Skip to main content
Log in

Modulation of GABA- and Kainate-Mediated Ion Currents in Isolated Rat Cerebral Cortex Neurons by Metabotropic Receptors

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Patch clamp experiments with fixation of the membrane potential were performed on isolated rat prefrontal cortex neurons to study the modulation of ion currents induced by applications of GABA and kainate by GABAB receptors and group I metabotropic glutamate receptors. Blockade of GABAB receptors with the selective antagonist CGP-55845 (5 μM) increased the peak amplitude of the ion current induced by application of GABA (40 μM) by 26 ± 13% (n = 6). The amplitude of the ion current plateau at 14 sec of application of GABA was the same in controls as with blockade of GABAB receptors. The long-term effects of activation of GABAB receptors were studied in terms of the responses to application of GABA and kainate in the presence of baclofen (50 μM), a selective GABAB receptor agonist. Prolonged prior application of baclofen increased the amplitude of responses to application of GABA by 9 ± 2% (n = 8) as compared with controls. Responses to application of kainate did not change in the presence of baclofen. Analogous experiments using trans-ACPD, a selective agonist of groups I and II metabotropic glutamate receptors, did not reveal any changes in responses to application of GABA or kainate. These data point to modulation of GABAA receptors by postsynaptic metabotropic GABAB receptors in rat cerebral cortex neurons

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Amakhin and N. P. Veselkin, “Interaction of the effects of the neurotransmitters glycine and GABA in the central nervous system,” Tsitologiya, 54, No. 6, 469–477 (2012).

    CAS  Google Scholar 

  2. D. V. Amakhin, V. A. Popov, A. I. Makliel’, and N. P. Veselkin, “Characteristics of the summation of GABA- and glutamate-mediated ion currents in isolated rat cerebral cortex neurons,” Ros. Fiziol. Zh., 98, No. 12, 1490–1506 (2012).

    CAS  Google Scholar 

  3. E. A. Tsvetkin, Yu. A. Polina, A. I. Makliel’, and N. P. Veselkin, “Effects of baclofen on the ionotropic current evoked by application of glycine on spinal cord neurons from the frog Rana temporaria,” Zh. Evolyuts. Biokhim. Fiziol., 44, No. 3, 322–323 (2008).

    Google Scholar 

  4. N. Akaike, M. Kaneda, N. Hori, and O. A. Krishtal, “Blockade of N-methyl-D-aspartate response in enzyme-treated rat hippocampal neurons,” Neurosci. Lett., 87, No. 1–2, 75–79 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. S. Balasubramanian, J. A. Teissere, D. V. Raju, and R. A. Hall, “Heterooligomerization between GABA(A) and GABA(B) receptors regulates GABA(B) receptor trafficking,” J. Biol. Chem., 279, No. 18, 18840–18850 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. A. E. Bandrowski, V. B. Aramakis, S. L. Moore, and J. H. Ashe, “Metabotropic glutamate receptors modify ionotropic glutamate responses in neocortical pyramidal cells and interneurons,” Exp. Brain Res., 136, No. 1, 25–40 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. B. Bettler, K. Kaupmann, J. Mosbacher, and M. Gassmann, “Molecular structure and physiological functions of GABA(B) receptors,” Physiol. Rev., 84, No. 3, 835–867 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. N. G. Bowery, A. L. Hudson, and G. W. Price, “GABA(A) and GABA(B) receptor site distribution in the rat central nervous system,” Neuroscience, 20, No. 2, 365–383 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. M. D. Browning, M. Bureau, E. M. Dudek, and R. W. Olsen, “Protein kinase C and cAMP-dependent protein kinase phosphorylate the beta subunit of the purified gamma-aminobutyric acid A receptor,” Proc. Natl. Acad. Sci. USA, 87, No. 4, 1315–1318 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. J. R. Chalifoux and A. G. Carter, “GABA(B) receptors modulate NMDA receptor calcium signals in dendritic spines,” Neuron, 66, No. 1, 101–113 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. W. M. Connelly, S. J. Fyson, A. C. Errington, et al., “GABA(B) receptors regulate extrasynaptic GABA(A) receptors,” J. Neurosci., 33, No. 9, 3780–3785 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. Feigenspan and J. Bormann, “Facilitation of GABAergic signaling in the retina by receptors stimulating adenylate cyclase,” Proc. Natl. Acad. Sci. USA, 91, No. 23, 10893–10897 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. W. Jarolimek, M. Bijak, and U. Misgeld, “Differences in the Cs block of baclofen and 4-aminopyridine induced potassium currents of guinea pig CA3 neurons in vitro,” Synapse, 18, No. 3, 169–177 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. M. Kaneda, H. Nakamura, and N. Akaike, “Mechanical and enzymatic isolation of mammalian CNS neurons,” Neurosci. Res., 5, No. 4, 299–315 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. S. Y. Kawaguchi and T. Hirano, “Signaling cascade regulating longterm potentiation of GABA(A) receptor responsiveness in cerebellar Purkinje neurons,” J. Neurosci., 22, No. 10, 3969–3976 (2002).

