Abstract
In the general setting of twisted second quantization (including Bose/Fermi second quantization, Ssymmetric Fock spaces, and full Fock spaces from free probability as special cases), von Neumann algebras on twisted Fock spaces are analyzed. These twisted ArakiWoods algebras \(\mathcal {L}_{T}(H)\) depend on the twist operator T and a standard subspace H in the oneparticle space. Under a compatibility assumption on T and H, it is proven that the Fock vacuum is cyclic and separating for \(\mathcal {L}_{T}(H)\) if and only if T satisfies a standard subspace version of crossing symmetry and the YangBaxter equation (braid equation). In this case, the TomitaTakesaki modular data are explicitly determined. Inclusions \(\mathcal {L}_{T}(K)\subset \mathcal {L}_{T}(H)\) of twisted ArakiWoods algebras are analyzed in two cases: If the inclusion is halfsided modular and the twist satisfies a norm bound, it is shown to be singular. If the inclusion of underlying standard subspaces \(K\subset H\) satisfies an \(L^2\)nuclearity condition, \(\mathcal {L}_{T}(K)\subset \mathcal {L}_{T}(H)\) has type III relative commutant for suitable twists T. Applications of these results to localization of observables in algebraic quantum field theory are discussed.
Similar content being viewed by others
Avoid common mistakes on your manuscript.
1 Introduction
Second quantization von Neumann algebras play a prominent role in many areas of mathematical physics and mathematics and exist in numerous variations: Weyl algebras and their weak closures describe Bosonic interactionfree systems such as Bose gases or free quantum field theories, and similarly CAR algebras describe the corresponding Fermionic models [BR97, Pet90]. Whereas these algebras are naturally represented on Bose/Fermi Fock spaces, there exist also more general Fock spaces that are useful for describing generalized statistics, including anyons [LM95a, DKLP20]. Very similar spaces–sometimes called Ssymmetric Fock spaces–arise from other representations of symmetric groups on tensor powers and form convenient representation spaces for integrable quantum field theories with prescribed twobody scattering operator S, and carry families of von Neumann algebras generalizing the CCR/CAR setting [Lec08, AL17]. Related constructions also occur in the representation theory of Wick algebras, where the canonical (anti)commutation relations are deformed [JSW95, JPS01].
Another variation of second quantization algebras arises in free probability: Here one considers representations of free group factors [Voi85] and other von Neumann algebras [Shl97] (free ArakiWoods factors) on unsymmetrized (“Boltzmann” or “full”) Fock spaces, and this generalizes to qdeformed ArakiWoods von Neumann algebras, interpolating between the Bose \((q=1)\) and Fermi \((q=1)\) situations, and containing the free factors at \(q=0\) as a special case.
In this article, we adopt a general framework that includes all these examples and goes beyond the setting of Fock spaces symmetrized by symmetric group actions. Our main goal is to study natural families of von Neumann algebras and their modular and inclusion properties in this setting. As our analysis is motivated from quantum field theory, we focus on properties of the Fock vacuum state on these algebras, and consider the structure of inclusions of such von Neumann algebras rather than their internal structure.
The basic setup we use is due to Bożejko and Speicher [BS94] and Jørgensen, Schmitt, and Werner [JSW95] and can briefly be described as follows: Starting from a oneparticle Hilbert space \(\mathcal {H}\) and a bounded selfadjoint operator T on \(\mathcal {H}\otimes \mathcal {H}\) satisfying a certain positivity condition, one can construct a “Ttwisted Fock space” \(\mathcal {F}_T(\mathcal {H})\) which specializes to the Bose, Fermi, Boltzmann, or Ssymmetric Fock spaces for suitable choices of T.
Interesting von Neumann algebras \(\mathcal {L}_{T}(H)\subset \mathcal {B}(\mathcal {F}_T(\mathcal {H}))\) are generated by “field operators” \(\phi _{L,T}(h)=a_{L,T}(h)+a_{L,T}^{\star }(h)\), defined as a sum of the creation and annihilation type operators that exist on \(\mathcal {F}_T(\mathcal {H})\). Here h ranges over a standard subspace^{Footnote 1}\(H\subset \mathcal {H}\), and the index L indicates that this construction is based on operators acting on the left. Depending on the twist T and the standard subspace H, the algebra \(\mathcal {L}_{T}(H)\) can take various different forms.
In applications to quantum field theory, the standard subspaces serve as a means to encode localization regions in some spacetime (see [LRT78, Foi83] for the CCR/CAR case and [BGL02] for the concept of modular localization). Hence one is immediately interested in inclusion and intersection properties of, say, two von Neumann algebras \(\mathcal {L}_{T}(H)\) and \(\mathcal {L}_{T}(K)\). In the context of free probability, Voiculescu’s original approach corresponds to taking \(T=0\) and H as the closed real span of an orthonormal basis, in which case \(\mathcal {L}_0(H)\) is the free group factor of the free group on \({\text {dim}}\mathcal {H}\) generators. Shlyakhtenko has generalized this setting to \(T=0\) and general standard subspaces H, which corresponds to choosing an orthogonal oneparameter group on a related real Hilbert space. Also in this setting and its qvariations, one is interested in certain inclusions of von Neumann algebras, for instance when studying MASAs [BM17, BM22].
For general twist T, only very little is known about the structure of \(H\mapsto \mathcal {L}_{T}(H)\), which provides some of the motivation for this article. We focus on two interrelated questions: On the one hand, we analyze under which conditions the Fock vacuum \(\Omega \in \mathcal {F}_T(\mathcal {H})\) is cyclic and separating for \(\mathcal {L}_{T}(H)\), and what the corresponding modular operators from TomitaTakesaki theory are in this case. On the other hand, we consider inclusions \(\mathcal {L}_{T}(K)\subset \mathcal {L}_{T}(H)\) arising from inclusions of standard subspaces \(K\subset H\) and investigate their relative commutants.
In Sect. 2, we introduce Ttwisted Fock spaces and our von Neumann algebras \(\mathcal {L}_{T}(H)\) (Def. 2.8), called Ttwisted ArakiWoods algebras, as well as some instructive examples.
In Sect. 3 we address the standardness question of \((\mathcal {L}_{T}(H),\Omega )\). It is easy to show that \(\Omega \) is always cyclic, but usually not separating. Our analysis is then based on a compatibility assumption between T and H (namely T should commute with the modular unitaries \(\Delta _H^{it}\otimes \Delta _H^{it}\), see Def. 3.1) and two properties that T might or might not have: crossing symmetry and the YangBaxter equation. Crossing symmetry is a concept originating from scattering theory; in our abstract setting it amounts to an analytic continuation property of T w.r.t. the modular group of H (Def. 3.3). The YangBaxter equation, on the other hand, is an algebraic equation that expresses the essential braiding relation of the braid groups in tensor product form.
It is shown that for compatible twists, \(\Omega \) separates \(\mathcal {L}_{T}(H)\) if and only if T is crossing symmetric w.r.t. H and satisfies the YangBaxter equation (Theorem 3.12 and Theorem 3.22). Both these properties, the crossing symmetry and the YangBaxter equation, have their origins in quantum physics and are often taken as an input in quantum field theoretic constructions (see, for example, [LM95b, LS14, BT15, AL17, HL18, DKLP20]). Here we do not need to assume these structures, but can rather derive them from modular theory and actually show that they are equivalent to the separating property of the Fock vacuum in our setting. On a technical level, this relies on various analytic continuation arguments that are related to the KMS condition. These arguments also involve the combinatorial structure of Ttwisted npoint functions which is best captured in a diagrammatic form. This diagram calculus is presented in the appendix (Sect. 5).
It turns out that \(\Omega \) is cyclic and separating for \(\mathcal {L}_T(H)\) if and only if corresponding “right” field operators \(\phi _{R,T}(h)\) (3.47) and right von Neumann algebras \(\mathcal {R}_T(H)\) exist on \(\mathcal {F}_T(\mathcal {H})\) and suitably commute with the left operators. In Proposition 3.25 we then determine the modular data \((\mathcal {L}_{T}(H),\Omega )\) in this case, which are linked to the modular data of H via a Ttwisted second quantization. In particular, we obtain a leftright duality of the form
This generalizes several results known in special cases [EO73, LRT78, Shl97, BJL02, BL04, Lec12].
In Sect. 4 we turn our attention to relative properties of the two families of von Neumann algebras, \(\mathcal {L}_T(H)\) and \(\mathcal {R}_T(K)\). This includes in particular the study of inclusions. Namely, we take an inclusion of standard subspaces \(K\subset H\) and consider the corresponding inclusion \(\mathcal {L}_{T}(K)\subset \mathcal {L}_{T}(H)\) of von Neumann algebras and its relative commutant \(\mathcal {R}_T(K')\cap \mathcal {L}_T(H)\). We can determine the structure of such an inclusion in two completely different cases, showing that \(\mathcal {L}_{T}(K)\subset \mathcal {L}_{T}(H)\) crucially depends on T and \(K\subset H\).
The first case is that of a socalled halfsided modular inclusion [Wie93b, Wie93a, AZ05]. As we recall in Sect. 4.1, the property of being halfsided modular means that the small algebra arises from the large one by application of a translation action with certain properties. It turns out that in this situation, a recently developed criterion for determining whether a halfsided inclusion is singular (trivial relative commutant) [LS22] is applicable in case our twist is compatible with the inclusion and satisfies \(\Vert T\Vert <1\). The latter condition rules out familiar cases such as Bose/Fermi symmetry, for which the inclusion is nonsingular. In Theorem 4.9 we can therefore establish many new examples of singular halfsided modular inclusions. After recent more complicated constructions of such inclusions, using free products [LTU19] and deformation procedures [LS22], respectively, these appear to be a much more transparent. This shows that the relative commutant is unstable and very sensitive to perturbations in T.
The results on small (trivial) relative commutants mentioned so far can be interpreted as a consequence of the very noncommutative structure arising from free probability (at \(T=0\)) respectively its “neighbourhood” (at \(\Vert T\Vert <1\)). Nonetheless, such twists can also lead to very different inclusions which might appear counterintuitive at first. In Sect. 4.2, we consider standard subspaces \(K\subset H\) satisfying the \(L^2\)nuclearity condition of Buchholz, D’Antoni, Longo [BDL07] and use this tool and the theory of (quasi)split inclusions [DL84, Fid01] to give examples for the relative commutant \(\mathcal {L}_{T}(K)'\cap \mathcal {L}_{T}(H)\) being type III (Proposition 4.11). This section is related to work of D’Antoni, Longo, and Radulescu [DLR01] who considered the case \(T=0\), and is generalized to other twists here. See also the paper [BM22] by Bikram and Mukherjee for related arguments in the case of qdeformed ArakiWoods von Neumann algebras.
In Sect. 5, we explain how our results apply to quantum field theoretic models, in particular regarding the absence or presence of local observables in quantum field theories on Minkowski space or the lightray, using an abstract notion of spacetime. We discuss our results from this point of view, review the resulting perspectives on constructive algebraic quantum field theory, and give an outlook to ongoing research.
2 Twisted Fock Spaces and ArakiWoods Algebras
2.1 Twists and twisted Fock spaces
The von Neumann algebras we are interested in are defined on twisted Fock spaces. These Fock spaces arise as natural representation spaces of algebras defined by a quadratic exchange relation (Wick algebras) and exist in various versions. The version that we use here is the most general one and due to Bożejko and Speicher [BS94] and Jørgensen, Schmitt, and Werner [JSW95].
Let \(T\in \mathcal {B}(\mathcal {H}\otimes \mathcal {H})\) be an operator with \(\Vert T\Vert \le 1\). We iteratively define operators \(R_{T,n},P_{T,n}\in \mathcal {B}(\mathcal {H}^{\otimes n})\), \(n\in \mathbb {N}\), by^{Footnote 2}
If T is selfadjoint, one can show by induction in n that also \(P_{T,n}\) is selfadjoint for any \(n\in \mathbb {N}\). Those T that lead to positive \(P_{T,n}\) will be called “twists”:
Definition 2.1
A twist is an operator in
A strict twist is an operator in
We note that any twist T is selfadjoint because \(P_{T,2}=1+T\) is required to be positive. To avoid misunderstanding, we emphasize that the spectral assumption on strict twists \(T\in {{\mathcal {T}}}_{>}\) means that for each \(n\in \mathbb {N}\), there exists an \(\varepsilon _n>0\) such that \(P_{T,n}\ge \varepsilon _n1>0\).
The following theorem summarizes some known sufficient conditions for \(T\in \mathcal {B}(\mathcal {H}\otimes \mathcal {H})\) to lie in \({{\mathcal {T}}}_{\ge }\) or \({{\mathcal {T}}}_{>}\). Items a) and b) are due to Jørgensen, Schmitt, and Werner [JSW95, Thm. 2.3.2 and Thm. 2.5.1] and item c) is due to Bożejko and Speicher [BS94, Thm. 2.2].
Theorem 2.2
Let \(T=T^*\in \mathcal {B}(\mathcal {H}\otimes \mathcal {H})\).

