Skip to main content

Advertisement

Log in

Effects of the GABA-uptake inhibitor tiagabine in rat globus pallidus

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

To elucidate the cellular action of tiagabine, an inhibitor of GAT-1 GABA transporter, in the globus pallidus, whole-cell patch-clamp recordings were made from rat globus pallidus neurons in the acutely prepared brain slice. Superfusion of tiagabine significantly prolonged the decay kinetics of both action potential-dependent and -independent (tetrodotoxin-resistant) inhibitory postsynaptic currents (IPSCs) that were mediated by GABAA receptors. Furthermore, it decreased the frequency of these IPSCs. The latter effect was reversed by the GABAB receptor antagonist CGP55845, which alone had no effect, suggesting the involvement of presynaptic GABAB receptors. Thus, tiagabine could inhibit or disinhibit globus pallidus neurons by increasing the activation of the GABAA receptors and presynaptic GABAB receptors, respectively. In the behaving animal, tiagabine when injected unilaterally into the globus pallidus caused consistent ipsilateral rotation of the rats indicative of increased inhibition of globus pallidus activity. This finding could be explained by the proposition that in the presence of tiagabine, prolonged action of GABA on GABA receptors would dominate over the inhibitory effect of tiagabine on GABA release. Our findings on the electrophysiological and behavioral effects of tiagabine in globus pallidus suggest that this basal ganglia nucleus is one of the sites of action of tiagabine and provides a rationale for investigating its involvement in epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.
Fig. 2A, B.
Fig. 3A, B.
Fig. 4. A

Similar content being viewed by others

References

  • Aiko Y, Hosokawa S, Shima F, Kato M, Kitamura K (1988) Alterations in local cerebral glucose utilization during electrical stimulation of the striatum and globus pallidus in rats. Brain Res 442:43–52

    Article  CAS  PubMed  Google Scholar 

  • André V, Pineau N, Motte J, Marescauz C, Nehlig A (1998) Mapping of neuronal networks underlying generalized seizures induced by increasing doses of pentylenetetrazole in the immature and adult rat: a c-fos immunohistochemical study. Eur J Neurosci 10:2094–2106

    Article  PubMed  Google Scholar 

  • Bolam P, Hanley JJ, Booth PAC, Bevan MD (2000) Synaptic organization of the basal ganglia. J Anat 196:527–542

    Article  PubMed  Google Scholar 

  • Borden LA (1996) GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem Int 29:335–356

    Article  CAS  PubMed  Google Scholar 

  • Borden LA, Dhar TGM, Smith KE, Weinshank RL, Branchek TA, Gluchowski C (1994) Tiagabine, SK&F 89976-A, CI-966, and NNC-711 are selective for the cloned GABA transporter GAT-1. Eur J Pharmacol 269:219–224

    Article  CAS  PubMed  Google Scholar 

  • Chan PKY, Yung WH (1999) Inhibitory postsynaptic currents of rat substantia nigra pars reticulata neurons: role of GABA receptors and GABA uptake. Brain Res 838:18–26

    Article  CAS  PubMed  Google Scholar 

  • Charara A, Heilman C, Levey AI, Smith Y (2000) Pre- and postsynaptic localization of GABAB receptors in the basal ganglia in monkeys. Neuroscience 95:127–140

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Chan SCY, Yung WH (2002) Rotational behavior and electrophysiological effects induced by GABAB receptor activation in rat globus pallidus. Neuroscience 114:417–425

    Article  CAS  PubMed  Google Scholar 

  • Cooper AJ, Stanford IM (2000) Electrophysiological and morphological characteristics of three subtypes of rat globus pallidus neurone in vitro. J Physiol (Lond) 527:291–304

    Google Scholar 

  • Crawford P, Meinardi H, Brown S, Rentmeester TW, Pedersen B, Pedersen PC, Lassen LC (2001) Tiagabine: efficacy and safety in adjunctive treatment of partial seizures. Epilepsia 42:531–538

    Article  CAS  PubMed  Google Scholar 

  • Dalby NO (2000) GABA-level increasing and anticonvulsant effects of three different GABA uptake inhibitors. Neuropharmacology 39:2399–2407

    Article  CAS  PubMed  Google Scholar 

  • Dalby NO, Nielsen EB (1997) Comparison of the preclinical anticonvulsant profiles of tiagabine, lamotrigine, gabapentin and vigabatrin. Epilepsy Res 28:63–72

    Google Scholar 

  • Depaulis A, Vergnes M, Marescaux C (1993) Endogenous control of epilepsy: the nigral inhibitory system. Prog Neurobiol 42:33–52

    Article  Google Scholar 

  • Deransart C, Riban V, Lê B-T, Hechler V, Marescauz C, Depaulis A (1999) Evidence for the involvement of the pallidum in the modulation of seizures in a genetic model of absence epilepsy in the rat. Neurosci Lett 265:131–134

    Article  CAS  PubMed  Google Scholar 

  • Fink-Jensen A, Suzdak PD, Swedberg MDB, Judge ME, Hansen L, Nielsen PG (1992) The γ-aminobutyric acid (GABA) uptake inhibitor, tiagabine, increases extracellular brain levels of GABA in awake rats. Eur J Pharmacol 220:197–201

