Skip to main content
Log in

Asymptotics and Scattering for Massive Maxwell–Klein–Gordon Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the asymptotic behavior and the scattering from infinity problem for the massive Maxwell–Klein–Gordon system in the Lorenz gauge, which were previously only studied for the massless system. For a general class of initial data, in particular of nonzero charge, we derive the precise asymptotic behaviors of the solution, where we get a logarithmic phase correction for the complex Klein–Gordon field, and a combination of interior homogeneous field, radiation fields, and an exterior charge part for the gauge potentials. Moreover, we also derive a formula for the charge at infinite time, which shows that the charge is concentrated at timelike infinity, a phenomenon drastically different from the massless case. After deriving the forward asymptotics, we formulate the scattering from infinity problem by defining the correct notion of scattering data, and then solve this problem. We show that one can determine the correct charge contribution using the information at timelike infinity, which is a crucial step for us to obtain backward solutions not only for the reduced equations in the Lorenz gauge but also for the original physical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. Throughout this paper, we raise and lower indices using the standard Minkowski metric \(m_{\mu \nu }=\textrm{diag}\{-1,1,1,1\}\), and we use the Einstein summation convention. Also, when the repeated index is spatial, we define the expression to be the sum regardless of whether it is upper or lower, as the spatial part of the Minkowski metric is Euclidean.

  2. There are ambiguities in the terms like “asymptotic behavior" and “global dynamics". In many previous works like [26, 43, 15], such terms essentially mean global decay estimates. On the other hand, in this paper, the word “asymptotics" is reserved for the precise asymptotic expansion, i.e., the answer to the forward problem (1).

  3. We use the notation \(a\lesssim b\) to denote that there exists a constant \(C>0\) such that \(a\le Cb\).

  4. The decay rates of \(a_\pm (y)\) can be improved, provided enough regularity of the initial data, so the exact power of \((1-|y|^2)\) is not important.

  5. The timelike infinity here can be thought of as the uppermost cap in the octagonal compactification of Minkowski spacetime, which blows up the “timelike infinity" (a sphere) in the Penrose diagram. See e.g. [3].

  6. Of course, there is a smoothness problem for the solution when \(t=r\), but it does not matter in view of the strong Huygens’ principle.

  7. We remark that for the wave-Klein–Gordon model, the pair \(a_\pm (y)\) are in fact conjugate to each other. Here this is nonzero because \(\phi \) is complex.

  8. We use the Einstein summation convention. Also, when the repeated index is spatial, we define the expression to be the sum regardless of whether it is upper or lower, as the spatial part of the Minkowski metric is Euclidean.

  9. In some literatures, the notation \(D_X D_Y \phi \) could mean the XY-component of the tensor \(D_\mu D_\nu \phi \), but here it represents \(D_X(Y^\mu D_\mu \phi )\).

  10. One can pick any positive number \(\varepsilon >0\) instead of 2 here, and then the part where \(q<-\varepsilon \) will be exactly \(U_\mu (y)/\tau \). This is simply a consequence of strong Huygens’ principle.

References

  1. Angelopoulos, Y., Aretakis, S., Gajic, D.: A non-degenerate scattering theory for the wave equation on extremal Reissner–Nordström. Commun. Math. Phys. 380, 323–408 (2020)

    Article  ADS  Google Scholar 

  2. Baskin, D., Sá Barreto, A.: Radiation fields for semilinear wave equations. Trans. Am. Math. Soc. 367(6), 3873–3900 (2015)

    Article  MathSciNet  Google Scholar 

  3. Baskin, D., Vasy, A., Wunsch, J.: Asymptotics of radiation fields in asymptotically Minkowski space. Am. J. Math. 137(5), 1293–1364 (2015)

    Article  MathSciNet  Google Scholar 

  4. Bieri, L., Miao, S., Shahshahani, S.: Asymptotic properties of solutions of the Maxwell Klein Gordon equation with small data. arXiv preprint arXiv:1408.2550 (2014)

  5. Candy, T., Kauffman, C., Lindblad, H.: Asymptotic behavior of the Maxwell–Klein–Gordon system. Commun. Math. Phys. 367, 683–716 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  6. Chen, X., Lindblad, H.: Asymptotics and Scattering for Wave–Klein–Gordon System. To appear in Communications in Partial Differential Equations (2023)

  7. Dafermos, M., Holzegel, G., Rodnianski, I.: A scattering theory construction of dynamical vacuum black holes. arXiv preprint arXiv:1306.5364 (2013)

  8. Dafermos, M., Rodnianski, I., Shlapentokh-Rothman, Y.: A scattering theory for the wave equation on Kerr black hole exteriors. Ann. Sci. de l’Ecole Normale Superieure 51(2), 371–486 (2018)

    Article  MathSciNet  Google Scholar 

  9. Dai, W., Mei, H., Wei, D., Yang, S.: The Maxwell–Klein–Gordon equation with scattering data. arXiv preprint arXiv:2302.08732 (2023)