a)
If \(\Vert T\Vert \le \frac{1}{2}\), then^{Footnote 3}\(T\in {{\mathcal {T}}}_{>}\).

b)
If \(T\ge 0\), then \(T\in {{\mathcal {T}}}_{>}\).

c)
If \(\Vert T\Vert \le 1\) and T satisfies the YangBaxter equation in its braid form, i.e.
$$\begin{aligned} T_1T_2T_1=T_2T_1T_2, \end{aligned}$$(2.5)then \(T\in {{\mathcal {T}}}_{\ge }\). We will refer to such twists as braided twists. If a braided twist satisfies \(\Vert T\Vert <1\), then \(T\in {{\mathcal {T}}}_{>}\).
To construct twisted Fock spaces from a twist \(T\in {{\mathcal {T}}}_{\ge }\), we consider the quotient
where the bar denotes the closure in the canonical Hilbert norm of \(\mathcal {H}^{\otimes n}\). On this space we introduce a new (positive definite) scalar product
and define \(\mathcal {H}_{T,n}\) as the completion of \(\mathcal {H}_{T,n}^0\) w.r.t. the corresponding norm \(\Vert \cdot \Vert _T\), written as \(\mathcal {H}_{T,n} = \overline{\mathcal {H}_{T,n}^0}^T=\overline{\textrm{Ran}P_{T,n}}^T\). In general, \(\mathcal {H}_{T,n}\) is not a subspace of \(\mathcal {H}^{\otimes n}\), but in case \(P_{T,n}_{({\text {ker}}P_{T,n})^\perp }\) does not contain 0 in its spectrum, \(P_{T,n}_{({\text {ker}}P_{T,n})^\perp }\) has a bounded inverse and the norms \(\Vert \cdot \Vert \) and \(\Vert \cdot \Vert _T\) are equivalent on \(({\text {ker}}P_{T,n})^\perp \), i.e. \(\mathcal {H}_{T,n}=\overline{\textrm{Ran}P_{T,n}}\subset \mathcal {H}^{\otimes n}\). If \(T\in {{\mathcal {T}}}_{>}\) is a strict twist, \(P_{T,n}\) is even invertible (with bounded inverse) in \(\mathcal {B}(\mathcal {H}^{\otimes n})\), i.e. \(\mathcal {H}_{T,n}=\mathcal {H}^{\otimes n}\) as vector spaces in this case.
For any twist \(T\in {{\mathcal {T}}}_{\ge }\), the twisted Fock space is defined as the direct sum
equipped with the scalar product \(\langle \Psi ,\Phi \rangle _T=\sum _{n=0}^\infty \langle \Psi _n,P_{T,n}\Phi _n\rangle _{\mathcal {H}^{\otimes n}}\), \(\Psi _n,\Phi _n\in \mathcal {H}_{T,n}\). We will use the notation \(\Psi =\bigoplus _n\Psi _n\) to denote the “nparticle components” \(\Psi _n\in \mathcal {H}_{T,n}\) of a vector \(\Psi \in \mathcal {F}_T(\mathcal {H})\), and write \(\Omega =1\oplus 0\oplus 0\ldots \) for the Fock vacuum.
Although the inner product \(\langle \,\cdot ,\,\cdot \,\rangle _T\) is the natural inner product in \(\mathcal {F}_T(\mathcal {H})\), we will occasionally also need to argue in \(\mathcal {H}^{\otimes n}\) (or \(\mathcal {H}^{\otimes n}/{\text {ker}}P_{T,n}\)) using untwisted inner products \(\langle \,\cdot ,\,\cdot \,\rangle \). Adjoints w.r.t. \(\langle \,\cdot ,\,\cdot \,\rangle _T\) are denoted \(A\mapsto A^{\star }\) and adjoints w.r.t. \(\langle \,\cdot ,\,\cdot \,\rangle \) are denoted \(A\mapsto A^*\). The operator norm of \(\mathcal {B}(\mathcal {F}_T(\mathcal {H}))\) is written \(\Vert \cdot \Vert _T\), and that of \(\mathcal {B}(\mathcal {H}^{\otimes n})\) as \(\Vert \cdot \Vert \), as usual. Note that the scalar products \(\langle \,\cdot \,,\,\cdot \,\rangle \) and \(\langle \,\cdot \,,\,\cdot \,\rangle _T\) coincide on the zero and oneparticle vectors, i.e. on \(\mathbb {C}\Omega \oplus \mathcal {H}\).
The twisted Fock spaces \(\mathcal {F}_T(\mathcal {H})\) can look quite different depending on the twist T, and we now recall some important examples. For further discussions of these and other examples, see [BS91, BS94, JSW95, LM95a, JPS01, LS14, DKLP20].
Example 2.3
The simplest example of a strict twist is \(T=0\). In this case, \(P_{T,n}=1\) for all \(n\in \mathbb {N}\), and hence the 0twisted Fock space \(\mathcal {F}_0(\mathcal {H})\) over \(\mathcal {H}\) coincides with the full (Boltzmann) Fock space
with its canonical inner product.
Example 2.4
(Involutive YangBaxter solutions, symmetric twists) An important class of twists T are the symmetric twists, namely the family
of unitary (and selfadjoint) involutive solutions of the YangBaxter equation.^{Footnote 4} These are in particular braided twists, hence contained in \({{\mathcal {T}}}_{\ge }\). Any \(T\in {{\mathcal {T}}}_{\textrm{Sym}}\) defines a unitary representation \(\rho _{T,n}\) of the symmetric group \(S_n\) on \(\mathcal {H}^{\otimes n}\) by \(\rho _{T,n}(\sigma _k){:}{=}T_k\), where the \(\sigma _k\) are the Coxeter generators of \(S_n\).
Looking at the definition of \(R_{T,n}\) and \(P_{T,n}\), one realizes that in this case \(n!^{1}P_{T,n}\) is the projection onto the subspace \(\textrm{Ran}P_{T,n}\) of \(\mathcal {H}^{\otimes n}\) on which \(\rho _{T,n}\) acts trivially. Thus \(T\not \in {{\mathcal {T}}}_{>}\) unless \(T=1\).
Since the projection \(n!^{1}P_{T,n}\) acts trivially on its (closed) range, the maps
define a unitary \(I=\bigoplus _n I_n\) between the Ttwisted Fock space \(\mathcal {F}_T(\mathcal {H})\) and another Fock space naturally associated with a symmetric twist T, the Tsymmetric Fock space. The Tsymmetric Fock space over \(\mathcal {H}\) is defined as \(\bigoplus _{n=0}^\infty \textrm{Ran}P_{T,n}\) with the Tindependent scalar products inherited from \(\mathcal {H}^{\otimes n}\) by restriction. For more on Tsymmetric Fock spaces, see [LMR95, Lec03] and the references cited there.
The symmetric twists include in particular the flip
giving rise (via the unitary I (2.9)) to the Bose Fock space \(I\mathcal {F}_F(\mathcal {H})\), and the negative flip \(F\), giving rise to the Fermi Fock space \(I\mathcal {F}_{F}(\mathcal {H})\).
Two other special examples of symmetric twists are \(T=\pm {\text {id}}_{\mathcal {H}\otimes \mathcal {H}}\). In the case of the positive sign, we have \(P_{1,n}=n!\) and hence I maps the twisted Fock space onto the Boltzmann Fock space, \(I\mathcal {F}_1(\mathcal {H})=\mathcal {F}_0(\mathcal {H})\). In the case of the negative sign, we have \(P_{1,n}=0\) for all \(n>1\), i.e. \(\mathcal {F}_{1}(\mathcal {H})=\mathbb {C}\oplus \mathcal {H}\).
A subset of symmetric twists are related to solutions of the YangBaxter equation with (additive) spectral parameter. Let \(\mathcal {K}\) be a separable Hilbert space and \(S:\mathbb {R}\rightarrow \mathcal {U}(\mathcal {K}\otimes \mathcal {K})\) a measurable function taking values in the unitaries on the tensor square \(\mathcal {K}\otimes \mathcal {K}\), and satisfying the YangBaxter equation with spectral parameter^{Footnote 5} as well as the symmetry condition \(S(\theta )^*=S(\theta )\) for almost all \(\theta \in \mathbb {R}\).
Then (the tensor square of) the Hilbert space \(\mathcal {H}=L^2(\mathbb {R}\rightarrow \mathcal {K},d\theta )\) carries the symmetric twist
These twists are often considered in the context of generalized statistics [LM95a] and integrable quantum field theories, where S has the meaning of an elastic twobody scattering matrix–see, for example, [Smi92, LS14].
Example 2.5
(Scaled YangBaxter solutions) Given a symmetric twist \(T\in {{\mathcal {T}}}_{\textrm{Sym}}\) and \(1<q<1\), the scaled twist qT lies in \({{\mathcal {T}}}_{>}\) but not in \({{\mathcal {T}}}_{\textrm{Sym}}\) because \(\Vert qT\Vert =q<1\). An example that has been studied a lot in the literature is the “qFock space” \(\mathcal {F}_{qF}(\mathcal {H})\) defined by the scaled flip qF, which interpolates between Bose and Fermi statistics [FB70, BS91, BM17].
Later on we will see that in our context, braided twists are the most interesting ones. The family of braided twists includes all finitedimensional contractive selfadjoint solutions T to the YangBaxter equation. Contrary to the situation considered in Example 2.5, these do not necessarily have spectrum contained in a circle. Such braided twists can therefore not be rescaled to give representations of the symmetric groups, but only define representations of the braid groups \(B_n\).
Moreover, there exist also genuinely infinitedimensional braided twists such as SO(d, 1)symmetric twists considered in the context of quantum field theories on de Sitter space [HL18].
Because of the lack of general classification results on solutions of the YangBaxter equation, the structure of \({{\mathcal {T}}}_{\ge }\) is very complex and largely unknown in general.
Following [BS94, JSW95], we now fix an arbitrary twist \(T\in {{\mathcal {T}}}_{\ge }\) and describe creation and annihilation type operators on \(\mathcal {F}_T(\mathcal {H})\) which will be used to generate our von Neumann algebras. Selfadjointness of \(P_{T,n}\) implies
from which we read off that the left creation operators \(\Psi _n\mapsto \xi \otimes \Psi _n\), \(\xi \in \mathcal {H}\), \(\Psi _n\in \mathcal {H}^{\otimes n}\), descend to maps
where \([\,\cdot \,]\) denotes the quotient map, i.e. the \(\langle \,\cdot \,,\,\cdot \,\rangle \)orthogonal projection onto \(\overline{\textrm{Ran}P_{T,n}}\subset \mathcal {H}^{\otimes n}\). Thus \(a_{L,T}^{\star }(\xi )\) extend to densely defined operators on \(\mathcal {F}_T(\mathcal {H})\) which contain the quotients \(\mathcal {H}^{\otimes n}/{\text {ker}}P_{T,n}\), \(n\in \mathbb {N}\), in their domains. As shown by Bożejko and Speicher [BS94, Thm. 3.1], these operators are bounded on each \(\mathcal {H}_{T,n}\), \(n\in \mathbb {N}\). In fact, positivity and the defining formula (2.2) imply that
where \(c_{T,n}=\sum _{k=0}^n\Vert T\Vert ^k\).
Hence \(P_{T,n+1}\le c_{T,n}(1\otimes P_{T,n})\) and for \([\Psi _n]\in \mathcal {H}^{\otimes n}/{\text {ker}}P_{T,n}\), we have
which implies the operator norm bound
One may calculate the adjoint \(a_{L,T}(\xi )\) of \(a_{L,T}^{\star }(\xi )\) (w.r.t. \(\langle \,\cdot \,,\,\cdot \,\rangle _T\)) as
where \(a_L(\xi )\) is the untwisted left annihilation operator, namely the Boltzmann Fock space operator fixed by
Note that (2.16) is welldefined on \(\mathcal {H}^{\otimes n}/{\text {ker}}P_{T,n}\) and extends to a bounded operator \(\mathcal {H}_{T,n}\rightarrow \mathcal {H}_{T,n1}\). We will use the same symbols \(a_{L,T}(\xi )\), \(a_{L,T}^{\star }(\xi )\) to denote the operators that are defined on the dense finite particle subspace of \(\mathcal {F}_T(\mathcal {H})=\bigoplus _n\mathcal {H}_{T,n}\) consisting of terminating direct sums.
In view of (2.15), these operators are bounded in case \(\Vert T\Vert <1\), namely
Remark 2.6
Let us comment on a simplified description of the operators \(a_{L,T}^{\star }(\xi )\) that is available for symmetric twists \(T\in {{\mathcal {T}}}_{\textrm{Sym}}\). In this case, \(\mathcal {H}_{T,n}=\textrm{Ran}P_{T,n}\subset \mathcal {H}^{\otimes n}\) is the closed subspace of Tsymmetric vectors, i.e. the vectors \(\Psi _n\in \mathcal {H}^{\otimes n}\) satisfying \(T_k\Psi _n=\Psi _n\), \(k=1,\ldots ,n1\). The \(\langle \,\cdot \,,\,\cdot \,\rangle \)orthogonal projection \(Q_{T,n}\) onto it (the “Tsymmetrization”) is given by \(Q_{T,n}=n!^{1}P_{T,n}\). From this one infers that the creation operators satisfy
where I is the unitary (2.9). This shows that when transported to the Tsymmetric Fock space, we recover the familiar Zamolodchikov creation and annihilation operators (see [Zam92] for their origin in integrable models and [LS14] for a mathematical formulation).
In particular, these operators form representations of the CCR and CAR algebras [BR97, Sect. 5.2.2] on the Bose and Fermi Fock space for \(T=F\) and \(T=F\), respectively.
We conclude this section with a comment on second quantization of operators on Ttwisted Fock spaces. Here and in the following, we write \(\mathcal {D}(X)\) for the domain of an operator X and we denote by \(X\otimes Y: \mathcal {D}(X)\odot \mathcal {D}(Y)\rightarrow \mathcal {H}\otimes \mathcal {H}\) the linear operator defined by \((X \otimes Y)(x \otimes y)= X(x) \otimes Y(y)\). Furthermore, we write \(X^\#\) to denote either X or \(X^{\star }\), i.e. an equation of the form \(f(X^\#)=Y^\#\) means \(f(X)=Y\) and \(f(X^{\star })=Y^{\star }\).
Lemma 2.7
Let \(T\in {{\mathcal {T}}}_{\ge }\) be a twist and \(V:\mathcal {D}(V)\rightarrow \mathcal {H}\) a closable linear or antilinear operator such that

