Skip to main content
Log in

Moments of Partition Functions of 2d Gaussian Polymers in the Weak Disorder Regime-I

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let \(W_N(\beta ) = {\mathrm E}_0\left[ e^{ \sum _{n=1}^N \beta \omega (n,S_n) - N\beta ^2/2}\right] \) be the partition function of a two-dimensional directed polymer in a random environment, where \(\omega (i,x), i\in \mathbb {N}, x\in \mathbb {Z}^2\) are i.i.d. standard normal and \(\{S_n\}\) is the path of a random walk. With \(\beta =\beta _N={\hat{\beta }} \sqrt{\pi /\log N}\) and \({\hat{\beta }}\in (0,1)\) (the subcritical window), \(\log W_N(\beta _N)\) is known to converge in distribution to a Gaussian law of mean \(-\lambda ^2/2\) and variance \(\lambda ^2\), with \(\lambda ^2=\log (1/(1-{\hat{\beta }}^2))\) (Caravenna et al. in Ann Appl Probab 27(5):3050–3112, 2017). We study in this paper the moments \({{\mathbb {E}}}[W_N( \beta _N)^q]\) in the subcritical window, for \(q=O(\sqrt{\log N})\). The analysis is based on ruling out triple intersections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability statement

No new data was generated in relation to this manuscript.

References

  1. Belius, D., Rosen, J., Zeitouni, O.: Tightness for the cover time of the two dimensional sphere. Prob. Theory Relat. Fields 176, 1357–1437 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertini, L., Cancrini, N.: The two-dimensional stochastic heat equation: renormalizing a multiplicative noise. J. Phys. A: Math. Gen. 31(2), 615–622 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Biskup, M.: Extrema of the two-dimensional discrete Gaussian free field. In: Random Graphs, Phase Transitions, and the Gaussian Free Field, volume 304 of Springer Proc. Math. Stat., pp. 163–407. Springer, Cham (2020)

  4. Bramson, M., Ding, J., Zeitouni, O.: Convergence in law of the maximum of the two-dimensional discrete Gaussian free field. Commun. Pure Appl. Math. 69(1), 62–123 (2016)

  5. Caravenna, F., Sun, R., Zygouras, N.: Universality in marginally relevant disordered systems. Ann. Appl. Probab. 27(5), 3050–3112 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caravenna, F., Sun, R., Zygouras, N.: The Dickman subordinator, renewal theorems, and disordered systems. Electron. J. Probab. 24 (2019)

  7. Caravenna, F., Sun, R., Zygouras, N.: On the moments of the (2+1)-dimensional directed polymer and stochastic heat equation in the critical window. Commun. Math. Phys 372, 385–440 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Caravenna, F., Sun, R., Zygouras, N.: The two-dimensional KPZ equation in the entire subcritical regime. Ann. Probab. 48, 1086–1127 (2020)

  9. Caravenna, F., Sun, R., Zygouras, N.: The critical \(2d\) stochastic heat flow. Inventiones Math. 233, 325–460 (2023)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Chatterjee, S., Dunlap, A.: Constructing a solution of the \((2+1)\)-dimensional KPZ equation. Ann. Probab. 48, 1014–1055 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chevillard, L., Garban, C., Rhodes, R., Vargas, V.: On a skewed and multifractal unidimensional random field, as a probabilistic representation of Kolmogorov’s views on turbulence. Ann. Henri Poincaré 20(11), 3693–3741 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Chhaibi, R., Madaule, T., Najnudel, J.: On the maximum of the \({\rm C}\beta {\rm E}\) field. Duke Math. J. 167(12), 2243–2345 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Chhaibi, R., Najnudel, J.: On the circle, \(GMC^\gamma =\underleftarrow{\lim } C\beta E_n\) for \(\gamma \sqrt{2/\beta }\) (\(\gamma \le 1\)). arXiv:1904.00578 (2019)

  14. Claeys, T., Fahs, B., Lambert, G., Webb, C.: How much can the eigenvalues of a random Hermitian matrix fluctuate? Duke Math. J. 170(9), 2085–2235 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Comets, F.: Directed polymers in random environments. École d’Été de Probabilités de Saint-Flour XLVI–2016. Springer, Cham (2017)

