacement was provided in relation to a target amplitude, defined by the mean movement amplitude generated during the immediately preceding no feedback trial. Motor potentials (MEPs) were evoked in the quiescent muscles of the right limb by magnetic stimulation of the left motor cortex. Consistent with our previous observations, MEP amplitudes were modulated during the movement cycle of the opposite limb. The extent of this modulation was, however, smaller in the presence of visual feedback of the moving limb (FCR ω2=0.41; ECR ω2=0.29) than in trials in which there was no visual feedback (FCR ω2=0.51; ECR ω2=0.48). In addition, the relationship between the level of FCR activation and the excitability of the homologous corticospinal pathway of the opposite limb was sensitive to the vision condition; the degree of correlation between the two variables was larger when there was no visual feedback of the moving limb. The results of the present study support the view that increases in the stability of bimanual coordination brought about by augmented feedback may be mediated by changes in the crossed modulation of excitability in homologous motor pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C
Fig. 2A–D
Fig. 3 A

Similar content being viewed by others

References

  • Byblow WD, Chua R, Bysouth-Young DF, Summers JJ (1999) Stabilisation of bimanual coordination through visual coupling. Hum Mov Sc 18:281–305

    Article  Google Scholar 

  • Carson RG, Kelso JAS (2004) Governing coordination: behavioural principles and neural correlates. Exp Brain Res 154:267–274

    Google Scholar 

  • Carson RG, Riek S (2000) Musculo-skeletal constraints on corticospinal input to upper limb motoneurones during coordinated movements. Hum Mov Sci 19:451–474

    Article  Google Scholar 

  • Carson RG, Riek S, Bawa P (1999) Electromyographic activity, H-reflex modulation, and corticospinal input to forearm motoneurones during active and passive rhythmic movements. Hum Mov Sci 18:307–343

    Article  Google Scholar 

  • Carson RG, Smethurst CJ, Forner M, Meichenbaum DP, Mackey DC (2002) The role of peripheral afference during acquisition of a complex coordination task. Exp Brain Res 144:496–505

    Article  CAS  PubMed  Google Scholar 

  • Carson RG, Riek S, Mackey DC, Meichenbaum DP, Willms K, Forner M, Byblow WD (2004) Excitability changes in human forearm corticospinal projections and spinal reflex pathways during rhythmic voluntary movement of the opposite limb. J Physiol (in press)

    Google Scholar 

  • Cernácek J (1961) Contralateral motor irradiation. Cerebral dominance: its changes in hemiparesis. Arch Neurol 4:165–172

    PubMed  Google Scholar 

  • Chalmers GR, Bawa P (1997) Synaptic connections from large afferents of wrist flexor and extensor muscles to synergistic motoneurones in man. Exp Brain Res 116:351–358

    CAS  PubMed  Google Scholar 

  • Cohen J (1969) Statistical power analysis for the behavioral sciences. Academic, New York

  • Deiber M-P, Honda M, Ibañez V, Sadato N, Hallett M (1999) Mesial motor areas in self-initiated versus externally triggered movements examined with fMRI: effect of movement type and rate. J Neurophysiol 81:3065–3077

    CAS  PubMed  Google Scholar 

  • Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD (1992) Interhemispheric inhibition of the human motor cortex. J Physiol 453:525–546

    CAS  PubMed  Google Scholar 

  • Gandevia SC, Petersen N, Butler JE, Taylor JL (1999) Impaired response of human motoneurones to corticospinal stimulation after voluntary exercise. J Physiol 521:749–759

    CAS  PubMed  Google Scholar 

  • Hanajima R, Ugawa Y, Machii K, et al (2001) Interhemispheric facilitation of the hand motor area in humans. J Physiol 531:849–859

    CAS  PubMed  Google Scholar 

  • Kermadi I, Liu Y, Rouiller EM (2000) Do bimanual motor actions involve the dorsal premotor (PMd), cingulate (CMA) and posterior parietal (PPC) cortices? Comparison with primary and supplementary motor cortical areas. Somatosens Mot Res 17:255–271