a)
Then \(\hat{V}:\bigoplus _{n=0}^\infty \mathcal {D}(V)^{\odot n}/{\text {ker}}(P_{T,n}) \rightarrow \mathcal {H}_{T,n} \), given by \(\hat{V}([\Psi _n])=[V^{\otimes n}\Psi _n]\), for all \(\Psi _n \in \mathcal {D}(V)^{\odot n}/{\text {ker}}(P_{T,n})\) and for all \(n \in \mathbb {N}\), where \(V^{\otimes 0}{:}{=}1\), is a welldefined closable operator on \(\mathcal {F}_T(\mathcal {H})\) whose closure will be denoted by \(\Gamma _T(V)\). In case V is (anti)unitary, so is \(\Gamma _T(V)\).

b)
If V is invertible, we have for any \(\xi \in \mathcal {D}(V)\)
$$\begin{aligned} \overline{\Gamma _T(V)a_{L,T}^\#(\xi )\Gamma _T(V^{1})}&= a_{L,T}^\#(V\xi ). \end{aligned}$$(2.21)
Proof
a) Thanks to the commutation condition (2.20), one checks \(T_k V^{\otimes n}=V^{\otimes n}T_{k}\), \(k=1,\ldots ,n1\). This implies \( R_{T,n} V^{\otimes n}=V^{\otimes n} R_{T,n}\) and inductively \( P_{T,n} V^{\otimes n}=V^{\otimes n}P_{T,n}\), i.e. \([V^{\otimes n},P_{T,n}]=0\). In particular, \(\mathcal {D}(V)^{\odot n}/{\text {ker}}(P_{T,n})\subset \mathcal {D}(V^{\otimes n})/{\text {ker}}(P_{T,n})\). It follows that \(\hat{V}\) is a \(\Vert \cdot \Vert _T\)densely welldefined (anti)linear operator in \(\mathcal {F}_T(\mathcal {H})\). The exact same argument for \(V^*\otimes V^*\) proves the \(\widehat{V^*}\subset \hat{V}^{\star }\) is also a \(\Vert \cdot \Vert _T\)densely and welldefined operator in \(\mathcal {F}_T(\mathcal {H})\). Hence \(\hat{V}\) is a closable operator in \(\mathcal {F}_T(\mathcal {H})\). The fact that \(\Gamma _T(V)\) is (anti)unitary for (anti)unitary V is easy to check from this construction.
b) can be easily checked on a core for \(a_{R,T}^\#(V\xi )\). \(\square \)
2.2 Standard subspaces and twisted ArakiWoods algebras
We now use the twisted left field operators^{Footnote 6}
to generate von Neumann algebras. For \(\Vert T\Vert <1\), these are bounded selfadjoint operators on \(\mathcal {F}_T(\mathcal {H})\) (2.15). If \(\Vert T\Vert =1\), the bound \(\Vert a_{L,T}^\#(\xi )_{\mathcal {H}_{T,n}}\Vert _T\le \sqrt{n+1}\cdot \Vert \xi \Vert \) (2.15) implies that any vector of finite particle number is an (entire) analytic vector for \(\phi _{L,T}(\xi )\), hence \(\phi _{L,T}(\xi )\) is essentially selfadjoint on the domain of finite particle number by Nelson’s Theorem and we use the same symbol to denote its selfadjoint closure.
Before we define the von Neumann algebras we are interested in, we recall a few facts about standard subspaces [RvD77, Lon08]: By definition, a standard subspace of a complex Hilbert space \(\mathcal {H}\) is a closed real subspace \(H\subset \mathcal {H}\) that is cyclic in the sense that \(H+iH\subset \mathcal {H}\) is dense, and separating in the sense \(H\cap iH=\{0\}\).
A standard subspace H defines modular data through the polar decomposition \(S_H=J_H\Delta _H^{1/2}\) of the closed operator with domain \(\mathcal {D}_H{:}{=}H+iH\)
The operator \(S_H\) is called the Tomita operator of H. It satisfies an analogue of Tomita’s theorem for von Neumann algebras, namely
where
is the symplectic complement of H, which is a standard subspace as well (with \(J_{H'}=J_H\), \(\Delta _{H'}=\Delta _H^{1}\)).
Definition 2.8
Given a closed real subspace \(H\subset \mathcal {H}\) and a twist \(T\in {{\mathcal {T}}}_{\ge }\), we define the (left) Ttwisted ArakiWoods von Neumann algebra
In case the field operators are bounded, this is simply the weak closure of the \({}^{\star }\)algebra \(\mathcal {P}_{L,T}(H)\) of all polynomials in \(\phi _{L,T}(h)\), \(h\in H\).
If \(T=F\) is the flip, \(\mathcal {L}_{T}(H)\) is a second quantization von Neumann algebra which is well understood, and closely related to the original work of Araki and Woods [AW68]. In this case, \(\mathcal {L}_{F}(H)\) is a factor if and only if \(H\cap H'=\{0\}\), and \(\Omega \) is cyclic and separating if and only if H is a standard subspace [LRT78, Thm. I.3.2]. For more details on modular structure and a summary of results on the type of \(\mathcal {L}_{F}(H)\), see [FG94, Thm. 1.3].
If \(T=F\) is the negative flip, \(\mathcal {L}_{F}(H)\) is generated by a representation of the CAR algebra, see [Foi83, BJL02] for results in this case.
Another special case is \(T=0\). These von Neumann algebras have been introduced by Voiculescu [Voi85], initially in the case where H is the closed real span of an orthonormal basis of \(\mathcal {H}\). In this case, \(\mathcal {L}_{0}(H)\) is isomorphic to the group von Neumann algebra of the free group on \({\text {dim}}\mathcal {H}\) generators, which explains their central importance in free probability [VDN92, Thm. 2.6.2]. Shlyakhtenko studied \(\mathcal {L}_{0}(H)\) for more general spaces H [Shl97], and in particular showed that \(\mathcal {L}_{0}(H)\) is a factor for any standard subspace H. When \(\Delta _H\) is nontrivial and \({\text {dim}}\mathcal {H}>1\), these are full factors of type III\(_{\lambda }\), \(0<\lambda \le 1\) [Shl97, Thm. 6.1].
The scaled flip \(T=qF\), \(1<q<1\), has been studied extensively in the literature, as it interpolates between the CCR (\(q=1\)), CAR (\(q=1\)), and free (\(q=0\)) cases. It has first been considered in the case \(H=H'\) [BS91] and then generalized to the case of general standard subspaces by Hiai [Hia01]. We refer to [BKS97, R03, Shl04, Sni04, Nou04, Jun06, GS14, Nel15, BM17, BM22] for various properties (such as factoriality, type, noninjectivity, (strong) solidity, approximation properties, MASAS) of the von Neumann algebras \(\mathcal {L}_{qF}(H)\).
In the case of general twists T, only very little is known about \(\mathcal {L}_{T}(H)\). The focus of our investigation below is to identify situations in which \(\Omega \) is cyclic and separating for \(\mathcal {L}_{T}(H)\), and then study properties of (specific) inclusions \(\mathcal {L}_{T}(K)\subset \mathcal {L}_{T}(H)\) rather than the internal structure of \(\mathcal {L}_{T}(H)\). We begin with the following elementary lemma.
Lemma 2.9
Let \(T\in {{\mathcal {T}}}_{\ge }\) and \(H\subset \mathcal {H}\) be a real closed subspace.

a)
If H is cyclic, \(\Omega \) is cyclic for \(\mathcal {P}_{L,T}(H)\) and hence for \(\mathcal {L}_T(H)\).