    CAS  PubMed  Google Scholar 

  16. A. R. Kay and R. K. Wong, “Isolation of neurons suitable for patch-clamping from adult mammalian central nervous systems,” J. Neurosci. Meth., 16, No. 3, 227–238 (1986).

    Article  CAS  Google Scholar 

  17. S. Kellenberger, P. Malherbe, and E. Sigel, “Function of the alpha 1 beta 2 gamma 2S gamma-aminobutyric acid type A receptor is modulated by protein kinase C via multiple phosphorylation sites,” J. Biol. Chem., 267, No. 36, 25660–25553 (1992).

    CAS  PubMed  Google Scholar 

  18. B. J. Krishek, X. Xie, C. Blackstone, et al., “Regulation of GABA(A) receptor function by protein kinase C phosphorylation,” Neuron, 12, No. 5, 1081–1095 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. H. Kubota, S. Katsurabayashi, A. J. Moorhouse, et al., “GABA(B) receptor transduction mechanisms, and cross-talk between protein kinases A and C, in GABAergic terminals synapsing onto neurons of the rat nucleus basalis of Meynert,” J. Physiol., 551, No. 1, 263–276 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Y. F. Lin, T. P. Angelotti, E. M. Dudek, et al., “Enhancement of recombinant alpha 1 beta 1 gamma 2L gamma-aminobutyric acid A receptor whole-cell currents by protein kinase C is mediated through phosphorylation of both beta 1 and gamma 2L subunits,” Mol. Pharmacol., 50, No. 1, 185–195 (1996).

    CAS  PubMed  Google Scholar 

  21. G. Lopez-Bendito, R. Shigemoto, A. Fairen, and R. Lujan, “Differential distribution of group I metabotropic glutamate receptors during rat cortical development,” Cereb. Cortex, 12, No. 6, 625–638 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. T. K. Machu, J. A. Firestone, and M. D. Browning, “Ca2+/calmodulin-dependent protein kinase II and protein kinase C phosphorylate a synthetic peptide corresponding to a sequence that is specific for the gamma 2L subunit of the GABA(A) receptor,” J. Neurochem., 61, No. 1, 375–377 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. B. J. McDonald, A. Amato, C. N. Connolly, et al., “Adjacent phosphorylation sites on GABA(A) receptor beta subunits determine regulation by cAMP-dependent protein kinase,” Nat. Neurosci., 1, No. 1, 23–28 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. B. J. McDonald and S. J. Moss, “Differential phosphorylation of intracellular domains of gamma-aminobutyric acid type A receptor subunits by calcium/calmodulin type 2-dependent protein kinase and cGMP-dependent protein kinase,” J. Biol. Chem., 269, No. 27, 18111–18117 (1994).

    CAS  PubMed  Google Scholar 

  25. B. J. McDonald and S. J. Moss, “Conserved phosphorylation of the intracellular domains of GABA(A) receptor beta2 and beta3 subunits by cAMP-dependent protein kinase, cGMP-dependent protein kinase protein kinase C and Ca2+/calmodulin type H-dependent protein kinase,” Neuropharmacology, 36, No. 10, 1377–1385 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. S. J. Moss, C. A. Doherty, and R. L. Huganir, “Identification of the cAMP-dependent protein kinase and protein kinase C phosphorylation sites within the major intracellular domains of the beta 1, gamma 2S, and gamma 2L subunits of the gamma-aminobutyric acid type A receptor,” J. Biol. Chem., 267, No. 20, 14470–14476 (1992).

    CAS  PubMed  Google Scholar 

  27. S. J. Moss and T. G. Smart, “Modulation of amino acid-gated ion channels by protein phosphorylation,” Int. Rev. Neurobiol., 39, 1–52 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. S. J. Moss, T. G. Smart, C. D. Blackstone, and R. L. Huganir, “Functional modulation of GABA(A) receptors by cAMP-dependent protein phosphorylation,” Science, 257, No. 5070, 661–665 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. C. M. Niswender and P. J. Conn, “Metabotropic glutamate receptors: physiology, pharmacology, and disease,” Annu. Rev. Pharmacol. Toxicol., 50, 295–322 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. C. L. Padgett and P. A. Slesinger, “GABA(B) receptor coupling to G-proteins and ion channels,” Adv. Pharmacol., 589, 123–147 (2010).