  16. Cosco, C., Zeitouni, O.: Moments of partition functions of 2D Gaussian polymers in the weak disorder regime–II. arXiv:2305.05758 (2023)

  17. Dembo, A., Peres, Y., Rosen, J., Zeitouni, O.: Cover times for Brownian motion and random walks in two dimensions. Ann. Math. 160, 433–464 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Duplantier, B., Rhodes, R., Sheffield, S., Vargas, V.: Log-correlated Gaussian fields: an overview. In: Geometry. Analysis and Probability, volume 310 of Progress Mathematics, pp. 191–216. Birkhäuser/Springer, Cham (2017)

  19. Duplantier, B., Sheffield, S.: Liouville quantum gravity and KPZ. Invent. Math. 185(2), 333–393 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Durrett, R.: Probability: Theory and Examples, 3rd edn. Brooks/Cole (2004)

  21. Erdös, P., Taylor, S.J.: Some problems concerning the structure of random walk paths. Acta Mathematica Academiae Scientiarum Hungaricae 11(1–2), 137–162 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yu, G.: Gaussian fluctuations of the 2d KPZ equation. Stoch. Partial Differ. Equ. Anal. Comput. 8, 150–185 (2020)

    MathSciNet  MATH  Google Scholar 

  23. Yu, G., Quastel, J., Tsai, L.-C.: Moments of the 2d SHE at criticality. Probab. Math. Phys. 2, 179–219 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kupiainen, A., Rhodes, R., Vargas, V.: Integrability of Liouville theory: proof of the DOZZ formula. Ann. Math 191(1), 81–166 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lawler, G.F.: Intersections of Random Walks. Modern Birkhäuser Classics. Birkhäuser/Springer, New York (2013). Reprint of the 1996 edition

  26. Lygkonis, D., Zygouras, N.: Moments of the \(2d\) directed polymer in the subcritical regime and a generalization of the Erdős-Taylor theorem. Commun. Math. Phys. 401, 2483–2520 (2023)

  27. Lygkonis, D., Zygouras, N.: A multivariate extension of the Erdös-Taylor theorem. arXiv:2202.08145 (2022)

  28. Nakajima, S., Nakashima, M.: Fluctuation of two-dimesional stochastic heat equation and KPZ equation in subcritical regime for general initial conditions. Electron. J. Probab., paper 1 (2023)

  29. Rhodes, R., Vargas, V.: Gaussian multiplicative chaos and applications: a review. Probab. Surv. 11, 315–392 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sznitman, A.-S.: Brownian Motion, Obstacles and Random Media. Springer Monographs in Mathematics. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We thank Dimitris Lygkonis and Nikos Zygouras for sharing their work [26] with us prior to posting, and for useful comments. We thank the referee for a careful reading of the original manuscript and for many comments that helped us greatly improve the paper. We are grateful to Shuta Nakajima for helpful comments on a previous version of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofer Zeitouni.

Ethics declarations

Conflict of interest

There are no conflict of interests to either author.

Additional information

Communicated by H. Spohn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 692452). The first version of this work was completed while the first author was with the Weizmann Institute..

Appendices

Appendix A: Proof of (19)

First note that \(p_{2n}^\star \le p_{2n}(0)\) since, by the Cauchy-Schwarz inequality,

$$\begin{aligned}p_{2n}(x)=\sum _{y} p_n(x-y) p_n(y) \le \sum _y p_n(y)^2 = p_{2n}(0).\end{aligned}$$

Let \(p^{(d)}_{2n}\) be the return probability of d-dimensional SRW to 0. A direct computation gives that \(p^{(2)}_{2n}=(p^{(1)}_{2n})^2\) (see e.g. [20, Page 184]). We will show that \(a_n=\sqrt{2n} p^{(1)}_{2n}\) is increasing. We have,

$$\begin{aligned} a_n =\sqrt{2n} 2^{-2n} \begin{pmatrix} 2n\\ n \end{pmatrix}.\end{aligned}$$

Hence,

$$\begin{aligned} \frac{a_{n+1}}{a_n}= & {} \frac{1}{4} \sqrt{\frac{n+1}{n}} \frac{ (2n+2)(2n+1)}{(n+1)^2}\\= & {} \sqrt{1/(n(n+1))} (n+ (n+1))/2. \end{aligned}$$

Since \((a+b)/2\ge \sqrt{ab}\), we conclude (using \(a=n\) and \(b=n+1\)) that \(a_{n+1}/a_n\ge 1\).