b)
If \(\Omega \) is separating for \(\mathcal {P}_{L,T}(H)\), then H is separating.
Proof
a) Let us prove that \(\overline{\mathcal {P}_{L,T,n}(H)\Omega }\) contains \(\mathcal {H}_{T,n}\) by induction in n, where \(\mathcal {P}_{L,T,n} (H)\) denotes the linear space of all polynomials in the fields \(\phi _{L,T}(h)\), \(h\in H\), of degree up to n. The case \(n=0\) is trivial. For the induction step, fix \(n\in \mathbb {N}\), a vector \(\Psi _{n+1}\in \mathcal {H}_{T,n+1}\), and \(\varepsilon >0\). Since we have^{Footnote 7}
and H is cyclic, it follows that we find a field polynomial \(Q_{n+1}\in \mathcal {P}_{L,T,n+1}(H)\) of degree \(n+1\) such that \(\Vert [Q_{n+1}\Omega ]_{n+1}\Psi _{n+1}\Vert <\varepsilon \). By the induction assumption, there exists \(Q_n\in \mathcal {P}_{L,T,n}(H)\) such that
Hence \({\tilde{Q}}_{n+1}{:}{=}Q_{n+1}Q_n\in \mathcal {P}_{L,T,n+1}(H)\) satisfies \(\Vert \tilde{Q}_{n+1}\Omega \Psi _{n+1}\Vert \le 2\varepsilon \).
This shows that \(\Omega \) is cyclic for \(\mathcal {P}_{L,T}(H)\), and by standard arguments (only required in case \(\phi _{L,T}(h)\) is unbounded), one sees that it is also cyclic for \(\mathcal {L}_{T}(H)\).
b) Let \(h,{\tilde{h}}\in H\) and \(h=i{\tilde{h}}\in H\cap iH\). Then \(h=\phi _{L,T}(h)\Omega =i\phi _{L,T}({\tilde{h}})\Omega =i\tilde{h}\); and since \(\Omega \) separates \(\mathcal {P}_{L,T}(H)\) by assumption, we find \(\phi _{L,T}(h)=i\phi _{L,T}({\tilde{h}})\). Taking adjoints, this implies \(\phi _{L,T}(h)=i\phi _{L,T}({\tilde{h}})\) and hence \(\phi _{L,T}(h)=0\), i.e. \(h=0\). \(\square \)
This motivates us to restrict attention to \(\mathcal {L}_T(H)\) with H a standard subspace. In this case \(\Omega \) is cyclic for \(\mathcal {L}_T(H)\) with no further conditions on T. However, in general it is not separating, as we will see below. If \(\Omega \) is separating, \((\mathcal {L}_{T}(H),\Omega )\) defines modular data \(\Delta _{L,T,H}\) and \(J_{L,T,H}\). When T and H are clear from the context, we will use the shorter notation
3 Twisted ArakiWoods Algebras and Standard Vectors
The aim of this section is to derive necessary and sufficient conditions on T and H for \(\Omega \) being cyclic and separating for \(\mathcal {L}_{T}(H)\), and compute the corresponding modular data J, \(\Delta \). Most of our analysis will be based on the following compatibility assumption between T and H.
Definition 3.1
Let \(H\subset \mathcal {H}\) be a standard subspace. The twists compatible with H are the elements of
The advantage of a twist T and a standard subspace H being compatible is that this ensures the existence of the unitaries \(\Gamma _T(\Delta _H^{it})\) as discussed in Lemma 2.7. In the context of quantum field theory, such an assumption occurs naturally when asking a twist given by a twoparticle Smatrix to be Poincaré invariant [LS14]. In our present abstract setup, the main consequence of compatibility is that the oneparticle restrictions of the modular data \(J,\Delta \) (2.27) of \((\mathcal {L}_{T}(H),\Omega )\) (if they exist, i.e. if \(\Omega \) is separating) coincide with the modular data of H, as we will show below in Lemma 3.2.
Before this lemma, we introduce some notation. Since we often times deal with analytic functions on strips, we denote strip regions in \(\mathbb {C}\) by
For concise formulations, we also introduce the vector space
which is a Banach space w.r.t. \(\Vert f\Vert _\infty =\sup \{f(z):\,z\in \overline{{{\mathbb {S}}}_a}\}\) and can be viewed as \(C_b(\overline{{{\mathbb {S}}}_a})\cap {\mathbb H}^\infty ({{\mathbb {S}}}_a)\). Elements of \({{\mathbb {H}}}^\infty _{\mathrm{c.bv.}}({{\mathbb {S}}}_a)\) are uniquely determined by their restriction to \(\mathbb {R}\) or \(\mathbb {R}+ia\), and we will therefore identify functions on \({{\mathbb {S}}}_a\) with their boundary values. For example, given \(f:\mathbb {R}\rightarrow \mathbb {C}\) we write \(f\in {{\mathbb {H}}}^\infty _{\mathrm{c.bv.}}({{\mathbb {S}}}_a)\) to express that f is the restriction of a function in \({{\mathbb {H}}}^\infty _{\mathrm{c.bv.}}({{\mathbb {S}}}_a)\) to \(\mathbb {R}\).
Lemma 3.2
Let \(T\in {{\mathcal {T}}}_{\ge }(H)\), and assume that \(\Omega \in \mathcal {H}\) is separating for \(\mathcal {L}_{T}(H)\). Then the modular data \(J,\Delta \) of \((\mathcal {L}_{T}(H),\Omega )\) satisfy
Proof
As T lies in \({{\mathcal {T}}}_{\ge }(H)\), the operators \(U(t){:}{=}\Gamma _T(\Delta _H^{it})\), \(t\in \mathbb {R}\), are welldefined unitaries on \(\mathcal {F}_T(\mathcal {H})\) (Lemma 2.7 a)) and form a strongly continuous oneparameter group fixing the vacuum vector \(\Omega \).
For any polynomial \(Q\in \mathcal {P}_{L,T}(H)\), we have \(U(t)QU(t)\in \mathcal {P}_{L,T}(H)\subset \mathcal {L}_{T}(H)\) by Lemma 2.7 b) and \(\Delta _H^{it}H=H\). Hence \([U(t)QU(t),A']=0\) for all \(A'\in \mathcal {L}_{T}(H)'\). By taking limits one concludes that \(U(t)\cdot U(t)\) defines a \({}^{\star }\)automorphism of \(\mathcal {L}_{T}(H)\). Therefore, the Tomita operator S of \((\mathcal {L}_{T}(H),\Omega )\) satisfies
and therefore U(t) commutes with J and \(\Delta \). Since U(t) commutes with \(\Delta \) and J, the modular operator \(\Delta _H\) commutes with \(\Delta _{\mathcal {H}\cap \mathcal {D}(\Delta )}\) and \(J_{\mathcal {H}}\).
As \(\Delta _H\) and \(\Delta _{\mathcal {H}\cap \mathcal {D}(\Delta )}\) commute, there is a common core \(D \subset \mathcal {D}(\Delta _H)\cap \mathcal {D}(\Delta )\) for these two operators. Now, for \(k_1, h_1\) from this core D, the function defined by \(f(t)=\left\langle k_1,U(t)h_1\right\rangle _T=\left\langle k_1,\Delta _H^{it}h_1\right\rangle \) belongs to \({{\mathbb {H}}}^\infty _{\mathrm{c.bv.}}({{\mathbb {S}}}_{1})\) and satisfies the KMS boundary condition \(f(i)=\left\langle S_H h_1,S_Hk_1\right\rangle =\left\langle S h_1,Sk_1\right\rangle =\langle k_1,\Delta h_1\rangle \), where we have used that the S and \(S_H\) coincide on \(\mathcal {D}(S_H)\). On the other hand, \(f(i)=\left\langle k_1,\Delta _H h_1\right\rangle \). Hence \(\Delta h_1 = \Delta _H h_1\) for all \(h_1\in D\). Hence \(\Delta _H=\Delta _{\mathcal {H}\cap \mathcal {D}(\Delta )}\) and \(J_{\mathcal {H}} = J_H\). \(\square \)
For compatible twists, the standardness property of \(\Omega \) turns out to be encoded in two key properties of the twist T: The YangBaxter equation (T being braided) and a “crossing symmetry”. We discuss the relation of these properties to scattering theory later (see Remark 3.15), and first give a mathematical formulation suitable for our setup. Note that in this definition and various calculations below, the Tindependent scalar products \(\langle \,\cdot \,,\,\cdot \,\rangle \) on \(\mathcal {H}^{\otimes n}\) are used.
Definition 3.3
(crossing symmetry). Let \(H\subset \mathcal {H}\) be a standard subspace. A bounded operator \(T\in {{\mathcal {B}}}(\mathcal {H}\otimes \mathcal {H})\) is called crossingsymmetric w.r.t. H if for all \(\psi _1,\ldots ,\psi _4\in \mathcal {H}\), the function
lies in \({{\mathbb {H}}}^\infty _{\mathrm{c.bv.}}({{\mathbb {S}}}_{1/2})\) and, \(t\in \mathbb {R}\),
This definition is motivated from quantum field theory and generalizes the notion of crossing symmetry from scattering theory to a setting of standard subspaces. We postpone the discussion of this relation to Remark 3.15 below. For the time being, suffice it to say that from an operatoralgebraic perspective, Def. 3.3 is clearly reminiscent of the KMS / modular boundary condition characterizing the modular group of a standard vector. As we shall see in Thm. 3.12 a), crossing symmetry is a consequence of \(\Omega \) being separating for \(\mathcal {L}_T(H)\).
In case \(T\in {{\mathcal {T}}}_{\ge }(H)\) is a twist that is crossing symmetric w.r.t. a standard subspace H and compatible with H, we also use the notation
so that the boundary condition of crossing symmetry takes the form
Our notion of compatibility between T and H only involves the modular unitaries \(\Delta _H^{it}\) and not the modular conjugation \(J_H\). However, in the presence of crossing symmetry a compatibility between T and \(J_H\) is automatic:
Lemma 3.4
If a bounded selfadjoint operator T is crossing symmetric and compatible with a standard subspace H, then
where F is the tensor flip on \(\mathcal {H}\otimes \mathcal {H}\).
Proof
For arbitrary vectors \(\psi _k\), the function \(t\mapsto T^{\psi _2,\psi _1}_{\psi _3,\psi _4}(t)\) lies in \({{\mathbb {H}}}^\infty _{\mathrm{c.bv.}}({{\mathbb {S}}}_{1/2})\), with boundary value at \(\mathbb {R}+\frac{i}{2}\) given by (3.8). The value of \(s\mapsto T^{\psi _1,J_H\psi _4}_{J_H\psi _2,\psi _3}(s)\) at \(s=\frac{i}{2}\) on the one hand coincides with \(T^{\psi _2,\psi _1}_{\psi _3,\psi _4}(0)\), and on the other hand coincides with \(T^{J_H \psi _4,J_H \psi _3}_{J_H \psi _1,J_H \psi _2}(0)\). Comparing these expectation values yields the claim. \(\square \)
The main results on the standardness of \((\mathcal {L}_{T}(H),\Omega )\) that we will derive for compatible twists are:

Theorem 3.12: \(\Omega \) separating \(\mathcal {L}_{T}(H)\) implies that T is crossing symmetric and braided.

Theorem 3.22: T crossing symmetric and braided implies that \(\Omega \) is separating for \(\mathcal {L}_{T}(H)\).