    Article  Google Scholar 

  31. K. D. Parfitt, B. J. Hoffer, and P. C. Bickford-Wimer, “Potentiation of gamma-aminobutyric acid-mediated inhibition by isoproterenol in the cerebellar cortex: receptor specificity,” Neuropharmacology, 29, No. 10, 909–916 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. N. M. Porter, R. E. Twyman, M. D. Uhler, and R. L. Macdonald, “Cyclic AMP-dependent protein kinase decreases GABA(A) receptor current in mouse spinal neurons,” Neuron, 5, No. 6, 789–796 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. M. F. Pozza, N. A. Manuel, M. Steinmann, et al., “Comparison of antagonist potencies at pre- and post-synaptic GABA(B) receptors at inhibitory synapses in the CA 1 region of the rat hippocampus,” Br. J. Pharmacol., 127, No. 1, 211–219 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. A. P. Princivalle, M. N. Pangalos, N. G. Bowery, and R. Spreafico, “Distribution of GABA[B(1a)], GABA[B(1b)] and GABA(B2) receptor protein in cerebral cortex and thalamus of adult rats,” Neuroreport, 12, No. 3, 591–595 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. D. B. Pritchett, H. Sontheimer, B. D. Shivers, et al., “Importance of a novel GABA(A) receptor subunit for benzodiazepine pharmacology,” Nature, 338, No. 6216, 582–585 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. M. Robello, C. Amico, and A. Cupello, “Regulation of GABA(A) receptor in cerebellar granule cells in culture: differential involvement of kinase activities,” Neuroscience, 53, No. 1, 131–138 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. A. Rojas, J. Wetherington, R. Shaw, et al., “Activation of group I metabotropic glutamate receptors potentiates heteromeric kainate receptors,” Mol. Pharmacol., 83, No. 1, 106–121 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. C. Romano, M. A. Sesma, C. T. McDonald, et al., “Distribution of metabotropic glutamate receptor mGluR5 immunoreactivity in rat brain,” J. Comp. Neurol., 355, No. 3, 455–469 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. A. N. Shrivastava, A. Triller, and W. Sieghart, “GABA(A) receptors: post-synaptic co-localization and cross-talk with other receptors,” Front. Cell. Neurosci., 5, 7 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  40. C. H. Song, X. W. Chen, J. X. Xia, et al., “Modulatory effects of hypocretin-1/orexin-A with glutamate and gamma-aminobutyric acid on freshly isolated pyramidal neurons from the rat prefrontal cortex,” Neurosci. Lett., 399, No. 1–2, 101–105 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. T. Tabata and M. Kano, “GABA(B) receptor-mediated modulation of glutamate signaling in cerebellar Purkinje cells,” Cerebellum, 5, No. 2, 127–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. T. Tabata and M. Kano, “GABA(B) receptor-mediated modulation of metabotropic glutamate signaling and synaptic plasticity in central neurons,” Adv. Pharmacol., 58, 149–173 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. W. Tao, M. H. Higgs, W. J. Spain, and C. B. Ransom, “Postsynaptic GABA(B) receptors enhance extrasynaptic GABA(A) receptor function in dentate gyrus granule cells,” J. Neurosci., 33, No. 9, 3738–3743 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. J. P. Tyszkiewicz, Z. Gu, X. Wang, et al., “Group II metabotropic glutamate receptors enhance NMDA receptor currents via a protein kinase C-dependent mechanism in pyramidal neurones of rat prefrontal cortex,” J. Physiol., 554, No. 3, 765–777 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. P. Whiting, R. M. McKernan, and L. L. Iversen, “Another mechanism for creating diversity in gamma-aminobutyrate type A receptors: RNA splicing directs expression of two forms of gamma 2 phosphorylation site,” Proc. Natl. Acad. Sci. USA, 87, No. 24, 9966–9970 (2009).

    Article  Google Scholar 

  46. S. Ymer, A. Draguhn, M. Kohler, et al., “Sequence and expression of a novel GABA(A) receptor alpha subunit,” FEBS Lett., 258, No. 1, 119–122 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Amakhin.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 100, No. 10, pp. 1169–1179, October, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amakhin, D.V., Popov, V.A. & Veselkin, N.P. Modulation of GABA- and Kainate-Mediated Ion Currents in Isolated Rat Cerebral Cortex Neurons by Metabotropic Receptors. Neurosci Behav Physi 46, 430–436 (2016). https://doi.org/10.1007/s11055-016-0254-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-016-0254-5

Keywords

Navigation