Let \(p_{2n+1}^{(1)}\) be the probability of the 1-dimensional SRW to come back to 1 in \(2n+1\) steps. By the random walk representation [20, Remark in Pg. 185], we have that \(p_{2n+1}^\star \le (p^{(1)}_{2n+1})^2\). A similar line of argument to the above shows that \(b_n=\sqrt{2n+1}p_{2n+1}^{(1)}\) is increasing in n. Indeed,

$$\begin{aligned} \frac{b_{n+1}}{b_n}&= \frac{1}{4} \frac{\sqrt{2n+3}}{\sqrt{2n+1}} \frac{(2n+3)(2n+2)}{(n+2)(n+1)}\\&= \frac{2n+3}{2\sqrt{(n+1)(n+2)}} \frac{\sqrt{(2n+3)(n+1)}}{\sqrt{(2n+1)(n+2)}}, \end{aligned}$$

where the first fraction is bigger than 1 by the formula \((a+b)/2\ge \sqrt{ab}\), as well as the second fraction by expanding the products.

Now, we know from the local limit theorem that \(a_n\) and \(b_n\) converge to \(2/\sqrt{2\pi }\), thus they are always smaller than this limit. This leads to (19). \(\square \)

Appendix B: Improved Estimates on \(U_N\)

When n is taken large enough, the estimate (59) can be improved as follows.

Proposition B.1

There exists \(\varepsilon _{n}=\varepsilon (n,{\hat{\beta }})\rightarrow 0\) such that as \(n\rightarrow \infty \), uniformly for \(N\ge n\),

$$\begin{aligned} U_N(n) = (1+\varepsilon _{n})\frac{{\hat{\beta }}^2}{\left( 1-\hat{\beta }^2 \frac{\log n}{\log N}\right) ^2} \frac{1}{ n \log N}. \end{aligned}$$
(82)

Proof

Since \((S_n^1-S_n^2){\mathop {=}\limits ^{(d)}}(S_{2n})\), we can write

$$\begin{aligned} U_N(n+1) = \sigma _N^2 {\mathrm E}_{0}\left[ e^{ \beta _N^2\sum _{i=1}^{n} \textbf{1}_{S_{2i} = 0}} {\textbf{1}}_{S^1_{2n}= 0} \right] . \end{aligned}$$
(83)

Consider \(\ell =\ell _n = n^{1-\varepsilon _n}\) with \(\varepsilon _n = \frac{1}{\log \log n}\), so that \(\ell _n=o(n)\) and \(\varepsilon _n\rightarrow 0\).

First step: As \(n\rightarrow \infty \) with \(n\le N\),

$$\begin{aligned} {\mathrm E}_{0}\left[ e^{ \beta _N^2\sum _{i=1}^{n} {\textbf{1}}_{S_{2i} = 0}} {\textbf{1}}_{S_{2n}= 0} \right] \sim {\mathrm E}_{0}\left[ e^{ \beta _N^2(\sum _{i=1}^{\ell } {\textbf{1}}_{S_{2i} = 0}+ \sum _{i=n-\ell }^{n} {\textbf{1}}_{S_{2i} = 0})} {\textbf{1}}_{S_{2n}= 0 } \right] . \end{aligned}$$
(84)

We compute the norm of the difference which, using that \(|e^{-x}-1|\le |x|\) for \(x\ge 0\), is less than

$$\begin{aligned}&{\mathrm E}_{0}\left[ e^{ \beta _N^2\sum _{i=1}^{n} {\textbf{1}}_{S_{2i} = 0}} {\textbf{1}}_{S_{2n}= 0} \times \beta _N^2 \sum _{j=\ell }^{n-\ell } {\textbf{1}}_{S_{2j} = 0} \right] \\&= \beta _N^2 \sum _{j=\ell }^{n-\ell } {\mathrm E}_{0}\left[ e^{ \beta _N^2\sum _{i=1}^{j} {\textbf{1}}_{S_{2i} = 0}} {\textbf{1}}_{S_{2j} = 0}\right] {\mathrm E}_{0}\left[ e^{ \beta _N^2\sum _{i=1}^{n-j} \textbf{1}_{S_{2i} = 0}} {\textbf{1}}_{S_{2(n-j)} = 0} \right] . \end{aligned}$$