Proposition 3.25: Computation of the modular data \(J,\Delta \) of \((\mathcal {L}_{T}(H),\Omega )\) in case T is crossing symmetric and braided.
These results are obtained through preparatory work based on several results related to the KMS condition [BR97, Sect. 5.3.1], which we establish in the following technical section.
3.1 Analytic continuations of twisted npoint functions
For \(\xi \in \mathcal {D}_H\), we consider the field operators
Note that \(\phi _{L,T}^H(\xi )\) differs from \(\phi _{L,T}(\xi )\) (2.22) by the Tomita operator \(S_H\) in the argument of the annihilation operator. For \(\xi =h\in H\), we have \(S_Hh=h\) and both operators coincide. For general \(\xi \in \mathcal {D}_H\), the Tomita operator is necessary if we want \(\phi _{L,T}^H(\xi )\) to be affiliated with \(\mathcal {L}_T(H)\) and \(\Omega \) separating for this algebra: If \(X{:}{=}a_{L,T}^{\star }(\xi )+a_{L,T}(\eta )\) is affiliated with \(\mathcal {L}_T(H)\) and \(\Omega \) is separating, then the Tomita operator S of \((\mathcal {L}_T(H),\Omega )\) restricts to \(S_H\) on \(\mathcal {H}\cap \mathcal {D}_H\) (Lemma 3.2), and hence we have
The expectation values of these operators will be denoted
For an odd number of fields, these expectation values vanish. Expanding the definitions of \(\phi _{L,T}^H(\xi )\) and \(\langle \,\cdot \,,\,\cdot \,\rangle _T\), one finds that \(W_{2n}^{\xi _1,\ldots ,\xi _{2n}}\) can be written as a sum of \(1\cdot 3\cdot \ldots \cdot (2n1)\) terms of the form \(\langle \Omega ,A_1\cdots T_l\cdots A_{2n})\Omega \rangle \), where the \(A_j\) are either (untwisted) creation operators \(a_{L}^*(\xi _j)\) or annihilation operators \(a_L(S_H\xi _j)\), and \(T_l\) denotes various insertions of twists, coming from the \(a_{L,T}(S_H\xi _k)\) and \(\langle \,\cdot \,,\,\cdot \,\rangle _T\). The combinatorial aspects of these terms are best captured in a diagrammatic form which was already introduced in [BS94] in a special case. We present and further develop this diagrammatic form in the appendix (Sect. 5).
In the present section, we do not rely on the diagram notation in our proofs, but still regard it as a helpful tool to keep track of the various contributions to \(W_{2n}^{\xi _1,\ldots ,\xi _{2n}}\), for instance the 15 terms of \(W_6^{\xi _1,\ldots ,\xi _{6}}\) that we will need below. The reader is invited to refer to Sect. 5 as required.
We will be interested in a parameterdependent version of \(W_{2n}^{\xi _1,\ldots ,\xi _{2n}}\), namely
Lemma 3.5
Let \(H\subset \mathcal {H}\) be a standard subspace, \(T\in {{\mathcal {T}}}_{\ge }(H)\) a compatible twist, and assume that \(\Omega \) is separating for \(\mathcal {L}_{T}(H)\). Then, for any \(n\in \mathbb {N}\) and any \(\xi _1,\ldots ,\xi _{2n}\in \mathcal {D}_H\), the function \(W_{2n}^{\xi _1,\ldots ,\xi _{2n}}\) lies in \({{\mathbb {H}}}^\infty _{\mathrm{c.bv.}}({{\mathbb {S}}}_{1})\) and satisfies
Proof
Since the vectors \(\xi _k\) lie in \(\mathcal {D}_H\), it follows that \(A{:}{=}\phi _{L,T}^H(\xi _{2n})\) and \(B{:}{=}\phi _{L,T}^H(\xi _{1})\cdots \phi _{L,T}^H(\xi _{2n1})\) are closable operators with closures affiliated to \(\mathcal {L}_{T}(H)\). By assumption, \(\Omega \) is separating, so by the KMS condition, \(f(t){:}{=}\langle \Omega , B\Delta ^{it}A\Omega \rangle _T\) has the analyticity and boundedness properties stated in the lemma, and boundary value \(f(ti)=\langle \Omega ,A\Delta ^{it}B\Omega \rangle _T\), \(t\in \mathbb {R}\). The claim of the lemma now follows by observing that \(A\Omega \) and \(A^{\star }\Omega \) lie in the single particle space \(\mathcal {H}\), on which \(\Delta ^{it}\) coincides with \(\Delta _H^{it}\) by Lemma 3.2. \(\square \)
In the following, we will explore properties of T that are consequences of \(\Omega \) being separating for \(\mathcal {L}_{T}(H)\). For doing so, we need to analyze \(W_{2n}^{\xi _1,\ldots ,\xi _{2n}}\) for \(n=1,2,3\). To lighten our notation, we will often use shorthand notation and denote the functions (3.11) and (3.12) by \(W_{2n}\) and \(W_{2n}'\), respectively, leaving the dependence on the fixed vectors \(\xi _1,\ldots ,\xi _{2n}\in \mathcal {D}_H\) implicit. We will also refer to \(W_{2n}\) as the (2n)point functions because of their similarity to correlation functions in Wightman QFT.
The most basic continuation result is the following.
Lemma 3.6
Let \(H\subset \mathcal {H}\) be a standard subspace and \(\xi _1,\xi _2\in \mathcal {D}_H\). Then the function \(t\mapsto \langle S_H\xi _1,\Delta _H^{it}\xi _2\rangle \) lies in \({{\mathbb {H}}}^\infty _{\mathrm{c.bv.}}({{\mathbb {S}}}_{1})\) and evaluates at \(t=i\) to \(\langle S_H\xi _2,\xi _1\rangle \).
Proof
In case \(\Omega \) is separating, this is exactly Lemma 3.5 for \(n=1\). In case \(\Omega \) is not separating, the statement follows from basic properties of modular theory for standard subspaces: \(\langle \Delta _H^{1/2}S_H\xi _1,\Delta _H^{1/2}\xi _2\rangle =\langle J_H\xi _1,\Delta _H^{1/2}\xi _2\rangle =\langle S_H\xi _2,\xi _1\rangle \). \(\square \)
Subsequently we will often be concerned with analytic functions of the form (3.6) or similar, namely expectation values of an operatorvalued function in tensor products between various vectors. The following lemma will be helpful to extend such functions in their vector arguments.
We write \(B(\mathbb {R},{{\mathcal {B}}}(\mathcal {H}))\) for the set of bounded functions \(A:\mathbb {R}\rightarrow {{\mathcal {B}}}(\mathcal {H})\) equipped with the natural norm \(\Vert A\Vert _\infty =\sup _{t\in \mathbb {R}}\{\Vert A(t)\Vert \}\).
Lemma 3.7
Let \(Z_i: \mathcal {D}(Z_i)\rightarrow \mathcal {H}\), \(i=1,2\) be closed antilinear operators, \(D_i\subset \mathcal {D}(Z_i)\) subsets of the topological space \(\mathcal {D}(Z_i)\) provided with the graph norm, \(E_1,E_2 \subset \mathcal {H}^{\otimes n}\), \(\mathcal {F}\subset B(\mathbb {R},{{\mathcal {B}}}(\mathcal {H}^{\otimes (n+1)}))\) subsets, and
If there exists a continuous map \(\Theta :\mathcal {F}\rightarrow B(\mathbb {R},{{\mathcal {B}}}(\mathcal {H}^{\otimes (n+1)}))\) such that
then f is separately continuous. In particular, f can be uniquely extended to
with closures taken in the respective topologies, and the extension still satisfies (3.13) and (3.14).
Proof
By linearity and antilinearity, it is obvious that we can extend f to \({\text {span}}\mathcal {F}\times {\text {span}}D_1\times {\text {span}}E_1\times {\text {span}}D_2\times {\text {span}}E_2\). Hence, we can suppose, \(\mathcal {F}\), \(D_1,D_2, E_1\), and \(E_2\) are vector spaces.
Fix R and, for the sake of notation, let us omit the dependence on R and denote \(M=(\Vert \xi _1\Vert +\Vert Z_1\xi _1\Vert )(\Vert \xi _2\Vert +\Vert Z_2\xi _2\Vert )\Vert \Psi \Vert \Vert \Phi \Vert \). By the three lines theorem it follows that, \(z\in {{\mathbb {S}}}_\alpha \),
Since f depends linearly or antilinearly on all its four variables, it is continuous in them separately in the appropriate topologies. Therefore, we can continuously extend f to \(\overline{{\text {span}}D_1} \times \overline{{\text {span}}E_1} \times \overline{{\text {span}}D_2} \times \overline{{\text {span}}E_2}\), since \({{\mathbb {H}}}^\infty _{\mathrm{c.bv.}}({{\mathbb {S}}}_\alpha )\) is a Banach space.
For the continuity in R, let us now omit the dependence on the fixed vectors \(\xi _1\), \(\Psi \), \(\xi _2\), and \(\Phi \) and let M be as above. Again by the three line theorem, it follows that
and the conclusion follows from the continuity of \(\Theta \). \(\square \)
For the npoint functions (with \(n\ge 4\)), it will be useful to introduce further shorthand notation in order to increase the readability of our formulae. We will abbreviate the vectors \(\xi _1,\ldots ,\xi _{2n}\) by their indices \(1,\ldots ,{2n}\), use a bar to denote the action of \(S_H\), an index t to denote the action of \(\Delta _H^{it}\), and symbols like \(a_k\) to denote \(a_L(\xi _k)\), the untwisted left annihilation operators (2.17). For example,
After these preparations, we now prove results based on the analyticity of the 4point function.
Proposition 3.8
Let \(H\subset \mathcal {H}\) be a standard subspace, \(T\in {{\mathcal {T}}}_{\ge }(H)\) a compatible twist, and assume that \(\Omega \) is separating for \(\mathcal {L}_{T}(H)\). Let \(\varphi _1,\varphi _2\in \mathcal {D}_H\), \(\psi _1,\psi _2\in \mathcal {H}\).

a)
The function
$$\begin{aligned} f(t) {:}{=} \langle \varphi _1\otimes \psi _1,T(\psi _2\otimes \Delta _H^{it}\varphi _2)\rangle \end{aligned}$$(3.15)lies in \({{\mathbb {H}}}^\infty _{\mathrm{c.bv.}}({{\mathbb {S}}}_{1})\) and satisfies
$$\begin{aligned} f(ti)=\langle \psi _1\otimes S_H\Delta _H^{it}\varphi _2,T(S_H\varphi _1\otimes \psi _2)\rangle ,\qquad t\in \mathbb {R}. \end{aligned}$$(3.16) 
b)
The vector \(a_L(\psi _2)T(\varphi _1\otimes \psi _1)\) lies in the domain of \(S_H\), and
$$\begin{aligned} S_Ha_L(\psi _2)T(\varphi _1\otimes \psi _1)=a_L(\psi _1)T(S_H\varphi _1\otimes \psi _2) . \end{aligned}$$(3.17)
Proof
a) With the abbreviations introduced before, the 4point function reads
as follows by expanding the definitions or relying on the diagrammatic rules explained in the appendix. Since the first two terms have the stated analyticity, boundedness and continuity properties, and evaluate at \(t=i\) to \(\langle \bar{1},2\rangle \langle \bar{4},3\rangle \) and \(\langle \bar{2},3\rangle \langle \bar{4},1\rangle \), respectively, comparison with
and Lemma 3.5 shows that \(t\mapsto \langle \bar{2}\otimes \bar{1},T(3\otimes 4_t)\rangle \) lies in \({{\mathbb {H}}}^\infty _{\mathrm{c.bv.}}({{\mathbb {S}}}_{1})\) and evaluates at \(t=i\) to \(\langle \bar{1}\otimes \bar{4},T(2\otimes 3)\rangle \).
Up to a relabeling of vectors, this function coincides with f. Hence we have shown the lemma in case \(\psi _1,\psi _2\) lie in \(\mathcal {D}_H\). The extension to \(\psi _1,\psi _2\in \mathcal {H}\) now follows by applying Lemma 3.7 (put \(R(t){:}{=}T(1\otimes \Delta _H^{it})\), \(\Theta (R)(t)=(1\otimes \Delta _H^{it})T\), and \(Z_1=Z_2=S_H\)).
b) We now take \(\varphi _2\) to even be an entire analytic vector for \(\Delta _H\), so that f is entire analytic, and satisfies at \(t=i\)
This can be rewritten as
This equation holds for any vector \(\varphi _2\) which is entire analytic for \(\Delta _H\). As \(\varphi _2\) ranges over this space, \(S_H\varphi _2\) ranges over a core of \(\Delta _H^{1/2}\), and hence a core of \(S_H^*\). This implies the claim. \(\square \)
Remark 3.9
We may rephrase part b) in terms of left and right creation and annihilation operators as follows: For any \(\psi _1,\psi _2\in \mathcal {H}\), the operator
is an endomorphism of \(\mathcal {D}_H\), with
In particular, \(T_{\psi ,\psi }\) (and \(T_{\psi _1,\psi _2}+T_{\psi _2,\psi _1}\), etc.) are endomorphisms of the standard subspace H. This provides a link between endomorphisms of standard subspaces [LW11] and crossing symmetry.
Our next analyticity result is based on the 6point function \(W_6\).
Lemma 3.10
Let \(H\subset \mathcal {H}\) be a standard subspace, \(T\in {{\mathcal {T}}}_{\ge }(H)\) a compatible twist, and assume that \(\Omega \) is separating for \(\mathcal {L}_{T}(H)\). Let \(\varphi _1,\varphi _2\in \mathcal {D}_H\) and \(\Psi ,\Psi '\in \mathcal {H}\otimes \mathcal {H}\).

a)
The function \(t\mapsto \langle S_H\varphi _1\otimes \Psi ,T_1T_2(\Psi '\otimes \Delta _H^{it}\varphi _2)\rangle \) lies in \({{\mathbb {H}}}^\infty _{\mathrm{c.bv.}}({{\mathbb {S}}}_{1})\), with value at \(t=i\) given by
$$\begin{aligned} \langle \Psi \otimes S_H\varphi _2,T_2T_1(\varphi _1\otimes \Psi ')\rangle . \end{aligned}$$(3.24) 
b)
The function \(t\mapsto \langle S_H\varphi _1\otimes \Psi ,T_2T_1T_2(\Psi '\otimes \Delta _H^{it}\varphi _2)\rangle \) lies in \({{\mathbb {H}}}^\infty _{\mathrm{c.bv.}}({{\mathbb {S}}}_{1})\), with value at \(t=i\) given by
$$\begin{aligned} \langle \Psi \otimes S_H\varphi _2,T_2T_1T_2(\varphi _1\otimes \Psi ')\rangle . \end{aligned}$$(3.25)
Proof
The first step of the argument is a calculation: By expanding the definitions of \(\phi _{L,T}^H(\xi )\) and \(\langle \,\cdot \,,\,\cdot \,\rangle _T\), one finds, \(t\in \mathbb {R}\),
where
This result only becomes transparent when considering the diagram notation (Sect. 5). The function \(w_k\) collects all terms corresponding to diagrams with k crossings.
Let us denote by \(w_0',\ldots ,w_3'\) the analogous functions that we get by cyclically permuting \(1,2,\ldots ,6\rightarrow 6,1,\ldots ,5\), e.g. the first term of \(w_0'(0)\) is \(\langle \bar{6},1\rangle \langle \bar{2},3\rangle \langle \bar{4},5\rangle \).
We claim
To prove this claim, we will investigate \(w_0,\ldots ,w_3\) one by one.
 \(w_0\):