    Article  CAS  PubMed  Google Scholar 

  • Gale K (1989) GABA in epilepsy: the pharmacological basis. Epilepsia (Suppl 3) 30:1–11

  • Genton P, Guerrini R, Perucca E (2001) Tiagabine in clinical practice. Epilepsia (Suppl 3) 42:42–45

    Google Scholar 

  • Haugvicova R, Skutova M, Kubova H, Suchomelova L, Mares P (2000) Two different anticonvulsant actions of tiagabine in developing rats. Epilepsia 41:1375–1381

    CAS  PubMed  Google Scholar 

  • Iadarola MJ, Gale K (1982) Substantia nigra: site of anti-convulsant activity mediated by gamma-aminobutyric acid. Science 218:1237–1240

    Google Scholar 

  • Ikegaki N, Saito N, Hashima M, Tanaka C (1994) Production of specific antibodies against GABA transporter subtypes (GAT1, GAT2, GAT3) and their application to immunohistochemistry. Mol Brain Res 26:47–54

    CAS  PubMed  Google Scholar 

  • Jackson MF, Esplin B, Capek R (1999) Activity-dependent enhancement of hyperpolarizing and depolarizing gamma-aminobutyric acid (GABA) synaptic responses following inhibition of GABA uptake by tiagabine. Epilepsy Res 37: 25–36

    Article  CAS  PubMed  Google Scholar 

  • Nambu A, Llinas R (1994) Electrophysiology of globus pallidus neurons in vitro. J Neurophysiol 72:1127–1139

    CAS  PubMed  Google Scholar 

  • Nielsen EB, Suzdak PD, Andersen KE, Knutsen LJS, Sonnewald U, Braestrup C (1991) Characterization of tiagabine (NO-328), a new potent and selective GABA uptake inhibitor. Eur J Pharmacol 196:257–266

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic, New York

  • Radian R, Ottersen OP, Castel M, Kanner B (1990) Immunocytochemical localization of the GABA transporter in rat brain. J Neurosci 10:1319–1330

    CAS  PubMed  Google Scholar 

  • Roepstroff A, Lamvert JDC (1994) Factors contributing to the decay of the stimulus-evoked IPSCs in rat hippocampal CA1 neurons. J Neurophysiol 72:2911–2926

    PubMed  Google Scholar 

  • Sabau A, Frahm C, Pfeiffer M, Breustedt J-M, Piechotta A, Numberger M, Engel D, Heinemann U, Draguhn A (1999) Age-dependence of the anticonvulsant effects of the GABA uptake inhibitor tiagabine in vitro. Eur J Pharmacol 383:259–266

    Article  CAS  PubMed  Google Scholar 

  • Saňudo-Peňa MC, Walker JM (1997) Role of the subthalamic nucleus on cannabinoid actions in the substantia nigra of the rat. J Neurophysiol 77:1635–1638

    PubMed  Google Scholar 

  • Saňudo-Peňa MC, Walker JM (1998) Effect of intrapallidal cannabinoids on rotational behavior in rats: interactions with the dopaminergic system. Synapse 28:27–32

    Article  PubMed  Google Scholar 

  • Schachter SC (2001) Pharmacology and clinical experience with tiagabine. Expert Opin Pharmacother 2:179–187

    CAS  PubMed  Google Scholar 

  • Smith SE, Parvez NS, Chapman AG, Meldrum BS (1995) The gamma-aminobutyric acid uptake inhibitor, tiagabine, is anticonvulsant in two animal models of reflex epilepsy. Eur J Pharmacol 273:259–265

    Article  CAS  PubMed  Google Scholar 

  • Suzdak PD, Foged C, Andersen KE (1994) Quantitative autoradiographic characterization of the binding of [3H]tiagabine (NNC 05-328) to the GABA uptake carrier. Brain Res 647:231–241

    Article  CAS  PubMed  Google Scholar 

  • Thompson SM, Gähwiler BH (1992) Effects of the GABA uptake inhibitor tiagabine on inhibitory synaptic potentials in rat hippocampal slice cultures. J Neurophysiol 67:1698–1701

    CAS  PubMed  Google Scholar 

  • Vergnes M, Boehrer A, Simler S, Bernasconi R, Marescaux C (1977) Opposite effects of GABAB receptor antagonists on absences and convulsive seizures. Eur J Pharmacol 332:245–255

    Article  Google Scholar 

  • Yamaguchi K, Nabeshima T, Kameyama T (1986) Role of dopaminergic and GABAergic mechanisms in discrete brain areas in phencyclidine-induced locomotor stimulation and turning behavior. J Pharmacobiodyn 9:975–986

    CAS  PubMed  Google Scholar 

  • Yasumi M, Sato K, Shimada S, Nishimura M, Tohyama M (1997) Regional distribution of GABA transporter 1(GAT1) mRNA in the rat brain: Comparison with glutamic acid decarboxylase67 (GAD67) mRNA localization. Mol Brain Res 44:205–218

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant awarded to W.H. Yung by the Research Grants Council of Hong Kong (CUHK 4080/00M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wing-Ho Yung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Yung, WH. Effects of the GABA-uptake inhibitor tiagabine in rat globus pallidus. Exp Brain Res 152, 263–269 (2003). https://doi.org/10.1007/s00221-003-1549-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1549-7

Keywords

Navigation