Skip to main content
Log in

Locality Galois Groups of Meromorphic Germs in Several Variables

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Meromorphic germs in several variables with linear poles naturally arise in mathematics in various disguises. We investigate their rich structures under the prism of locality, including locality subalgebras, locality transformation groups and locality characters. The key technical tool is the dependence subspace for a meromorphic germ with which we define a locality orthogonal relation between two meromorphic germs. We describe the structure of locality subalgebras generated by classes of meromorphic germs with certain types of poles. We also define and determine their group of locality transformations which fix the holomorphic germs and preserve multivariable residues, a group we call the locality Galois group. We then specialise to two classes of meromorphic germs with prescribed types of nested poles, arising from multiple zeta functions in number theory and Feynman integrals in perturbative quantum field theory respectively. We show that they are locality polynomial subalgebras with locality polynomial bases given by the locality counterpart of Lyndon words. This enables us to explicitly describe their locality Galois groups. As an application, we propose a mathematical interpretation of Speer’s analytic renormalisation for Feynman amplitudes. We study a class of locality characters, called generalised evaluators after Speer. We show that the locality Galois group acts transitively on generalised evaluators by composition, thus providing a candidate for a renormalisation group in this multivariable approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No new data were created or analyzed in this study.

References

  1. Bellon, M.P., Russo, E.I.: Ward–Schwinger–Dyson equations in \(\varphi ^3_6\) quantum field theory. Lett. Math. Phys. 111(42), 31 (2021)

    Google Scholar 

  2. Berline, N., Vergne, M.: Local Euler–Maclaurin formula for polytopes. Mosc. Math. J. 7, 355–386 (2007)

    Article  MathSciNet  Google Scholar 

  3. Berline, N., Vergne, M.: The equivariant Todd genus of a complete toric variety, with Danilov condition. J. Algebra 313, 28–39 (2007)

    Article  MathSciNet  Google Scholar 

  4. Bogoliubov, N., Parasiuk, O.S.: Über die Multiplikation der Kausalfunktionen in der Quantentheorie der Felder. Acta Math. 97, 227–266 (1957)

    Article  MathSciNet  Google Scholar 

  5. Brown, F.: Feynman amplitudes, coaction principle, and cosmic Galois group. Commun. Number Theory Phys. 11, 453–556 (2017)

    Article  MathSciNet  Google Scholar 

  6. Cartier, P.: A mad day’s work: from Gröthendieck to Connes and Kontsevich. Bull. Am. Math. Soc. (N.S.) 38, 389–408 (2001)

    Article  Google Scholar 

  7. Chen, K.T., Fox, R.H., Lyndon, R.C.: Free differential calculus, IV. The quotient groups of the lower central series. Ann. Math. 68, 81–95 (1958)

    Article  MathSciNet  Google Scholar 

  8. Clavier, P., Guo, L., Paycha, S., Zhang, B.: An algebraic formulation of the locality principle in renormalisation. Eur. J. Math. 5, 356–394 (2019)

    Article  MathSciNet  Google Scholar 

  9. Clavier, P., Guo, L., Paycha, S., Zhang, B.: Renormalisation and locality: branched zeta values. IRMA Lect. Math. Theor. Phys. 32, 85–132 (2020)

    Article  MathSciNet  Google Scholar 

  10. Clavier, P., Guo, L., Paycha, S., Zhang, B.: Locality and renormalisation: universal properties and integrals on trees. J. Math. Phys. 61, 19 (2020)

    Article  Google Scholar 

  11. Connes, A., Kreimer, D.: Renormalisation in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys. 210, 249–273 (2000)

    Article  ADS  Google Scholar 

  12. Connes, A., Kreimer, D.: Renormalisation in quantum field theory and the Riemann–Hilbert problem. II. The \(\beta \)-function, diffeomorphisms and the renormalization group. Commun. Math. Phys. 216, 215–241 (2001)

    Article  ADS  Google Scholar 

  13. Connes, A., Marcolli, M.: Noncommutative Geometry, Quantum Fields and Motives. Amer. Math. Soc. (2019)

    Google Scholar 

  14. Dahmen, R., Paycha, S., Schmeding, A.: The space of meromorphic functions in several variables with linear poles: topological structure. arXiv:2206.13993

  15. Dang, N.V., Zhang, B.: Renormalization of Feynman amplitudes on manifolds by spectral zeta regularization and blow-ups. J. Eur. Math. Soc. 23, 503–556 (2021)

