Skip to main content
Log in

An in situ hybridization and immunofluorescence study of GABAA and GABAB receptors in the vestibular nuclei of the intact and unilaterally labyrinthectomized rat

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We investigated whether the production of the sixteen subunits of the GABAA receptors and of the different variants of GABA Breceptors are modulated in rat medial vestibular nuclei (MVN) following unilateral labyrinthectomy. Specific α1–6, β1–3, γ1–3 and δ GABAA and GABAB B1 and B2receptor radioactive oligonucleotides were used for in situ hybridization to probe sections of rat vestibular nuclei. Specific antibodies against α1, β2, β3 and γ2 subunits of GABAA receptors and against GABA Breceptors were also used to detect a potential protein expression modulation. No asymmetry was observed by autoradiography in the intact and deafferented MVN at any time (5 h to 8 days) following the lesion and for any of the oligonucleotide probes used. Also, no difference in the α1, β2, β3 and γ2 of the GABAA and in the GABAB receptor immunohistochemical signal could be detected between the intact and deafferented vestibular nuclei at any time following the lesion. Our data suggest that GABAA and GABA Breceptor density changes most probably were not involved in the early stage of the vestibular compensation process, i.e., in the restoration of a normal resting discharge of the deafferented vestibular neurons and consequently in the recovery of a normal posture and eye position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–f
Fig. 2a–f
Fig. 3a–f
Fig. 4a–f
Fig. 5a–h
Fig. 6a–g
Fig. 7a–c

Similar content being viewed by others

Abbreviations

AF:

Arithmetic fluorescence

AMPA:

α-amino-3-hydroxi-5-methylisoxazole-4-propionic acid

BZD:

Benzodiazepine

CNS:

Central nervous system

DTT:

Dithiothreitol

EGTA:

Ethylene glycol tetraacetic acid

GABA:

γ-aminobutyric acid

mRNA:

Messenger ribonucleic acid

MVN:

Medial vestibular nucleus

MVNn:

Medial vestibular nucleus neurons

NMDA:

N-methyl-D-aspartate

OD:

Optical density

PBS:

Phosphate buffered saline

rAF:

Relative arithmetic fluorescence

rOD:

Relative optical density

SD:

Standard deviation

SSC:

Standard saline citrate

tRNA:

Transfer ribonucleic acid

UL:

Unilateral labyrinthectomy

VNn:

Vestibular nuclei neurons

References

  • Babalian A, Vibert N, Assie G, Serafin M, Muhlethaler M, Vidal PP (1997) Central vestibular networks in the guinea-pig: functional characterization in the isolated whole brain in vitro. Neuroscience 81:405–426

    Article  CAS  PubMed  Google Scholar 

  • Benke D, Fritschy JM, Trzeciak A, Bannwarth W, Mohler H (1994) Distribution, prevalence, and drug binding profile of gamma-aminobutyric acid type A receptor subtypes differing in the beta-subunit variant. J Biol Chem 269:27100–27107

    CAS  PubMed  Google Scholar 

  • Bettler B, Kaupmann K, Bowery N (1998) GABAB receptors: drugs meet clones. Curr Opin Neurobiol 8:345–350

    Google Scholar 

  • Billinton A, Upton N, Bowery NG (1999) GABA(B) receptor isoforms GBR1a and GBR1b, appear to be associated with pre- and post-synaptic elements respectively in rat and human cerebellum. Br J Pharmacol 126:1387–1392

    CAS  PubMed  Google Scholar 

  • Boue-Grabot E, Roudbaraki M, Bascles L, Tramu G, Bloch B, Garret M (1998) Expression of GABA receptor rho subunits in rat brain. J Neurochem 70:899–907

    CAS  PubMed  Google Scholar 

  • Bowery NG, Enna SJ (2000) Gamma-aminobutyric acid(B) receptors: first of the functional metabotropic heterodimers. J Pharmacol Exp Ther 292:2–7

    CAS  PubMed  Google Scholar 

  • Braestrup C, Nielsen M (1981) [3H]Propyl beta-carboline-3-carboxylate as a selective radioligand for the BZ1 benzodiazepine receptor subclass. J Neurochem 37:333–341

    CAS  PubMed  Google Scholar 

  • Brandon NJ, Delmas P, Kittler JT, McDonald BJ, Sieghart W, Brown DA, Smart TG, Moss SJ (2000) GABAA receptor phosphorylation and functional modulation in cortical neurons by a protein kinase C-dependent pathway. J Biol Chem 275:38856–38862