Each of the five terms contributing to \(w_0(t)\) depends on t via a 2point function \(\langle {\bar{j}},6_t\rangle \) and hence lies in \({{\mathbb {H}}}^\infty _{\mathrm{c.bv.}}({{\mathbb {S}}}_{1})\) and evaluates at \(t=i\) to \(\langle {\bar{6}},j\rangle \) (Lemma 3.6). Using this result, one sees that the first term of \(w_0\), evaluated at \(t=i\), coincides with the second term of \(w_0'\), evaluated at \(t=0\). The other terms of \(w_0(i)\) and \(w_0'(0)\) match up similarly via cyclic permutations of the groups of terms in round brackets. Hence (3.27) holds for \(k=0\).
 \(w_1\):

For \(k=1\), (3.27) follows by using Prop. 3.8 a). This result (and Lemma 3.6 for the last two terms of \(w_1\)) imply \(w_1\in {{\mathbb {H}}}^\infty _{\mathrm{c.bv.}}({{\mathbb {S}}}_{1})\). For the boundary values, one checks that the first term of \(w_1(i)\) is \(\langle \bar{1},2\rangle \langle \bar{3}\otimes \bar{6},T(4\otimes 5)\rangle \), which coincides with the second term of \(w_1'(0)\). The behaviour of the other terms is analogous: Working \(\mod 6\), the \(\ell \)th term of \(w_1(i)\) coincides with the \((\ell +1)\)st term of \(w_1'(0)\). Hence (3.27) holds for \(k=1\).
 \(w_2\):

For \(k=2\), (3.27) follows by using Prop. 3.8: The first and third term of \(w_2\) are seen to lie in \({{\mathbb {H}}}^\infty _{\mathrm{c.bv.}}({{\mathbb {S}}}_{1})\) on the basis of part a) of that proposition. For the second term, we also need part b) which ensures that \(a_4T(\bar{3}\otimes \bar{2})\) lies in the domain of \(S_H\). Using these results, we conclude \(w_2\in {{\mathbb {H}}}^\infty _{\mathrm{c.bv.}}({{\mathbb {S}}}_{1})\) and can compute the boundary value of all terms. The first term of \(w_2\), \(\langle \bar{4}\otimes a_3T(\bar{2}\otimes \bar{1}),T(5\otimes 6_t)\rangle \), evaluates at \(t=i\) to \(\langle a_3T(\bar{2}\otimes \bar{1})\otimes \bar{6},T(4\otimes 5)\rangle \), which is seen to coincide with the second term of \(w_2'(0)\) by direct comparison. The second term of \(w_2(i)\) is
$$\begin{aligned} \langle \bar{1}\otimes \bar{6},T(S_Ha_4T(\bar{3}\otimes \bar{2})\otimes 5)\rangle&= \langle \bar{1}\otimes \bar{6},T(a_{\bar{2}}T(3\otimes 4)\otimes 5)\rangle , \end{aligned}$$which coincides with the third term of \(w_2'(0)\). Similarly, the third term of \(w_2(i)\) coincides with the first term of \(w_2'(0)\). Hence (3.27) holds for \(k=2\).
 \(w_3\):

We use (3.26). As we have already shown that \(W_6\), \(w_0\), \(w_1\), \(w_2\) lie in \({{\mathbb {H}}}^\infty _{\mathrm{c.bv.}}({{\mathbb {S}}}_{1})\) and evaluate at \(t=i\) to their primed counterparts \(W_6'(0)\), \(w_0'(0)\), \(w_1'(0)\), \(w_2'(0)\), respectively, we conclude that \(w_3\in {{\mathbb {H}}}^\infty _{\mathrm{c.bv.}}({{\mathbb {S}}}_{1})\), and \(w_3(i)=w_3'(0)\).
We now prove the two claims a) and b) made in the lemma.
The function in part a) and its claimed boundary value coincide with the second term of \(w_2\) and the third term of \(w_2'(0)\) under the identifications \(\varphi _1=\xi _3\), \(\Psi =S_H\xi _2\otimes S_H\xi _1\), \(\varphi _2=\xi _6\), \(\Psi '=\xi _4\otimes \xi _5\), respectively. Hence we have already proven a) for vectors \(\Psi ,\Psi '\) that are pure tensors of vectors from \(\mathcal {D}_H\). The general case follows from Lemma 3.7.
The function in part b) and its is claimed boundary value coincide with \(w_3(t)\) and \(w_3'(0)\), respectively, under the identifications \(\varphi _1=\xi _3\), \(\Psi =S_H\xi _2\otimes S_H\xi _1\), \(\Psi '=\xi _4\otimes \xi _5\), \(\varphi _2=\xi _6\). Similarly as in a), this implies that b) holds for \(\Psi ,\Psi '\) of tensor product form, from which the general result follows by Lemma 3.7. \(\square \)
We finish this section proving some analytic properties of ncrossing functions from crossingsymmetry. Recall that for a twist T crossingsymmetric w.r.t. a standard subspace H, we had defined \(T(t)=(\Delta _H^{it}\otimes 1)T(1\otimes \Delta _H^{it})\). Also recall the tensor leg notation from footnote 2, e.g. \(T(t)_1=(\Delta _H^{it}\otimes 1\otimes 1)(T\otimes 1)(1\otimes \Delta _H^{it}\otimes 1)\) on three tensor factors.
Proposition 3.11
Let \(T\in {{\mathcal {T}}}_{\ge }\) be crossing symmetric w.r.t. a standard subspace \(H\subset \mathcal {H}\). Then, for \(\xi , \xi ^\prime \in \mathcal {H}\),
belongs to \({{\mathbb {H}}}^\infty _{\mathrm{c.bv.}}({{\mathbb {S}}}_{1/2})\) and satisfies
Proof
In order to exploit the crossing symmetry of T, we initially choose the vectors \(\Psi _n=\psi _1\otimes \ldots \otimes \psi _n\), \(\Phi _n=\varphi _1\otimes \ldots \otimes \varphi _n\) to be pure tensors. Considering an orthonormal basis \((e_k)_{k\in \mathbb {N}}\) of \(\mathcal {H}\), the tensor structure of \(T(t)_1\cdots T(t)_n\) allows us to rewrite the above scalar product as
Each partial sum is analytic in \({{\mathbb {S}}}_{1/2}\) due to the assumption of T being crossing symmetric and, to conclude that \(f\in {{\mathbb {H}}}^\infty _{\mathrm{c.bv.}}({{\mathbb {S}}}_{1/2})\), it is enough to show the partial sums of the series above are uniformly Cauchy. By defining \(Q_{N,M}\) and \(Q^\prime _{N,M}\) to be the projections onto \({\text {span}}\{e_j \  \ N\le j\le M \}\) and \({\text {span}}\{J_H e_j \  \ N\le j\le M \}\), respectively, and denoting \((X)_k=\mathbb {1}^{\otimes (k1)} \otimes X \otimes \mathbb {1}^{\otimes (n+1k)} \) for \(X\in {{\mathcal {B}}}(\mathcal {H})\) as usual, one can reverse the expansion to see that
where \(A_{N,M}(t)=T(t)_1(Q_{N,M})_2 T(t)_2 \cdots (Q_{N,M})_nT(t)_n \). This situation is similar to Lemma 3.7, because as \(N,M\rightarrow \infty \), the operator \((Q_{N,M})_1 A_{N,M}(t) (Q_{N,M})_{n+1}\) goes uniformly (in t) to zero in the strong operator topology, which is enough to guarantee that the series is uniformly Cauchy on the real line.
Using crossing symmetry (3.7) to check the behavior of \(f_{N,M}\) on the upper boundary of the strip \({{\mathbb {S}}}_{1/2}\), we have
where \(\Theta (A_{N,M})(t)=T(t)^*_n(Q^\prime _{N,M})_nT(t)^*_{n1}\cdots (Q^\prime _{N,M})_2T(t)^*_1\) and we choose this notation again to stress the similarity with Lemma 3.7.
For the same argument as above, this implies that the partial sums of (3.29) converges uniformly on \(\mathbb {R}+\frac{i}{2}\) to \(t\mapsto \langle \Psi _n\otimes J_H \xi ,T(t)^*_n\cdots T(t)^*_1 \left( J_H \xi ^\prime \otimes \Phi _n\right) \rangle \). Hence, it follows by the three lines theorem that (3.29) converges uniformly on the closure of the strip \({{\mathbb {S}}}_{1/2}\) and, therefore f lies in \({{\mathbb {H}}}^\infty _{\mathrm{c.bv.}}({{\mathbb {S}}}_{1/2})\) and satisfies (3.28). \(\square \)
3.2 Standardness and modular properties of \((\mathcal {L}_{T}(H),\Omega )\)
We now apply the results of the previous section to study necessary and sufficient properties of T for \(\Omega \) to be separating for \(\mathcal {L}_{T}(H)\).
Theorem 3.12
Let \(H\subset \mathcal {H}\) be a standard subspace, \(T\in {{\mathcal {T}}}_{\ge }(H)\) a compatible twist, and assume that \(\Omega \) is separating for \(\mathcal {L}_{T}(H)\). Then

a)
T is crossing symmetric in the sense of Def. 3.3.