    Article  MathSciNet  Google Scholar 

  16. Fischer, B., Pommersheim, J.: An algebraic construction of sum-integral interpolators. Pacific J Math. 318, 305–38 (2022)

    Article  MathSciNet  Google Scholar 

  17. Guo, L., Paycha, S., Zhang, B.: Conical zeta values and their double subdivision relations. Adv. Math. 252, 343–381 (2014)

    Article  MathSciNet  Google Scholar 

  18. Guo, L., Paycha, S., Zhang, B.: Renormalisation and the Euler–Maclaurin formula on cones. Duke Math J. 166, 537–571 (2017)

    Article  MathSciNet  Google Scholar 

  19. Guo, L., Paycha, S., Zhang, B.: A conical approach to Laurent expansions for multivariate meromorphic germs with linear poles. Pacific J. Math 307, 159–196 (2020)

    Article  MathSciNet  Google Scholar 

  20. Guo, L., Paycha, S., Zhang, B.: Mathematical reflections on locality, Jahresbericht der Deutschen Mathematiker-Vereinigung (2023). https://link.springer.com/article/10.1365/s13291-023-00268-w

  21. Guo, L., Xie, B.: The shuffle relation of fractions from multiple zeta values. Ramanujan J. 25, 307–317 (2011)

    Article  MathSciNet  Google Scholar 

  22. Guo, L., Zhang, B.: Renormalization of multiple zeta values. J. Algebra 319, 3770–3809 (2008)

    Article  MathSciNet  Google Scholar 

  23. Hepp, K.: Proof of the Bogoliubov–Parasiuk theorem on renormalization. Commun. Math. Phys. 2, 301–326 (1966)

    Article  CAS  ADS  Google Scholar 

  24. ’t Hooft, G.: Dimensional regularization and the renormalization group. Nucl. Phys. B 61, 455–468 (1973)

    Article  ADS  Google Scholar 

  25. Hooft, G., Veltman, M.: Regularization and renormalization of gauge fields. Nucl. Phys. B 44, 189–213 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  26. Ihara, K., Kaneko, M., Zagier, D.: Derivation and double shuffle relations for multiple zeta values. Compositio Math 142, 307–338 (2006)

    Article  MathSciNet  Google Scholar 

  27. Manchon, D., Paycha, S.: Nested sums of symbols and renormalized multiple zeta values. Int. Math. Res. Not. IMRN 24, 4628–4697 (2010)

    Article  MathSciNet  Google Scholar 

  28. Pommersheim, J.E.: Toric varieties, lattice points and Dedekind sums. Math. Ann. 295(1), 1–24 (1993)

    Article  MathSciNet  Google Scholar 

  29. Radford, D.E.: A natural ring basis for the shuffle algebra and an application to group schemes. J. Algebra 58, 432–454 (1979)

    Article  MathSciNet  Google Scholar 

  30. Rejzner, K.: Locality and causality in perturbative algebraic quantum field theory. J. Math. Phys. 60, 122301 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  31. Speer, E.: Analytic renormalization. J. Math. Phys. 9, 1040 (1968)

    Article  ADS  Google Scholar 

  32. Speer, E.: On the structure of analytic renormalization. Commun. Math. Phys. 23, 23–36. Added note: Comm. Math. Phys. 25(1972), 336 (1971)

  33. Speer, E.: Lectures on analytic renormalisation, Technical Report No. 73-067 (1972)

  34. Speer, E.: Analytic renormalization using many space-time dimensions. Commun. Math. Phys. 37, 83–92 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  35. Zhao, J.: Multiple Zeta Functions, Multiple Polylogarithms and Their Special Values. World Scientific, Singapore (2016)

    Book  Google Scholar 

  36. Zimmermann, W.: Convergence of Bogoliubov’s method of renormalization in momentum space. Commun. Math. Phys. 15, 208–234 (1969)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

The second author is grateful to the Perimeter Institute in Waterloo where she was hosted on an Emmy Noether fellowship. This research is supported by the National Natural Science Foundation of China (11890663 and 11821001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Guo.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to disclose.

Additional information

Communicated by C. Schweigert.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Paycha, S. & Zhang, B. Locality Galois Groups of Meromorphic Germs in Several Variables. Commun. Math. Phys. 405, 28 (2024). https://doi.org/10.1007/s00220-023-04915-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00220-023-04915-2

Navigation