where we have used Markov’s property in the second line. By (83) and (59), the last sum is smaller than

$$\begin{aligned} C\beta _N^2 \sum _{j=\ell }^{n-\ell } \frac{1}{j} \frac{1}{n-j} \le 2C\beta _N^2 \sum _{j=\ell }^{n/2} \frac{1}{j} \frac{1}{n/2}&\le \frac{1}{n}C'\beta _N^2 \log \left( \frac{n}{\ell _n}\right) \le \frac{1}{n}C''\varepsilon _n =o(n^{-1}). \end{aligned}$$

Since the left hand side of (84) is bigger than \(c n^{-1}\) for some constant \(c>0\), this shows (84).

Second step: As \(n\rightarrow \infty \) with \(n\le N\),

$$\begin{aligned} \begin{aligned}&{\mathrm E}_{0}\left[ e^{ \beta _N^2(\sum _{i=1}^{\ell } {\textbf{1}}_{S_{2i} = 0}+ \sum _{i=n-\ell }^{n} {\textbf{1}}_{S_{2i} = 0})} {\textbf{1}}_{S_{2n}= 0 } \right] \\&\sim {\mathrm E}_{0}\left[ e^{ \beta _N^2\sum _{i=1}^{\ell } {\textbf{1}}_{S_{2i}=0}} \right] {\mathrm E}_{0}\left[ e^{ \beta _N^2\sum _{i=n-\ell }^{n} {\textbf{1}}_{S_{2i} = 0}}{\textbf{1}}_{S_{2n} = 0} \right] . \end{aligned} \end{aligned}$$
(85)

By Markov’s property, we can write the LHS of (85) as

$$\begin{aligned}&\sum _{x\in {\mathbb {Z}}^2} {\mathrm E}_{0}\left[ e^{ \beta _N^2\sum _{i=1}^{\ell } {\textbf{1}}_{S_{2i} = 0}} {\textbf{1}}_{S_{2\ell } = x} {\mathrm E}_x \left[ e^{\beta _N^2 \sum _{i=n-2\ell }^{n-\ell } {\textbf{1}}_{S_{2i} = 0}} {\textbf{1}}_{S_{2{n-\ell }}= 0 }\right] \right] \\&= \sum _{x\in {\mathbb {Z}}^2} {\mathrm E}_{0}\left[ e^{ \beta _N^2\sum _{i=1}^{\ell } {\textbf{1}}_{S_{2i} = 0}} {\textbf{1}}_{S_{2\ell } = x} {\mathrm E}_0 \left[ e^{\beta _N^2 \sum _{i=1}^{\ell } {\textbf{1}}_{S_{2i} = 0}} {\textbf{1}}_{S_{2n-\ell }=x} \right] \right] . \end{aligned}$$

Therefore the difference in (85) writes \(\sum _{x\in {\mathbb {Z}}^2} \Delta _x\) with

$$\begin{aligned}&\Delta _x := {\mathrm E}_{0}\left[ e^{ \beta _N^2\sum _{i=1}^{\ell } \textbf{1}_{S_{2i} = 0}} {\textbf{1}}_{S_{2\ell } = x}{\mathrm E}_0 \left[ e^{\beta _N^2 \sum _{i=1}^{\ell } {\textbf{1}}_{S_{2i} = 0}} \left( {\textbf{1}}_{S_{2{n-\ell }}= 0 } - {\textbf{1}}_{S_{2{n-\ell }}= x }\right) \right] \right] . \end{aligned}$$

Since \({\mathrm E}_0 \left[ e^{\beta _N^2 \sum _{i=1}^{\ell } {\textbf{1}}_{S_{2i} = 0}} \right] \le C({\hat{\beta }})\) by (54), we have

$$\begin{aligned} \sum _{|x|> \sqrt{\ell } n^{\varepsilon /4}} |\Delta _x| \le C\sum _{|x| > \sqrt{\ell } n^{\varepsilon /4}} {\mathrm E}_{0}\left[ e^{ \beta _N^2\sum _{i=1}^{\ell } {\textbf{1}}_{S_{2i} = 0}} {\textbf{1}}_{S_{2\ell } = x}\right] . \end{aligned}$$