b)
T satisfies the YangBaxter equation
$$\begin{aligned} T_1T_2T_1 = T_2T_1T_2, \end{aligned}$$(3.30)i.e. T is a braided twist.
Proof
a) Let \(\psi _1,\psi _2,\varphi _1,\varphi _2\in \mathcal {H}\), with \(\varphi _1\) and \(\varphi _2\) entire analytic for \(\Delta _H\). We consider the entire analytic function \(g:\mathbb {C}\times \mathbb {C}\rightarrow \mathbb {C}\),
Note that the restriction of g to the diagonal, \(h(t){:}{=}g(t,t)\), coincides with the function appearing in the crossing symmetry condition (3.6).
According to Prop 3.8 a) (observe that t has opposite signs in g and (3.15)), we have, \(t,s\in \mathbb {C}\),
From this it is apparent that for \(t\in \mathbb {R}\)
in agreement with the claimed boundary value (3.7).
By straightforward estimates, one also sees that h is bounded on \(\overline{{{\mathbb {S}}}_{1/2}}\). Finally, Lemma 3.7 can be used to extend h for general vectors \(\varphi _2, \varphi _4\in \mathcal {H}\).
b) The proof that T is braided relies on Lemma 3.10. Let \(\xi _1,\ldots ,\xi _6\in \mathcal {D}_H\), and consider the function
By Lemma 3.10 b), f analytically continues to \({{\mathbb {S}}}_{1}\), and
On the other hand, we may rewrite f as
with \(\Psi =T(S_H\xi _2\otimes S_H\xi _1)\). According to Lemma 3.10 a), this gives
Comparing (3.32) and (3.33) now shows that matrix elements of \(T_2T_1T_2\) and \(T_1T_2T_1\) between total sets of vectors in \(\mathcal {H}^{\otimes 3}\) coincide, which implies the YangBaxter equation because T is bounded. \(\square \)
This result shows that \(\Omega \) being separating for \(\mathcal {L}_{T}(H)\) is a strong condition on the twist. It might also explain why other classes of twists (see part a) and b) of Thm. 2.2) have not received as much attention as the braided case. The following examples illustrate this.
Example 3.13
Let \(A,B\in {{\mathcal {B}}}(\mathcal {H})\) be selfadjoint operators, F the tensor flip on \(\mathcal {H}\otimes \mathcal {H}\) as before, \(H\subset \mathcal {H}\) a standard subspace, and
Then T is a twist in various cases–for example, if \(\Vert A\Vert \Vert B\Vert \le \frac{1}{2}\) (by Thm. 2.2 a)), if A, B are positive (by Thm. 2.2 b)), or if \(A=q E,B={\tilde{E}}\), where \(E,{\tilde{E}}\) are commuting orthogonal projections and \(1\le q\le 1\) (then T solves the YangBaxter equation and has norm \(q\le 1\), so Thm. 2.2 c) applies). Moreover, T is compatible with H in case A and B commute with the modular unitaries \(\Delta ^{it}_H\).
However, T is braided only in the last case (\(T=qE\otimes {\tilde{E}}\)), and satisfies crossing symmetry only if \(q=0\) or \(E={\tilde{E}}\) is a onedimensional projection onto a vector that is an eigenvector of \(\Delta _H\) and \(J_H\). This can be proved by writing out the function f (3.6) for vectors \(\xi _1,\ldots ,\xi _4\) analytic for \(\Delta _H\) and comparing its crossing boundary value (3.7), which here takes the form \(f(\frac{i}{2})=q\langle \xi _2,J_HE\xi _1\rangle \langle J_H{\tilde{E}}\xi _3,\xi _4\rangle \) with the form \(f(\frac{i}{2})=q\langle \xi _2,E\Delta _H^{1/2}\xi _3 \rangle \langle {\tilde{E}}\Delta _H^{1/2}\xi _1,\xi _4\rangle \) that one obtains from directly continuing the modular groups \(\Delta _H^{it}\) to \(t=\frac{i}{2}\).
In comparison, \({\tilde{T}}\) is a braided twist if \(\Vert A\Vert \le 1\), because it is then a selfadjoint solution to the YangBaxter equation. If, in addition \([\Delta _H^{it},A]=0=[J_H,A]\), then it is also crossing symmetric because
Hence, \(T\in {{\mathcal {T}}}_{\ge }(H)\) is a compatible crossingsymmetric braided twist in case \([\Delta _H^{it},A] =0=[J_H,A]\).
The second example (\({\tilde{T}}\)) above can be generalized to braided crossing symmetric twists arising from symmetric twists coming from solutions of the YangBaxter equation with spectral parameter. This also provides the link of our terminology to the crossing symmetry of scattering theory.
Example 3.14
Recall that on the Hilbert space \(\mathcal {H}=L^2(\mathbb {R}\rightarrow \mathcal {K})\) (where \(\mathcal {K}\) is another Hilbert space), we have symmetric twists of the form (2.11)
where \(S:\mathbb {R}\rightarrow {{\mathcal {B}}}(\mathcal {K}\otimes \mathcal {K})\) is a measurable bounded function with \(S(\theta )=S(\theta )^*\) almost everywhere, satisfying the YangBaxter equation with spectral parameter.
Let \(L\subset L^2(\mathbb {R},d\theta )\) denote the standard subspace with
(see, for example, [LL15, Sect. 4]). Let \(K\subset \mathcal {K}\) be the closed real span of an orthonormal basis of \(\mathcal {K}\). Then K is a standard subspace with \(K=K'\) (such standard subspaces are called maximally abelian in analogy to the von Neumann algebraic situation). Then the closed real tensor product of these spaces,
is a standard subspace in \(\mathcal {H}\). Since \(\Delta _K=1\) and \(\Delta _L^{it}\) acts by translation, we see that \(T_S\) (3.35) is compatible with H.
To evaluate the crossing symmetry condition, consider vectors of the form \(\xi _k=\varphi _k\otimes v_k\), \(k=1,\ldots ,4\), with \(\varphi _k\in L^2(\mathbb {R},d\theta )\) and \(v_k\in \mathcal {K}\). Then the function (3.6) takes the form
It has a bounded analytic continuation to the strip \({{\mathbb {S}}}_{1/2}\), with upper boundary value
This readily implies that the matrixvalued function S has bounded analytic continuation to the strip \({{\mathbb {S}}}_{\pi }\), with boundary value
Hence it is clear that there are many functions \(S:\mathbb {R}\rightarrow {{\mathcal {B}}}(\mathcal {K}\otimes \mathcal {K})\) for which \(T_S\) is a symmetric twist, but \(\Omega \) fails to be separating for \(\mathcal {L}_{T_S}(H)\).
Remark 3.15
In quantum field theoretic scattering theory, crossing symmetry is a property stating that the scattering amplitude of particles is related to the amplitude of the corresponding antiparticles by analytic continuation [Mar69, Sect. IV]. Whereas this property has not been proven in general quantum field theory (see [BEG65] for a proof of crossing for twoparticle amplitudes, and [Miz21] for recent work towards general crossing conditions in perturbative QFT), it is well established–and often taken as an axiom–in integrable QFT on twodimensional Minkowski spacetime [Iag78, Smi92, AAR01, Sch10].
In the setting of Example 3.14, our abstract form of crossing symmetry specializes to the crossing symmetry of scattering theory in integrable models, with S playing the role of elastic twobody scattering matrix, \(\theta \) is the rapidity and the modular conjugation \(J_K\) corresponds to conjugating a particle into an antiparticle [AL17]. See also [BT15, HL18] for previous work relating standard subspaces and crossing symmetry, and [Nie98] for a proof of the cyclic formfactor equation, related to crossing symmetry, from modular theory.
We now proceed to show that the YangBaxter equation and crossing symmetry are not only necessary, but also sufficient conditions for \(\Omega \) being separating for \(\mathcal {L}_{T}(H)\). This amounts to establishing a large commutant of \(\mathcal {L}_{T}(H)\).
It is instructive to first look at the case of zero twist \(T=0\), with \(\mathcal {F}_0(\mathcal {H})\) the full Fock space over \(\mathcal {H}\). In this case, one has in addition to the “left” creation and annihilation operators (2.17) also “right” creation and annihilation operators, namely (\(\xi ,\psi _j\in \mathcal {H}\))
It is easy to see that the left field operators \(\phi _{0,L}(h)=a_L(h)+a_L^*(h)\) and right field operators \(\phi _{0,R}(h')=a_R(h')+a_R^*(h')\) commute if and only if \({\text {Im}}\langle h,h'\rangle =0\), i.e. if \(h\in H\) and \(h'\in H'\) for some standard subspace H. Hence \(\mathcal {L}_0(H)'\) contains the von Neumann algebra \(\mathcal {R}_0(H')\) generated by right fields \(\phi _{0,R}(h')\), \(h'\in H'\). As \(\Omega \) is also cyclic for \(\mathcal {R}_0(H')\), it is separating for \(\mathcal {L}_0(H)\).
Furthermore, the natural unitary involution
relates the left and right operators according to \(Ya_L^\#(\xi )Y=a^\#_R(\xi )\), which leads to \(Y\mathcal {L}_0(H)Y=\mathcal {R}_0(H)\); this involution enters the modular conjugation of \((\mathcal {L}_0(H),\Omega )\) in this case [Shl97, p. 341].
In comparison, in our general Ttwisted setting there exist no “right” operators. This is due to the fact that the very definition of the Hilbert space \(\mathcal {F}_T(\mathcal {H})\) is biased towards the left because of the appearance of \((1\otimes P_{T,n})\) instead of \((P_{T,n}\otimes 1)\) in the recursive definition of \(P_{T,n+1}\) (2.2).
However, in the case of a braided twist, the symmetry between left and right is restored. This observation will be a key ingredient to proving that \(\Omega \) separates \(\mathcal {L}_T(H)\).
Lemma 3.16
Let \(T\in {{\mathcal {T}}}_{\ge }\) be a braided (but not necessarily symmetric) twist.

a)
For any \(n\in \mathbb {N}\),
$$\begin{aligned} P_{T,n+1}&=(P_{T,n}\otimes 1){\tilde{R}}_{T,n+1}, \end{aligned}$$(3.41)$$\begin{aligned} \tilde{R}_{T,n+1}&{:}{=}1+T_n+T_nT_{n1}+\ldots +T_n\cdots T_1. \end{aligned}$$(3.42) 
b)
The right creation operators
$$\begin{aligned} a_{R,T}^{\star }(\xi )[\Psi _n] = [\Psi _n\otimes \xi ],\qquad [\Psi _n]\in \mathcal {H}^{\otimes n}/{\text {ker}}P_{T,n}, \end{aligned}$$(3.43)are welldefined on \(\mathcal {F}_T(\mathcal {H})\) and their adjoints \(a_{R,T}(\xi )\) are given by
$$\begin{aligned} a_{R,T}(\xi )[\Psi _n]&= [a_R(\xi ){\tilde{R}}_{T,n}\Psi _n], \end{aligned}$$(3.44)where \(a_R(\xi )\) is the untwisted right annihilation operator (3.38).

c)
Let \( Z:\mathcal {D}(Z)\rightarrow \mathcal {H}\) be a closed (anti)linear operator such that
$$\begin{aligned}{}[F(Z\otimes Z),T]=0. \end{aligned}$$Then, \(\hat{Z}_Y:\bigoplus _{n=0}^\infty \mathcal {D}(Z)^{\odot n}/{\text {ker}}(P_{T,n}) \rightarrow \mathcal {H}_{T,n} \), given by \(\hat{Z}_Y([\Psi _n])=[Y Z^{\otimes n}\Psi _n]\), for all \(\Psi _n \in \mathcal {D}(Z)^{\odot n}/{\text {ker}}(P_{T,n})\) and for all \(n \in \mathbb {N}\), where \(Z^{\otimes 0}{:}{=}1\), is a welldefined closable operator on \(\mathcal {F}_T(\mathcal {H})\) whose closure will be denoted \(\Gamma _T^Y(Z)\). This operator is (anti)unitary if Z is. If Z is invertible, one has for any \(\xi \in \mathcal {D}(Z)\)
$$\begin{aligned} \overline{\Gamma _T^Y(Z)a_{L,T}^\#(\xi )\Gamma _T^Y(Z^{1})}&= a_{R,T}^\#( Z \xi ),\qquad \xi \in \mathcal {D}(Z). \end{aligned}$$(3.45)
Proof
a) We begin with a calculation in the group algebras of the symmetric groups \(S_n\subset S_{n+1}\), where \(S_n\) is identified with the subgroup of permutations of \(\{1,\ldots ,n+1\}\) leaving \(n+1\) fixed. We claim
where the \(\gamma _k\) are defined by \(\gamma _{n+1}=e\) and \(\gamma _k=\sigma _n\sigma _{n1}\cdots \sigma _k\) for \(1\le k\le n\).
Indeed, it is easily checked that for any \(\pi \in S_{n+1}\), one has \(\rho {:}{=}\pi \gamma _{\pi ^{1}(n+1)}^{1}\in S_n\), so any \(\pi \in S_{n+1}\) is of the form \(\pi =\rho \gamma _k\) for suitable \(\rho \in S_n\) and \(k\in \{1,\ldots ,n+1\}\). As \(\gamma _{k'}\gamma _k^{1}\) lies in \(S_n\) if and only if \(k=k'\), this representation is unique. This implies the claimed formula (3.46).
In case T is involutive, we have \(S_n\)representations given by \(\rho _{T,n}(\sigma _k)=T_k\) and (3.41) follows immediately. In case T is not involutive, \(P_{T,n}\) can be formulated as \(P_{T,n}=\sum _{\pi \in S_n}t(\pi )\), where \(t:S_n\rightarrow \mathcal {B}(\mathcal {H}^{\otimes n})\) is the quasimultiplicative extension of \(t(\sigma _k){:}{=}T_k\), i.e. \(t(\sigma _{i_1}\cdots \sigma _{i_l})=T_{i_1}\cdots T_{i_l}\) for every reduced word \(\sigma _{i_1}\cdots \sigma _{i_l}\in S_n\) [BS91]. This map is welldefined because the \(T_k\) satisfy all relations of \(S_n\) except \(T_k^2=1\).
Given a reduced word w representing \(\rho \in S_n\), it is easy to check that the word \(w\sigma _n\sigma _{n1}\cdots \sigma _k\), which represents \(\rho \gamma _k\), is reduced as well. Thus t maps the left hand side of (3.46) to \(P_{T,n+1}\) and the right hand side of (3.46) to \((P_{T,n}\otimes 1){\tilde{R}}_{T,n+1}\), which proves (3.41).
b) Considering the adjoint of equation (3.41), one gets \(P_{T,n+1}={\tilde{R}}^*_{n+1}(P_{T,n}\otimes 1)\), from which it is then clear that (3.43) is welldefined, namely \(\Psi _n\otimes \xi \in {\text {ker}}P_{T,n+1}\) for \(\Psi _n\in {\text {ker}}P_{T,n}\). We can then calculate the adjoint by
which implies \(a_{R,T}(\xi )[\Psi _{n+1}]=[a_R(\xi )\tilde{R}_{T,n+1}\Psi _{n+1}]\), as claimed.
c) The argument is similar to that in the proof of Lemma 2.7. The new element is the appearance of F in the commutation relation \([F(Z\otimes Z),T]=0\). With \(Y_n{:}{=}Y_{\mathcal {H}^{\otimes n}}\), one checks \(T_k Y_n Z^{\otimes n}=Y_nZ^{\otimes n}T_{nk}\), \(k=1,\ldots ,n1\). This implies \([Y_nZ^{\otimes n},P_{T,n}]=0\). The remaining steps are now the same as in Lemma 2.7, observing that the appearance of Y transforms \(a_L^\#\) into \(a_R^\#\). \(\square \)
For braided twists T, we therefore also have right field operators
and may use them to generate right versions \(\mathcal {R}_{T}(H)\) of the von Neumann algebras \(\mathcal {L}_{T}(H)\) considered so far.
Definition 3.17
Given a closed real subspace \(H\subset \mathcal {H}\) and a braided twist \(T\in {{\mathcal {T}}}_{\ge }\), we define the right Ttwisted ArakiWoods algebra
Remark 3.18

a)
In complete analogy to Lemma 2.9, one shows that \(\Omega \) is cyclic for \(\mathcal {R}_{T}(H)\).