    Article  CAS  PubMed  Google Scholar 

  • Calza L, Giardino L, Zanni M, Galetti G (1992) Muscarinic and gamma-aminobutyric acid-ergic receptor changes during vestibular compensation. A quantitative autoradiographic study of the vestibular nuclei complex in the rat. Eur Arch Otorhinolaryngol 249:34–39

    CAS  PubMed  Google Scholar 

  • Cameron SA, Dutia MB (1997) Cellular basis of vestibular compensation: changes in intrinsic excitability of MVN neurones. Neuroreport 8:2595–2599

    CAS  PubMed  Google Scholar 

  • Charles KJ, Calver AR, Jourdain S, Pangalos MN (2003) Distribution of a GABAB-like receptor protein in the rat central nervous system. Brain Res 989:135–146

    Article  CAS  PubMed  Google Scholar 

  • Chu DC, Albin RL, Young AB, Penney JB (1990) Distribution and kinetics of GABAB binding sites in rat central nervous system: a quantitative autoradiographic study. Neuroscience 34:341–357

    Article  CAS  PubMed  Google Scholar 

  • Chun SW, Choi JH, Kim MS, Park BR (2003) Characterization of spontaneous synaptic transmission in rat medial vestibular nucleus. Neuroreport 14:1485–1488

    Article  PubMed  Google Scholar 

  • Couve A, Filippov AK, Connolly CN, Bettler B, Brown DA, Moss SJI (1998) Intracellular retention of recombinant GABAB receptors. J Biol Chem 273:26361–26367

    Article  CAS  PubMed  Google Scholar 

  • Curthoys IS (2000) Vestibular compensation and substitution. Curr Opin Neurol 13:27–30

    Google Scholar 

  • Curthoys IS, Halmagyi GM (1995) Vestibular compensation: a review of the oculomotor, neural, and clinical consequences of unilateral vestibular loss. J Vestib Res 5:67–107

    Article  CAS  PubMed  Google Scholar 

  • de Waele C, Serafin M, Muhlethaler M, Vidal PP (1988) Vestibular compensation: an in vivo and in vitro study of second order vestibular neurons. Soc Neurosci Abstr 14:331

    Google Scholar 

  • de Waele C, Abitbol M, Chat M, Menini C, Mallet J, Vidal PP (1994) Distribution of glutamatergic receptors and GAD mRNA-containing neurons in the vestibular nuclei of normal and hemilabyrinthectomized rats. Eur J Neurosci 6:565–576

    PubMed  Google Scholar 

  • de Waele C, Muhlethaler M, Vidal PP (1995) Neurochemistry of the central vestibular pathways. Brain Res Rev 20:24–46

    Article  PubMed  Google Scholar 

  • de Waele C, Loquet G, Campos Torres A, Vidal PP (2000) Lack of growth-associated protein-43 reemergence or of growth-associated protein-43 mRNA modulation in deafferented vestibular nuclei during the first 6 weeks after unilateral inner ear lesion. Exp Brain Res 132:464–475

    Article  PubMed  Google Scholar 

  • Dieringer N (1995) ‘Vestibular compensation’: neural plasticity and its relations to functional recovery after labyrinthine lesions in frogs and other vertebrates. Prog Neurobiol 46:97–129

    Article  CAS  PubMed  Google Scholar 

  • Durkin MM, Gunwaldsen CA, Borowsky B, Jones KA, Branchek TA (1999) An in situ hybridization study of the distribution of the GABA(B2) protein mRNA in the rat CNS. Mol Brain Res 71:185–200

    Article  CAS  PubMed  Google Scholar 

  • Eleore L, Vassias I, Vidal PP, de Waele C (2004) An in situ hybridization and immunofluorescence study of glycinergic receptors and gephyrin in the vestibular nuclei of the intact and unilaterally labyrinthectomized rat. Exp Brain Res 154:333–344

    Google Scholar 

  • Eysel UT (1979) Maintained activity, excitation and inhibition of lateral geniculate neurons after monocular deafferentation in the adult cat. Brain Res 166:259–271

    Article  CAS  PubMed  Google Scholar 

  • Eysel UT, Grusser OJ, Hoffmann KP (1978) The effect of monocular pattern deprivation on the signal transmission by neurons of the cat lateral geniculate body. Arch Ital Biol 116:427–443

    CAS  PubMed  Google Scholar 

  • Fritschy JM, Mohler H (1995) GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol 359:154–194

    CAS  PubMed  Google Scholar 

  • Fritschy JM, Weinmann O, Wenzel A, Benke D (1998) Synapse-specific localization of NMDA and GABA(A) receptor subunits revealed by antigen-retrieval immunohistochemistry. J Comp Neurol 390:194–210