    Article  CAS  PubMed  Google Scholar 

  • Lee TD, Swinnen SP, Verschueren S (1995) Relative phase alterations during bimanual skill acquisition. J Mot Behav 27:263–274

    PubMed  Google Scholar 

  • Lemon RN, Johansson RS, Westling G (1995) Corticospinal control during reach, grasp, and precision lift in man. J Neurosci 15:6145–6156

    CAS  PubMed  Google Scholar 

  • Mechsner F, Kerzel D, Knoblich G, Prinz W (2001) Perceptual basis of bimanual coordination. Nature 414:69–73

    Article  CAS  PubMed  Google Scholar 

  • Nielsen J, Kagamihara Y (1992) The regulation of disynaptic reciprocal Ia inhibition during co-contraction of antagonistic muscles in man. J Physiol 456:373–391

    CAS  PubMed  Google Scholar 

  • Rothwell JC, Thompson PD, Day BL, Boyd S, Marsden CD (1991) Stimulation of the human motor cortex through the scalp. Exp Physiol 76:159–200

    CAS  PubMed  Google Scholar 

  • Rouiller EM, Babalian A, Kazennikov O, Moret V, Yu XH, Wiesendanger M (1994) Transcallosal connections of the distal forelimb representations of the primary and supplementary motor cortical areas in macaque monkeys. Exp Brain Res 102:227–243

    Article  CAS  PubMed  Google Scholar 

  • Salerno A, Georgesco M (1996) Interhemispheric facilitation and inhibition studied in man with double magnetic stimulation. Electroencephalogr Clin Neurophysiol 101:395–403

    CAS  PubMed  Google Scholar 

  • Stancák A, Cohen ER, Seidler RD, Duong TQ, Kim SG (2003) The size of corpus callosum correlates with functional activation of medial motor cortical areas in bimanual and unimanual movements. Cereb Cortex 13:475–485

    Article  PubMed  Google Scholar 

  • Stein BE, Wallace MT, Stanford TR (1999) Development of multisensory integration: transforming sensory input into motor output. Ment Retard Dev Disabil Res Rev 5:72–85

    Article  Google Scholar 

  • Swinnen SP (2002) Intermanual coordination: from behavioural principles to neural-network interactions. Nat Rev Neurosci 3:350–361

    Article  CAS  Google Scholar 

  • Taylor JL, Petersen NT, Butler JE, Gandevia SC (2002) Interaction of transcranial magnetic stimulation and electrical transmastoid stimulation in human subjects. J Physiol 541:949–958

    Article  CAS  PubMed  Google Scholar 

  • Ugawa Y, Rothwell JC, Day BL, Thompson PD, Marsden CD (1991) Percutaneous electrical stimulation of corticospinal pathways at the level of the pyramidal decussation in humans. Ann Neurol 29:418–427

    CAS  PubMed  Google Scholar 

  • Ugawa Y, Hanajima R, Kanazawa I (1993) Interhemispheric facilitation of the hand area of the human motor cortex. Neurosci Lett 160:153–155

    Article  CAS  PubMed  Google Scholar 

  • Winer BJ (1962) Statistical principles in experimental design. McGraw-Hill, New York

  • Winterer G, Adams CM, Jones DW, Knutson B (2002) Volition to action: an event related fMRI study. Neuroimage 17:851–858

    Article  PubMed  Google Scholar 

  • Yamanishi J, Kawato M, Suzuki R (1980) Two coupled oscillators as a model for the coordinated finger tapping by both hands. Biol Cybern 37:219–225

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Australian Research Council and the National Health and Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Carson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carson, R.G., Welsh, T.N. & Pamblanco-Valero, MÁ. Visual feedback alters the variations in corticospinal excitability that arise from rhythmic movements of the opposite limb. Exp Brain Res 161, 325–334 (2005). https://doi.org/10.1007/s00221-004-2076-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-2076-x

Keywords

Navigation