  10. Delort, J.M.: Existence globale et comportement asymptotique pour l’équation de Klein-Gordon quasi linéaire à données petites en dimension 1. Annales Scientifiques de l’École Normale Supérieure 34, 1–61 (2001)

    Article  MathSciNet  Google Scholar 

  11. Delort, J.-M.: Erratum to: Existence globale et comportement asymptotique pour l’équation de Klein-Gordon quasi linéaire à données petites en dimension 1. Annales Scientifiques de l’École Normale Supérieure, 4e série. 39(2), 335–345 (2006)

  12. Deng, Y., Pusateri, F.: On the global behavior of weak null quasilinear wave equations. Commun. Pure Appl. Math. 73(5), 1035–1099 (2020)

    Article  MathSciNet  Google Scholar 

  13. Eardley, D.M., Moncrief, V.: The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space: I. Local existence and smoothness properties. Commun. Math. Phys. 83(2), 171–191 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  14. Eardley, D.M., Moncrief, V.: The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space: II. Completion of proof. Commun. Math. Phys. 83(2), 193–212 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  15. Fang, A., Wang, Q., Yang, S.: Global solution for Massive Maxwell-Klein-Gordon equations with large Maxwell field. Ann. PDE 7, 1–69 (2021)

    Article  MathSciNet  Google Scholar 

  16. Flato, M., Simon, J., Taflin, E.: On global solutions of the Maxwell–Dirac equations. Commun. Math. Phys. 112, 21–49 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  17. Friedlander, F.G.: On the radiation field of pulse solutions of the wave equation. Proc. R. Soc. Lond. Ser. A 269, 53–65 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  18. He, L.: Scattering from infinity of the Maxwell Klein Gordon equations in Lorenz gauge. Commun. Math. Phys. 386(3), 1747–1801 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  19. Hintz, P., Vasy, A.: Stability of Minkowski space and polyhomogeneity of the metric. Ann. PDE 6(1), 2 (2020)

    Article  MathSciNet  Google Scholar 

  20. Hörmander, L.: Lectures on Nonlinear Hyperbolic Differential Equations, vol. 26. Springer Science & Business Media, Berlin (1997)

    Google Scholar 

  21. Ionescu, A.D., Pausader, B.: On the global regularity for a Wave–Klein–Gordon Coupled System. Acta Math. Sin. Engl. Ser. 35(6), 933–986 (2019)

    Article  MathSciNet  Google Scholar 

  22. Ionescu, A.D., Pausader, B.: The Einstein–Klein–Gordon Coupled System: Global Stability of the Minkowski Solution (AMS-213), vol. 406. Princeton University Press, Princeton (2022)

    Book  Google Scholar 

  23. Klainerman, S.: Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions. Commun. Pure Appl. Math. 38(5), 631–641 (1985)

    Article  MathSciNet  Google Scholar 

  24. Klainerman, S.: Uniform decay estimates and the Lorentz invariance of the classical wave equation. Commun. Pure Appl. Math. 38(3), 321–332 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  25. Klainerman, S., Machedon, M.: On the Maxwell–Klein–Gordon equation with finite energy. Duke Math. J. 74(1), 19 (1994)

    Article  MathSciNet  Google Scholar 

  26. Klainerman, S., Wang, Q., Yang, S.: Global solution for massive Maxwell–Klein–Gordon equations. Commun. Pure Appl. Math. 73(1), 63–109 (2020)

    Article  MathSciNet  Google Scholar 

  27. LeFloch, P.G., Ma, Y.: The global nonlinear stability of Minkowski space for self-gravitating massive fields: the wave–Klein–Gordon model. Commun. Math. Phys. 346, 603–665 (2016)

    Article  ADS  Google Scholar 

  28. LeFloch, P.G., Ma, Y.: Nonlinear stability of self-gravitating massive fields. arXiv preprint arXiv:1712.10045 (2017)

  29. LeFloch, P.G., Ma, Y.: The Global Nonlinear Stability of Minkowski Space for Self-gravitating Massive Fields, vol. 3. World scientific (2017)

    Google Scholar 

  30. LeFloch, P.G., Ma, Y.: Nonlinear stability of self-gravitating massive fields. A wave-Klein-Gordon model. Classical and Quantum Gravity (2022)

  31. Lindblad, H.: On the asymptotic behavior of solutions to the Einstein vacuum equations in wave coordinates. Commun. Math. Phys. 353(1), 135–184 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  32. Lindblad, H., Lührmann, J., Schlag, W., Soffer, A.: On modified scattering for 1D quadratic Klein-Gordon equations with non-generic potentials. Int. Math. Res. Not. 2023(6), 5118–5208 (2023)

    Article  MathSciNet  Google Scholar 

  33. Lindblad, H., Lührmann, J., Soffer, A.: Decay and asymptotics for the 1D Klein-Gordon equation with variable coefficient cubic nonlinearities. SIAM J. Math Anal. 52(6), (2020)