    Article  CAS  PubMed  Google Scholar 

  • Furuya N, Koizumi T (1998) Neurotransmitters of vestibular commissural inhibition in the cat. Acta Otolaryngol 118:64–69

    Article  CAS  PubMed  Google Scholar 

  • Furuya N, Yabe T, Koizumi T (1992) Neurotransmitters in the vestibular commissural system of the cat. Ann N Y Acad Sci 656:594–601

    CAS  PubMed  Google Scholar 

  • Gacek RR, Lyon MJ, Schoonmaker J (1988) Ultrastructural changes in vestibulo-ocular neurons following vestibular neurectomy in the cat. Ann Otol Rhinol Laryngol 97:42–51

    CAS  PubMed  Google Scholar 

  • Goto F, Straka H, Dieringer N (2001) Postlesional vestibular reorganization in frogs: evidence for a basic reaction pattern after nerve injury. J Neurophysiol 85:2643–2646

    CAS  PubMed  Google Scholar 

  • Hill DR, Bowery NG (1981) 3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABA B sites in rat brain. Nature 290:149–152

    CAS  PubMed  Google Scholar 

  • Him A, Dutia MB (2001) Intrinsic excitability changes in vestibular nucleus neurons after unilateral deafferentation. Brain Res 908:58–66

    Article  CAS  PubMed  Google Scholar 

  • Hironaka T, Morita Y, Hagihira S, Tateno E, Kita H, Tohyama M (1990) Localization of GABAA-receptor alpha 1 subunit mRNA-containing neurons in the lower brainstem of the rat. Mol Brain Res 7:335–345

    Article  CAS  PubMed  Google Scholar 

  • Holstein GR, Martinelli GP, Cohen B (1992) L-baclofen-sensitive GABAB binding sites in the medial vestibular nucleus localized by immunocytochemistry. Brain Res 581:175–180

    Article  CAS  PubMed  Google Scholar 

  • Horii A, Kitahara T, Smith PF, Darlington CL, Masumura C, Kubo T (2003) Effects of unilateral labyrinthectomy on GAD, GAT1 and GABA receptor gene expression in the rat vestibular nucleus. Neuroreport 14:2359–2363

    Article  CAS  PubMed  Google Scholar 

  • Houser CR, Barber RP, Vaughn JE (1984) Immunocytochemical localization of glutamic acid decarboxylase in the dorsal lateral vestibular nucleus: evidence for an intrinsic and extrinsic GABAergic innervation. Neurosci Lett 47:213–220

    Article  CAS  PubMed  Google Scholar 

  • Huntsman MM, Jones EG (1998) Expression of alpha3, beta3 and gamma1 GABA(A) receptor subunit messenger RNAs in visual cortex and lateral geniculate nucleus of normal and monocularly deprived monkeys. Neuroscience 87:385–400

    Article  CAS  PubMed  Google Scholar 

  • Huntsman MM, Leggio MG, Jones EG (1995) Expression patterns and deprivation effects on GABAA receptor subunit and GAD mRNAs in monkey lateral geniculate nucleus. J Comp Neurol 352:235–247

    CAS  PubMed  Google Scholar 

  • Ito M, Highstein SM, Fukuda J (1970) Cerebellar inhibition of the vestibulo-ocular reflex in rabbit and cat and its blockage by picrotoxin. Brain Res 17:524–526

    Article  CAS  PubMed  Google Scholar 

  • Johnston AR, Him A, Dutia MB (2001) Differential regulation of GABA(A) and GABA(B) receptors during vestibular compensation. Neuroreport 12:597–600

    Article  CAS  PubMed  Google Scholar 

  • Johnston AR, Seckl JR, Dutia MB (2002) Role of the flocculus in mediating vestibular nucleus neuron plasticity during vestibular compensation in the rat. J Physiol 545: 903–911

    Article  CAS  PubMed  Google Scholar 

  • Jones KA, Borowski B, Tamm JA, Craig MM, Durkin MM, Yao WJ, Johnson M, Gunwaldsen C, Huang LY, Tang C, Shen Q, Salon JA, Morse K, Laz, Smith KE, Nagarathnam D, Noble SA, Brancheck C, Gerald C (1998) GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2. Nature 396:674–679

    Article  CAS  PubMed  Google Scholar 

  • Kato R, Iwamoto Y, Yoshida K (2003) Contribution of GABAergic inhibition to the responses of secondary vestibular neurons to head rotation in the rat. Neurosci Res 46: 499–508

    Article  CAS  PubMed  Google Scholar 

  • Kaupmann K, Huggel K, Heid J, Flor PJ, Bischoff S, Mickel SJ, McMaster G, Angst C, Bittiger H, Froestl W, Bettler B (1997) Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. Nature 386:239–246

