Skip to main content
Log in

Noncommutative Networks on a Cylinder

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper a double quasi Poisson bracket in the sense of Van den Bergh is constructed on the space of noncommutative weights of arcs of a directed graph embedded in a disk or cylinder \(\Sigma \), which gives rise to the quasi Poisson bracket of G. Massuyeau and V. Turaev on the group algebra \(\textbf{k}\pi _1(\Sigma ,p)\) of the fundamental group of a surface based at \(p\in \partial \Sigma \). This bracket also induces a noncommutative Goldman Poisson bracket on the cyclic space \(\mathcal C_\natural \), which is a \({\textbf{k}}\)-linear space of unbased loops. We show that the induced double quasi Poisson bracket between boundary measurements can be described via noncommutative r-matrix formalism. This gives a more conceptual proof of the result of Ovenhouse (Adv Math 373:107309, 2020) that traces of powers of Lax operator form an infinite collection of noncommutative Hamiltonians in involution with respect to noncommutative Goldman bracket on \(\mathcal C_\natural \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. Note that concatenation of paths is commonly written in the opposite order to the composition of morphisms in \(\mathcal C\), i.e. \(fg=g\circ f\).

  2. One can further assume that \({\overline{g}}=0\) for every \(g\in \mathcal C\) which is not a loop. We do not need this convention in our text, however, it is worth noting that such convention allows one to define a map \(\mathcal C\rightarrow \mathcal C_\natural ,\;f\mapsto {\overline{f}}\) which is commonly referred to as “universal trace”.

  3. More details can be found in [Art18, AR].

  4. For our purpose we actually need only one or two connected components.

  5. Note that this double bracket is closely related but different from the double bracket on a conjugate surface corresponding to the torus network. The main difference is that we no longer think of objects of \(\mathcal C\) as boundary points, but rather as points on the fixed cut of a conjugate surface. This records an additional information about the cut of the conjugate surface.

References

  1. Atiyah, M., Bott, R.: The Yang-Mills equations over Riemann surfaces. Phil. Trans. R. Soc. Lond. A 308(1505), 523–615 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  2. Alekseev, A., Kosmann-Schwarzbach, Y., Meinrenken, E.: Quasi-Poisson manifolds. Can. J. Math. 54, 3–29 (2002)

    Article  MathSciNet  Google Scholar 

  3. Alekseev, A., Malkin, A., Meinrenken, E.: Lie group valued moment maps. J. Differ. Geom. 48(3), 445–495 (1998)

    Article  MathSciNet  Google Scholar 

  4. Arthamonov, S., Roubtsov, V.: To Appear

  5. Arthamonov, S.: Noncommutative inverse scattering method for the Kontsevich system. Lett. Math. Phys. 105(9), 1223–1251 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  6. Arthamonov, S.: Generalized Quasi Poisson Structures and Noncommutative Integrable Systems. PhD thesis, Rutgers University-School of Graduate Studies (2018)

  7. Berenstein, A., Retakh, V.: A short proof of Kontsevich’s cluster conjecture. Comptes Rendus Math. 349(3–4), 119–122 (2011)

    Article  MathSciNet  Google Scholar 

  8. Berenstein, A., Retakh, V.: Noncommutative marked surfaces. Adv. Math. 328, 1010–1087 (2018)

    Article  MathSciNet  Google Scholar 

  9. Calogero, F.: Solution of the one-dimensional \(n\)-body problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12(3), 419–436 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  10. Crawley-Boevey, W., Etingof, P., Ginzburg, V.: Noncommutative geometry and quiver algebras. Adv. Math. 209(1), 274–336 (2007)

    Article  MathSciNet  Google Scholar 

  11. Chekhov, L., Shapiro, M.: Darboux coordinates for symplectic groupoid and cluster algebras. arXiv preprint arXiv:2003.07499 (2020)

  12. Dorfman, I., Fokas, A.: Hamiltonian theory over noncommutative rings and integrability in multidimensions. J. Math. Phys. 33(7), 2504–2514 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  13. Di Francesco, P.: The non-commutative A1T-system and its positive Laurent property. Commun. Math. Phys. 335(2), 935–953 (2015)

    Article  ADS  Google Scholar 

  14. Dubrovin, B.A.: Completely integrable Hamiltonian systems associated with matrix operators and Abelian varieties. Funct. Anal. Appl. 11(4), 265–277 (1977)