By Hölder’s inequality with \(p^{-1}+q^{-1}=1\), and p small enough so that \(\sqrt{p} \hat{\beta } <1\),

$$\begin{aligned} {\mathrm E}_{0}\left[ e^{ \beta _N^2\sum _{i=1}^{\ell } {\textbf{1}}_{S_{2i} = 0}} {\textbf{1}}_{S_{2\ell } = x}\right]&\le {\mathrm E}_{0}\left[ e^{ p\beta _N^2\sum _{i=1}^{\ell } {\textbf{1}}_{S_{2i} = 0}}\right] ^{\frac{1}{p}} p_{2\ell }(x)^{\frac{1}{q}} \le C({\hat{\beta }}) \ell _n^{-1}e^{-\frac{1}{2q} \frac{|x|^2}{\ell _n}}, \end{aligned}$$

for n large enough. Therefore,

$$\begin{aligned} \sum _{|x|> \sqrt{\ell } n^{\varepsilon /4}} |\Delta _x|&\le C \sum _{|x| > \sqrt{\ell } n^{\varepsilon /4}} \ell _n^{-1}e^{-\frac{1}{2q} \frac{|x|^2}{\ell _n}}, \le C e^{-\frac{1}{2q} n^{\varepsilon /2}} = o(n^{-1}). \end{aligned}$$

We now estimate the sum on \(\Delta _x\) for \(|x| \le \sqrt{\ell } n^{\varepsilon /4}\). We start by bounding the expectation inside the definition of \(\Delta _x\):

$$\begin{aligned} \begin{aligned}&{\mathrm E}_0 \left[ e^{\beta _N^2 \sum _{i=1}^{\ell } {\textbf{1}}_{S_{2i} = 0}} \left( {\textbf{1}}_{S_{2{n-\ell }}= 0 } - {\textbf{1}}_{S_{2{n-\ell }}= x }\right) \right] \\&= \sum _{y\in {\mathbb {Z}}^2} {\mathrm E}_0 \left[ e^{\beta _N^2 \sum _{i=1}^{\ell } {\textbf{1}}_{S_{2i} = 0}} {\textbf{1}}_{S_{\ell }= y} \right] \left( p_{2n-2\ell }(y)-p_{2n-2\ell }(y-x)\right) . \end{aligned} \end{aligned}$$
(86)

By the same argument as above, we can prove that the above sum restricted to \(|y|\ge \sqrt{\ell }n^{\varepsilon /4}\) is negligible with respect to \(n^{-1}\), uniformly for \(|x| \le \sqrt{\ell } n^{\varepsilon /4}\). On the other hand, by the local limit theorem we have

$$\begin{aligned} \sup _{|x|\le \sqrt{\ell }n^{\varepsilon /4},|y|\le \sqrt{\ell }n^{\varepsilon /4}} \left| p_{2n-2\ell }(y)-p_{2n-2\ell }(y-x)\right| = o(n^{-1}), \end{aligned}$$

since \(\ell _n n^{\varepsilon /2} = n^{1-\varepsilon _n/2}=o(n)\). Thus, the quantity in (86) is bounded uniformly for \(|x|\le \sqrt{\ell }n^{\varepsilon /4}\) by

$$\begin{aligned} {\mathrm E}_0 \left[ e^{\beta _N^2 \sum _{i=1}^{\ell } {\textbf{1}}_{S_{2i} = 0}} \right] \times o(n^{-1})=o(n^{-1}).\end{aligned}$$

This completes the proof of (85).

Third step: As \(n\rightarrow \infty \) with \(n\le N\),

$$\begin{aligned} {\mathrm E}_{0}\left[ e^{ \beta _N^2\sum _{i=n-\ell }^{n} {\textbf{1}}_{S_{2i} = 0}}{\textbf{1}}_{S_{2n} = 0} \right] \sim {\mathrm E}_{0}\left[ e^{ \beta _N^2\sum _{i=1}^{\ell } {\textbf{1}}_{S_{2i} = 0}} \right] p_{2n}(0). \end{aligned}$$
(87)

Equivalence (87) can be proven by following the same line of arguments as used to prove (85), hence we omit its proof.