    Article  CAS  PubMed  Google Scholar 

  • Kerr DI, Ong J (1995) GABAB receptors. Pharmacol Ther 2:187–246

    Article  Google Scholar 

  • Khrestchatisky M, MacLennan AJ, Tillakaratne NJ, Chiang MY, Tobin AJ (1991) Sequence and regional distribution of the mRNA encoding the alpha 2 polypeptide of rat gamma-aminobutyric acidA receptors. J Neurochem 56:1717–1722

    CAS  PubMed  Google Scholar 

  • Kitahara T, Takeda N, Kiyama H, Kubo T (1998) Molecular mechanisms of vestibular compensation in the central vestibular system—review. Acta Otolaryngol 539:19–27

    Article  CAS  Google Scholar 

  • Klepner CA, Lippa AS, Benson DI, Sano MC, Beer B (1979) Resolution of two biochemically and pharmacologically distinct benzodiazepine receptors. Pharmacol Biochem Behav 11:457–462

    Article  CAS  PubMed  Google Scholar 

  • Kuner R, Kohr G, Grunewald S, Eisenhardt G, Bach A, Kornau HC (1999) Role of heteromer formation in GABAB receptor function. Science 283:74–77

    Article  CAS  PubMed  Google Scholar 

  • Laurie DJ, Seeburg PH, Wisden W (1992) The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellum. J Neurosci 12:1063–1076

    CAS  PubMed  Google Scholar 

  • Luddens H, Wisden W (1991) Function and pharmacology of multiple GABAA receptor subunits. Trends Pharmacol Sci 12:49–51

    Article  CAS  PubMed  Google Scholar 

  • Macdonald RL, Olsen RW (1994) GABAA receptor channels. Annu Rev Neurosci 17:569–602

    CAS  PubMed  Google Scholar 

  • Magnusson AK, Eriksson B, Tham R (1998) Effects of the GABA agonists baclofen and THIP on long-term compensation in hemilabyrinthectomised rats. Brain Res 795:307–311

    Article  CAS  PubMed  Google Scholar 

  • Munoz A, Arellano JI, DeFelipe J (2002) GABABR1 receptor protein expression in human mesial temporal cortex: changes in temporal lobe epilepsy. J Comp Neurol 449:166–179

    Article  CAS  PubMed  Google Scholar 

  • Nayeem N, Green TP, Martin IL, Barnard EA (1994) Quaternary structure of the native GABAA receptor determined by electron microscopic image analysis. J Neurochem 62:815–818

    CAS  PubMed  Google Scholar 

  • Nguyen QT, Matute C, Miledi R (1998) mRNAs coding for neurotransmitter receptors and voltage-gated sodium channels in the adult rabbit visual cortex after monocular deafferentiation. Proc Natl Acad Sci U S A 95:3257–3262

    Google Scholar 

  • Patko T, Vassias I, Vidal PP, de Waele C (2003) Modulation of the voltage-gated sodium and calcium-dependant potassium channels in rat vestibular and facial nuclei after unilateral labyrinthectomy and facial nerve transection: an in situ hybridization study. Mol Brain Res 120:73–78

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic press, San Diego

  • Precht W, Schwindt PC, Baker R (1973) Removal of vestibular commissural inhibition by antagonists of GABA and glycine. Brain Res 62:222–226

    Article  CAS  PubMed  Google Scholar 

  • Pritchett DB, Seeburg PH (1990) Gamma-aminobutyric acidA receptor alpha 5-subunit creates novel type II benzodiazepine receptor pharmacology. J Neurochem 54:1802–1804

    CAS  PubMed  Google Scholar 

  • Pritchett DB, Sontheimer H, Shivers BD, Ymer S, Kettenmann H, Schofield PR, Seeburg PH (1989) Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338:582–585

    Article  CAS  PubMed  Google Scholar 

  • Rabbath G, Vassias I, Vidal PP, de Waele C (2002) GluR2-R4 AMPA subunit study in rat vestibular nuclei after unilateral labyrinthectomy: an in situ and immunohistochemical study. Neuroscience 111:189–206

    Article  CAS  PubMed  Google Scholar 

  • Rapallino MV, Cupello A, Luccardini C, Nieddu E, Seitun A, Robello M (2003) Immunocytochemical study of alpha 1 and beta 2/3 subunits of GABAA receptors in freehand isolated vestibular Deiters’ neurons. Receptors Channels 9:77–81

    Article  CAS  PubMed  Google Scholar 

  • Ris L, de Waele C, Serafin M, Vidal PP, Godaux E (1995) Neuronal activity in the ipsilateral vestibular nucleus following unilateral labyrinthectomy in the alert guinea pig. J Neurophysiol 74:2087–2099