    Article  MathSciNet  Google Scholar 

  15. Etingof, P., Gelfand, I., Retakh, V.: Factorization of differential operators, Quasideterminants, and nonabelian Toda field equations. Math. Res. Lett. 4(3) (1997)

  16. Etingof, P., Gelfand, I., Retakh, V.: Nonabelian integrable systems, Quasideterminants, and Marchenko lemma. Math. Res. Lett. 5, 1–12 (1998)

    Article  MathSciNet  Google Scholar 

  17. Efimovskaya, O., Wolf, T.: On Integrability of the Kontsevich Non-Abelian ODE system. Lett. Math. Phys. 100(2), 161–170 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  18. Felipe, R., Beffa, G.M.: The pentagram map on Grassmannians. Ann. l’Institut Fourier 69(1), 421–456 (2019)

    Article  MathSciNet  Google Scholar 

  19. Di Francesco, P., Kedem, R.: Discrete non-commutative integrability: the proof of a conjecture by M. Kontsevich (2009)

  20. Fock, V., Rosly, A.: Poisson structure on moduli of flat connections on Riemann surfaces and \(r\)-matrix. In: Morozov, A., Olshanetsky, M. (eds.) Moscow Seminar in Mathematical Physics, pp. 67–86. American Mathematical Soc, Providence (1999)

    Google Scholar 

  21. Fomin, S., Shapiro, M., Thurston, D.: Cluster algebras and triangulated surfaces. Part I: cluster complexes. Acta Math. 201(1), 83–146 (2008)

    MathSciNet  Google Scholar 

  22. Fomin, S., Zelevinsky, A.: Cluster algebras I: foundations. J. Am. Math. Soc. 15(2), 497–529 (2002)

    Article  MathSciNet  Google Scholar 

  23. Gelfand, I., Dorfman, I.: Hamiltonian operators and infinite-dimensional Lie algebras. Funk. An. Priloz. 15(3), 23–40 (1981)

    MathSciNet  Google Scholar 

  24. Guruprasad, K., Huebschmann, J., Jeffrey, L., Weinstein, A.: Group systems, groupoids, and moduli spaces of parabolic bundles. Duke Math. J. 89(2), 377–412 (1997)

    Article  MathSciNet  Google Scholar 

  25. Goncharov, A., Kenyon, R.: Dimers and cluster integrable systems. arXiv preprint arXiv:1107.5588 (2011)

  26. Goncharov, A., Kenyon, R.: Dimers and cluster integrable systems. Ann. Sci. l’École Norm. Supérieure 46, 747–813 (2013)

    Article  MathSciNet  Google Scholar 

  27. Goncharov, A., Kontsevich, M.: Spectral description of non-commutative local systems on surfaces and non-commutative cluster varieties. arXiv preprint arXiv:2108.04168 (2021)

  28. Glick, M.: The pentagram map and y-patterns. Adv. Math. 227(2), 1019–1045 (2011)

    Article  MathSciNet  Google Scholar 

  29. Goldman, W.: Invariant functions on Lie groups and Hamiltonian flows of surface group representations. Invent. Math. 85(2), 263–302 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  30. Gekhtman, M., Shapiro, M., Tabachnikov, S., Vainshtein, A.: Integrable cluster dynamics of directed networks and pentagram maps. Adv. Math. 300, 390–450 (2016)

    Article  MathSciNet  Google Scholar 

  31. Gekhtman, M., Shapiro, M., Vainshtein, A.: Poisson geometry of directed networks in a disk. Sel. Math. New Ser. 15(1), 61–103 (2009)

    Article  MathSciNet  Google Scholar 

  32. Gekhtman, M., Shapiro, M., Vainshtein, A.: Poisson geometry of directed networks in an annulus. J. Eur. Math. Soc. 14(2), 541–570 (2012)

    Article  MathSciNet  Google Scholar 

  33. Hoffmann, T., Kellendonk, J., Kutz, N., Reshetikhin, N.: Factorization dynamics and coxeter-toda lattices. Commun. Math. Phys. 212(2), 297–321 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  34. Izosimov, A.: Pentagram maps and refactorization in Poisson-Lie groups (2018)

  35. Izosimov, A.: Dimers, networks, and cluster integrable systems. arXiv preprint arXiv:2108.04975 (2021)

  36. Kontsevich, M.: Formal (non)-commutative symplectic geometry. In: Gelfand, I., Corwin, L., Lepowsky, J. (eds.) The Gelfand Mathematical Seminars, 1990–1992, pp. 173–187. Birkhauser, Boston (1993)