Now, combining the three steps leads to the equivalence

$$\begin{aligned} {\mathrm E}_{0}\left[ e^{ \beta _N^2\sum _{i=1}^{n} {\textbf{1}}_{S_{2i} = 0}} {\textbf{1}}_{S_{2n}= 0} \right] \sim {\mathrm E}_{0}\left[ e^{ \beta _N^2\sum _{i=1}^{\ell } {\textbf{1}}_{S_{2i} = 0}} \right] ^2 p_{2n}(0). \end{aligned}$$

By (55), as \(\log \ell \sim \log n\), we have

$$\begin{aligned} {\mathrm E}_{0}\left[ e^{ \beta _N^2\sum _{i=1}^{\ell } {\textbf{1}}_{S_{2i} = 0}} \right] \sim \frac{1}{1-{\hat{\beta }}^2 \frac{\log n}{\log N}}, \end{aligned}$$

and so (82) follows from (83) and the last two displays. \(\square \)

Appendix C: Khas’minskii’s Lemma for Discrete Markov Chains

The following theorem is another discrete analogue of Khas’minskii’s lemma, compare with Lemma 2.2.

Theorem C.1

Let \((Y_n)_n\) be any markov chain on a discrete state-space E and let \(f:E \rightarrow {\mathbb {R}}_+\). Then for all \(k\in {\mathbb {N}}\), if

$$\begin{aligned} \eta _0:=\sup _{x\in E} {\mathrm E}_{x} \left[ \sum _{n=1}^k (e^{f(Y_n)}-1)\right] < 1, \end{aligned}$$
(88)

one has

$$\begin{aligned} \sup _{x\in E} {\mathrm E}_{x} \left[ e^{\sum _{n=1}^k f(Y_n)}\right] \le \frac{1}{1-\eta _0}. \end{aligned}$$
(89)

Proof

Denote by \(D_n = e^{f(Y_n)}-1\). We have,

$$\begin{aligned}&{\mathrm E}_{x} \left[ e^{\sum _{n=1}^N f(Y_n)}\right] = {\mathrm E}_{x} \left[ \prod _{n=1}^N (1+D_n)\right] = \sum _{p=0}^\infty \sum _{1\le n_1< \dots< n_p \le k}{\mathrm E}_{x} \left[ \prod _{i=1}^p D_{n_i}\right] \\&= \sum _{p=0}^\infty \sum _{1\le n_1< \dots< n_{p-1} \le k} {\mathrm E}_{x} \left[ \prod _{i=1}^{p-1} D_{n_i} {\mathrm E}_{Y_{n_{p-1}}} \left[ \sum _{n=1}^{k-n_{p-1}} D_n \right] \right] \\&{\mathop {\le }\limits ^{(88)}}\sum _{p=0}^\infty \eta _0 \sum _{1\le n_1< \dots < n_{p-1} \le k} {\mathrm E}_{x} \left[ \prod _{i=1}^{p-1} D_{n_i} \right] \le \dots \le \sum _{p=0}^\infty \eta _0^p = \frac{1}{1-\eta _0}. \end{aligned}$$

\(\square \)

Corollary C.2

Let \((Y_n)_n\) be any markov chain on a discrete state-space E and let \(f:E \rightarrow [0,1]\). Then for all \(k\in {\mathbb {N}}\), if

$$\begin{aligned} \eta _1:=\sup _{x\in E} {\mathrm E}_{x} \left[ \sum _{n=1}^k f(Y_n)\right] < 1, \end{aligned}$$
(90)

one has

$$\begin{aligned} \sup _{x\in E} {\mathrm E}_{x} \left[ e^{\sum _{n=1}^k f(Y_n)}\right] \le \frac{1}{1-\eta _1}. \end{aligned}$$
(91)

Proof

Simply observe that \(e^{f(x)}-1\le e^c f(x)\) and apply Theorem C.1. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cosco, C., Zeitouni, O. Moments of Partition Functions of 2d Gaussian Polymers in the Weak Disorder Regime-I. Commun. Math. Phys. 403, 417–450 (2023). https://doi.org/10.1007/s00220-023-04799-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04799-2

Navigation