    CAS  PubMed  Google Scholar 

  • Ris L, Capron B, de Waele C, Vidal PP, Godaux E (1997) Dissociations between behavioural recovery and restoration of vestibular activity in the unilabyrinthectomized guinea-pig. J Physiol 500:509–522

    CAS  PubMed  Google Scholar 

  • Schaeffer KP, Meyer DL (1974) In: Kornhuber HH (ed) Handbook of sensory physiology. Springer, New York, pp 463–490

  • Schuknecht HF (1982) Behavior of the vestibular nerve following labyrinthectomy. Ann Otol Rhinol Laryngol 97:16–32

    CAS  Google Scholar 

  • Smith PF, Curthoys IS (1988a) Neuronal activity in the contralateral medial vestibular nucleus of the guinea pig following unilateral labyrinthectomy. Brain Res 444:295–307

    Article  CAS  PubMed  Google Scholar 

  • Smith PF, Curthoys IS (1988b) Neuronal activity in the ipsilateral medial vestibular nucleus of the guinea pig following unilateral labyrinthectomy. Brain Res 444:308–319

    Article  CAS  PubMed  Google Scholar 

  • Smith PF, Curthoys IS (1989) Mechanisms of recovery following unilateral labyrinthectomy: a review. Brain Res Rev 14:155–180

    Article  CAS  PubMed  Google Scholar 

  • Smith PF, Darlington CL (1991) Neurochemical mechanisms of recovery from peripheral vestibular lesions (vestibular compensation). Brain Res Rev 16:117–133

    Article  CAS  PubMed  Google Scholar 

  • Smith PF, Darlington CL (1994) Pharmacology of the vestibular system. Baillieres Clin Neurol 3:467–484

    CAS  PubMed  Google Scholar 

  • Smith PF, de Waele C, Vidal PP, Darlington CL (1991) Excitatory amino acid receptors in normal and abnormal vestibular function. Mol Neurobiol 5:369–387

    CAS  PubMed  Google Scholar 

  • Tighilet B, Lacour M (2001) Gamma amino butyric acid (GABA) immunoreactivity in the vestibular nuclei of normal and unilateral vestibular neurectomized cats. Eur J Neurosci 13:2255–2267

    Article  CAS  PubMed  Google Scholar 

  • Vibert N, Serafin M, Vidal PP, Muhlethaler M (1995) Direct and indirect effects of muscimol on medial vestibular nucleus neurones in guinea-pig brainstem slices. Exp Brain Res 104:351–356

    CAS  PubMed  Google Scholar 

  • Vibert N, Babalian A, Serafin M, Gasc JP, Muhlethaler M, Vidal PP (1999) Plastic changes underlying vestibular compensation in the guinea-pig persist in isolated, in vitro whole brain preparations. Neuroscience 93:413–432

    Article  CAS  PubMed  Google Scholar 

  • Vibert N, Beraneck M, Bantikyan A, Vidal PP (2000) Vestibular compensation modifies the sensitivity of vestibular neurones to inhibitory amino acids. Neuroreport 11:1921–1927

    CAS  PubMed  Google Scholar 

  • Vidal PP, de Waele C, Vibert N, Muhlethaler M (1998) Vestibular compensation revisited. Otolaryngol Head Neck Surg 119:34–42

    CAS  PubMed  Google Scholar 

  • Vidal PP, Vibert N, Serafin M, Babalian A, Muhlethaler M, de Waele C (1999) Intrinsic physiological and pharmacological properties of central vestibular neurons. Adv Otorhinolaryngol 55:26–81

    CAS  PubMed  Google Scholar 

  • Wisden W, Morris BJ, Darlison MG, Hunt SP, Barnard EA (1989) Localization of GABAA receptor alpha-subunit mRNAs in relation to receptor subtypes. Mol Brain Res 5:305–310

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka T, Him A, Cameron SA, Dutia MB (2000) Rapid compensatory changes in GABA receptor efficacy in rat vestibular neurones after unilateral labyrinthectomy. J Physiol 523:413–424

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the ACI, France, and from the “conseil general of Guadeloupe”, France. We would like to thank Martine Pouradier for her excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine de Waele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eleore, L., Vassias, I., Bernat, I. et al. An in situ hybridization and immunofluorescence study of GABAA and GABAB receptors in the vestibular nuclei of the intact and unilaterally labyrinthectomized rat. Exp Brain Res 160, 166–179 (2005). https://doi.org/10.1007/s00221-004-1997-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-1997-8

Keywords

Navigation