  34. Lindblad, H., Lührmann, J., Soffer, A.: Asymptotics for 1D Klein-Gordon equations with variable coefficient quadratic nonlinearities. Arch. Ration. Mech. Anal. 241(3), 1459–1527 (2021)

    Article  MathSciNet  Google Scholar 

  35. Lindblad, H., Schlue, V.: Scattering for wave equations with sources close to the lightcone and prescribed radiation fields. arXiv preprint arXiv:2303.10569, (2023)

  36. Lindblad, H., Schlue, V.: Scattering from infinity for semilinear wave equations satisfying the null condition or the weak null condition. J. Hyperbolic Differ. Equ. 20(01), 155–218 (2023)

    Article  MathSciNet  Google Scholar 

  37. Lindblad, H., Soffer, A.: A remark on asymptotic completeness for the critical nonlinear Klein–Gordon equation. Lett. Math. Phys. 73(3), 249–258 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  38. Lindblad, H., Soffer, A.: A remark on long range scattering for the nonlinear Klein-Gordon equation. J. Hyperbolic Differ. Equ. 2(01), 77–89 (2005)

    Article  MathSciNet  Google Scholar 

  39. Lindblad, H., Soffer, A.: Scattering for the Klein–Gordon equation with quadratic and variable coefficient cubic nonlinearities. Trans. Am. Math. Soc. 367(12), 8861–8909 (2015)

    Article  MathSciNet  Google Scholar 

  40. Lindblad, H., Sterbenz, J.: Global stability for charged-scalar fields on Minkowski space. Int. Math. Res. Pap. 2006, 52976 (2006)

    MathSciNet  Google Scholar 

  41. Lührmann, J., Schlag, W.: Asymptotic stability of the sine-Gordon kink under odd perturbations. arXiv preprint arXiv:2106.09605 (2021)

  42. Ouyang, Z.: Modified wave operators for the Wave–Klein–Gordon system. Adv. Math. 423, 109042 (2023)

    Article  MathSciNet  Google Scholar 

  43. Psarelli, M.: Asymptotic behavior of the solutions of Maxwell–Klein–Gordon field equations in 4-dimensional Minkowski space. Commun. Partial Differ. Equ. 24(1–2), 223–272 (1999)

    Article  MathSciNet  Google Scholar 

  44. Shu, W.-T.: Asymptotic properties of the solutions of linear and nonlinear spin field equations in Minkowski space. Commun. Math. Phys. 140(3), 449–480 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  45. Sterbenz, J.: Dispersive decay for the 1D Klein–Gordon equation with variable coefficient nonlinearities. Trans. Am. Math. Soc. 368(3), 2081–2113 (2016)

    Article  MathSciNet  Google Scholar 

  46. Wang, F.: Radiation field for Einstein vacuum equations. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.), Massachusetts Institute of Technology (2010)

  47. Wang, F.: Radiation field for Einstein vacuum equations with spacial dimension \(n\ge 4\). arXiv preprint arXiv:1304.0407 (2013)

  48. Wang, Q.: Global existence for the Einstein equations with massive scalar fields. In: Lecture at the workshop Mathematical Problems in General Relativity (2015)

  49. Wang, Q.: An intrinsic hyperboloid approach for Einstein Klein–Gordon equations. J. Differ. Geom. 115(1), 27–109 (2020)

    Article  MathSciNet  Google Scholar 

  50. Yang, S.: Decay of solutions of Maxwell–Klein–Gordon equations with arbitrary Maxwell field. Anal. PDE 9(8), 1829–1902 (2016)

    Article  MathSciNet  Google Scholar 

  51. Yang, S.: On the global behavior of solutions of the Maxwell–Klein–Gordon equations. Adv. Math. 326, 490–520 (2018)

    Article  MathSciNet  Google Scholar 

  52. Yang, S., Yu, P.: On global dynamics of the Maxwell–Klein–Gordon equations. Camb. J. Math. 7(4), 365–467 (2019)

    Article  MathSciNet  Google Scholar 

  53. Yu, D.: Asymptotic completeness for a scalar quasilinear wave equation satisfying the weak null condition. arXiv preprint arXiv:2105.11573 (2021)

  54. Yu, D.: Modified wave operators for a scalar quasilinear wave equation satisfying the weak null condition. Commun. Math. Phys. 382(3), 1961–2013 (2021)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank his advisor, Hans Lindblad, for many helpful discussions and his encouragement in studying this problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuantao Chen.

Ethics declarations

Conflict of interest

The author declares that there is no Conflict of interest.

Additional information

Communicated by P. Chrusciel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X. Asymptotics and Scattering for Massive Maxwell–Klein–Gordon Equations. Commun. Math. Phys. 405, 133 (2024). https://doi.org/10.1007/s00220-024-05023-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00220-024-05023-5

Navigation