    Chapter  Google Scholar 

  37. Kontsevich, M.: Noncommutative identities. arXiv:1109.2469 (2011)

  38. Lax, P.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21(5), 467–490 (1968)

    Article  MathSciNet  Google Scholar 

  39. Moser, J.: Three integrable Hamiltonian systems connected with Isospectral deformations. Adv. Math. 16, 197–220 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  40. Mikhailov, A., Sokolov, V.: Integrable ODEs on associative algebras. Commun. Math. Phys. 211(1), 231–251 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  41. Massuyeau, G., Turaev, V.: Quasi-Poisson structures on representation spaces of surfaces. Int. Math. Res. Not. 2014(1), 1–64 (2012)

    Article  MathSciNet  Google Scholar 

  42. Nie, X.: The Quasi-Poisson goldman formula. J. Geom. Phys. 74, 1–17 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  43. Okubo, N.: Discrete integrable systems and cluster algebras. RIMS Kôkyûroku Bessatsu B 41, 025–041 (2013)

    MathSciNet  Google Scholar 

  44. Olshanetsky, M., Perelomov, A.: Completely integrable Hamiltonian systems connected with semisimple lie algebras. Invent. Math. 37(2), 93–108 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  45. Ovsienko, V., Schwartz, R., Tabachnikov, S.: The pentagram map: a discrete integrable system. Commun. Math. Phys. 299(2), 409–446 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  46. Ovenhouse, N.: Log-Canonical Poisson Structures and Non-commutative Integrable Systems. PhD thesis, Michigan State University (2019)

  47. Ovenhouse, N.: Non-commutative integrability of the Grassmann pentagram map. Adv. Math. 373, 107309 (2020)

    Article  MathSciNet  Google Scholar 

  48. Postnikov, A.: Total positivity, grassmannians, and networks. arXiv preprint arXiv:math/0609764 (2006)

  49. Retakh, V., Rubtsov, V.: Noncommutative Toda chains, Hankel Quasideterminants and the Painlevé II equation. J. Phys. A Math. Theor. 43(50), 505204 (2010)

    Article  Google Scholar 

  50. Reiman, A., Semenov-Tyan-Shanskii, M.: Lie algebras and Lax equations with spectral parameter on an elliptic curve. J. Math. Sci. 46(1), 1631–1640 (1989)

    Article  MathSciNet  Google Scholar 

  51. Reyman, A., Semenov-Tian-Shansky, M.: Group-theoretical methods in the theory of finite-dimensional integrable systems. In: Dynamical Systems VII, pp. 116–225. Springer, New York (1994)

  52. Schwartz, R.: The pentagram map. Exp. Math. 1(1), 71–81 (1992)

    MathSciNet  Google Scholar 

  53. Semenov-Tian-Shansky, M.: Dressing transformations and Poisson group actions. Publ. Res. Inst. Math. Sci. 21(6), 1237–1260 (1985)

    Article  MathSciNet  Google Scholar 

  54. Van den Bergh, M.: Double Poisson algebras. Trans. Am. Math. Soc. 360, 5711–5769 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

S.A. is grateful to A. Alexeev, A. Berenstein, and M. Kontsevich for many fruitful discussions and to V. Retakh and V. Roubtsov for thesis advising [Art18] and long collaboration [AR], which resulted in starting formulas of Sect. 2.2. S.A. is also grateful to IHES, Michigan State University, University of Angers, and University of Geneva for hospitality during my visits. M.S. is grateful to the following institutions and programs: Research Institute for Mathematical Sciences, Kyoto (Spring 2019), Research in Pairs Program at the Mathematisches Forschungsinstitut Oberwolfach (Summer 2019), Mathematical Science Research Institute, Berkeley (Fall 2019) for their hospitality and outstanding working conditions they provided. S.A. was partially supported by RFBR-18-01-00926 and RFBR-19-51-50008-YaF. N.O. was partially supported by the NSF grant DMS-1745638. M.S. was partially supported by the NSF grant DMS-1702115 and partially supported by International Laboratory of Cluster Geometry NRU HSE, RF Government grant, ag. No 075-15-2021-608 from 08.06.2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Arthamonov.

Additional information

Communicated by J. d-Gier.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arthamonov, S., Ovenhouse, N. & Shapiro, M. Noncommutative Networks on a Cylinder. Commun. Math. Phys. 405, 129 (2024). https://doi.org/10.1007/s00220-023-04873-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00220-023-04873-9

Navigation