b)
The right and left algebras \(\mathcal {L}_T(H)\) and \(\mathcal {R}_T(H)\) seem not to be related by a natural involution in general because the unitary Y (3.39) does typically not define an operator on \(\mathcal {F}_T(\mathcal {H})\). Only in the more specific situation of Lemma 3.16 c) such a symmetry exists.

c)
In principle, the definition of \(\mathcal {R}_T(H)\) does not need \(T\in {{\mathcal {T}}}_{\ge }\) to be a braided twist. Indeed, whenever \(\Psi _n \in {\text {ker}}P_{T,n}\) implies \(\Psi _n\otimes \xi \in {\text {ker}}P_{T,n+1}\), the operator \(a_{R,T}^{\star }(\xi )[\Psi _n] = [\Psi _n\otimes \xi ]\), \([\Psi _n]\in \mathcal {H}^{\otimes n}/{\text {ker}}P_{T,n}\) is well defined. This is for example the case if \(T\in {{\mathcal {T}}}_{>}\). However, our later proof that \(\mathcal {L}_T(H)\) and \(\mathcal {R}_T(H')\) commute will crucially depend on T being braided.
These remarks suggest that \(\Omega \) being separating for \(\mathcal {L}_{T}(H)\) can be proved by showing that \(\mathcal {R}_{T}(H^\prime )\) and \(\mathcal {L}_{T}(H)\) commute. Hence, we start analyzing the commutations relations between left and right creation and annihilation operators.
Definition 3.19
A twist \(T\in {{\mathcal {T}}}_{\ge }\) is called local w.r.t. a standard subspace \(H\subset \mathcal {H}\) if \(\Psi _n\otimes \xi \in {\text {ker}}P_{T,n+1}\) whenever \(\Psi _n \in {\text {ker}}P_{T,n}\) for every \(n\in \mathbb {N}\) and
Lemma 3.20
Let \(T\in {{\mathcal {T}}}_{\ge }\) and suppose \(\Psi _n\otimes \xi \in {\text {ker}}P_{T,n+1}\) whenever \(\Psi _n \in {\text {ker}}P_{T,n}\) for all \(n\in \mathbb {N}\). Then, for \(\xi ,\eta \in \mathcal {H}\), and \(\Psi _n\in \mathcal {H}^{\otimes n}\)
Furthermore if \(T\in {{\mathcal {T}}}_{\ge }\) is a braided twist, we have in addition
Proof
As discussed above, the condition involving kernels guarantees \(a_{R,T}^\star (\xi )\) to exist as an operator on \(\mathcal {F}_T(\mathcal {H})\). It is easy to see that the left and right creation operators commute and, by taking adjoints, the left and right annihilation also commute. For the mixed relation we get
where we have used (2.16) and \(R_{T,n+1} = R_{T,n}\otimes 1+T_1\cdots T_n\).
In case \(T\in {{\mathcal {T}}}_{\ge }\) is a braided twist, Lemma 3.16 ensures the existence of the right creation operators and fields. One can easily calculate the commutator acting on the vacuum directly. In addition, we have (3.44) and \({\tilde{R}}_{T,n+1}=1\otimes {\tilde{R}}_{T,n}+ T_n\cdots T_1\). Hence, it follows that
Combining these two mixed commutators immediately yields the claimed formula for \([\phi _{L,T}(\xi ),\phi _{R,T}(\eta )][\Psi _n]\). \(\square \)
One can easily see that whenever the right fields are well defined on \(\mathcal {F}_T(\mathcal {H})\)—i.e., \(\Psi _n \in {\text {ker}}P_{T,n}\) implies \(\Psi _n\otimes \xi \in {\text {ker}}P_{T,n+1}\) for all \(\xi ,\eta \in \mathcal {H}\), \(\Psi _n\in \mathcal {H}^{\otimes n}\), and \(n\in \mathbb {N}\)—it follows from the fields commutator in Lemma 3.20 that \(T\in {{\mathcal {T}}}_{\ge }\) is local if, and only if, for all \(\Psi _n \in \mathcal {H}^{\otimes n}\), \(h\in H\) and \(h^\prime \in H^\prime \),
Comparing to the zero twist case, this imposes an additional constraint on an operator \(T\in {{\mathcal {T}}}_{\ge }\) to be local. An example worth mentioning is \(T={\text {id}}_{\mathcal {H}\otimes \mathcal {H}}\), for which \({\text {ker}}P_{T,n}=\mathcal {H}^{\otimes n}\) for all \(n>1\), so the condition above is automatically fulfilled. More interesting is however the situation when kernels are not the whole space. In the next result we give a sufficient condition for a braided twist to be local, in particular, we characterize the local braided strict twists.
Proposition 3.21
For a braided twist \(T\in {{\mathcal {T}}}_{\ge }\) to be local w.r.t. a standard subspace \(H\subset \mathcal {H}\) it is sufficient that
for all \(\Phi _n,\Psi _n\in \mathcal {H}^{\otimes n}\), \(h\in H\), \(h'\in H'\), and all \(n\in \mathbb {N}\). Furthermore, in case \(T\in {{\mathcal {T}}}_{>}\), (3.55) is also necessary.
Proof
First notice that (3.55) is equivalent to, for all \(\Phi _n\in \mathcal {H}^{\otimes n}\), \(h\in H\), and \(h'\in H'\),
Now, Lemma 3.16 ensures the existence of the right fields and Lemma 3.20 yields
In case \(T\in {{\mathcal {T}}}_{>}\) is a strict twist, the kernels are trivial. Hence one obtains also the reverse implication in this case. \(\square \)
We are now in position for proving the converse of Theorem 3.12.
Theorem 3.22
Let \(H\subset \mathcal {H}\) be a standard subspace and \(T\in {{\mathcal {T}}}_{\ge }(H)\) be a compatible braided twist. Assume that T is crossing symmetric w.r.t. H. Then

a)
T is local w.r.t. H, i.e., \(\mathcal {R}_{T}(H^\prime )\subset \mathcal {L}_{T}(H)^\prime \);

b)
\(\Omega \) is cyclic and separating for \(\mathcal {L}_{T}(H)\) and \(\mathcal {R}_{T}(H)\).
Proof
a) We will verify (3.55). Let \(h\in H\), \(h'\in H'\), \(\Psi _n,\Phi _n\in \mathcal {H}^{\otimes n}\) be arbitrary. Thanks to Proposition 3.11, the function
has an analytic extension to the strip \({{\mathbb {S}}}_{1/2}\) which satisfies
On the other hand, T being compatible with H (i.e. \([\Delta _H^{it}\otimes \Delta _H^{it},T]=0\)) implies that we may rewrite f as
Choosing \(J_Hh\) and \(J_Hh^\prime \) to be analytic vectors for the modular automorphism group (this is possible because H and \(H'\) are invariant under the spectral projections \(E_{(\lambda ,\lambda ^{1})}\) of \(\Delta _H\) corresponding to spectrum in \((\lambda ,\lambda ^{1})\subset \mathbb {R}_+\), \(0<\lambda <1\)), we have
For analytic \(h,h'\), the claim now follows by comparing the two different expressions for \(f(t+\frac{i}{2})\) at \(t=0\). For general \(h\in H\), \(h'\in H'\), the claim follows by approximation (Lemma 3.7).
b) It follows from Lemma 2.9 and its right version that \(\Omega \) is cyclic for both \(\mathcal {L}_{T}(H^\prime )\) and \(\mathcal {R}_{T}(H')\). The inclusion \(\mathcal {R}_{T}(H^\prime )\subset \mathcal {L}_{T}(H)^\prime \) proven in part a) then shows that \(\Omega \) is separating for \(\mathcal {L}_{T}(H)\).
Since \({{\mathcal {T}}}_{\ge }(H)={{\mathcal {T}}}_{\ge }(H^\prime )\), part a) implies also \(\mathcal {R}_{T}(H)\subset \mathcal {L}_{T}(H^\prime )^\prime \). By taking commutants, \(\mathcal {L}_{T}(H^\prime )\subset \mathcal {R}_{T}(H)^\prime \) and it follows that \(\Omega \) is separating for \(\mathcal {R}_{T}(H)\). \(\square \)
Combining Theorems 3.12 and 3.22, we obtain the following characterization.
Corollary 3.23
Let \(H\subset \mathcal {H}\) be a standard subspace and \(T\in {{\mathcal {T}}}_{\ge }(H)\) a compatible twist. The following are equivalent:

a)
\(\Omega \) is separating for \(\mathcal {L}_T(H)\).

b)
T is braided and crossing symmetric w.r.t. H.

c)
T is local w.r.t. H.
We now proceed to characterizing the modular data J, \(\Delta \) of \((\mathcal {L}_{T}(H),\Omega )\) (2.27) in terms of the modular data \(J_H,\Delta _H\) of H. The main difficulty in identifying \(J,\Delta \) is the fact that a priori it is not clear that they preserve the particle number grading of \(\mathcal {F}_T(\mathcal {H})\).
We will be working with tensor powers of standard subspaces, and recall that for \(H\subset \mathcal {H}\) a standard subspace, \(H^{\otimes n}\) is defined as the closed real linear span of \(\{h_1\otimes \ldots \otimes h_n\,:\,h_1,\ldots ,h_n\in H\}\). Then \(H^{\otimes n}\subset \mathcal {H}^{\otimes n}\) is a standard subspace, and its modular data are [LMR16, Prop. 2.6]
In particular, \(\mathcal {D}((\Delta _H^{1/2})^{\otimes n})=H^{\otimes n}+iH^{\otimes n}\).
Lemma 3.24
Let H be a standard subspace, \(T\in {{\mathcal {T}}}_{\ge }(H)\) a compatible twist, and \(n\in \mathbb {N}_{\ge 2}\), \(k\in \{1,\ldots ,n1\}\). Then \(\mathcal {D}((\Delta _H^{1/2})^{\otimes n})\) is an invariant subspace for \(T_k\).
Proof
As T is compatible with H, we have \([(\Delta _{H}^{it})^{\otimes n},T_k]=0\) for all \(t\in \mathbb {R}\). Hence \(T_k\) commutes with all spectral projections of the generator \(\sum _{k=1}^n(\log \Delta _H)_k\) of this unitary oneparameter group, and thus leaves the domain of \((\Delta _H^{1/2})^{\otimes n}\) invariant. \(\square \)
Proposition 3.25
Let \(H\subset \mathcal {H}\) be a standard subspace.

a)
If \(T\in {{\mathcal {T}}}_{\ge }(H)\) is a compatible twist and \(\Omega \) is separating for \(\mathcal {L}_{T}(H)\), then the Tomita operator S of \((\mathcal {L}_{T}(H),\Omega )\) is given by
$$\begin{aligned} S = \Gamma _T^Y(S_H), \end{aligned}$$(3.57)i.e. \(S[\xi _1\otimes \ldots \otimes \xi _n]=[S_H\xi _n\otimes \ldots \otimes S_H\xi _1]\), \(\xi _k\in \mathcal {D}_H\) (see Lemma 3.16 c)). The modular conjugation and modular unitaries are given by
$$\begin{aligned} J = \Gamma _T^Y(J_H),\qquad \Delta ^{it}&= \Gamma _T(\Delta _H^{it}),\quad t\in \mathbb {R}. \end{aligned}$$(3.58) 
b)
Conversely, suppose \(T\in {{\mathcal {T}}}_{\ge }\) is a twist, \(\Omega \) is cyclic and separating for \(\mathcal {L}_{T}\), and the Tomita operator S of \((\mathcal {L}_T(H),\Omega )\) satisfies and . Then \([T,\Delta ^{it}_H\otimes \Delta ^{it}_H ]=0\) and \([T,F(J_H\otimes J_H)]=0\); in particular, T is compatible with H.
Proof
a) Compatibility of T with H and \(\Omega \) separating \(\mathcal {L}_{T}(H)\) imply that the operators on the right hand sides of (3.58) exist as (anti)unitaries on \(\mathcal {F}_T(\mathcal {H})\): The unitaries \(\Gamma _T(\Delta _H^{it})\) exist by Lemma 2.7. Since T is crossing symmetric w.r.t. H by Thm. 3.12 a), it follows that T commutes with \(F(J_H\otimes J_H)\) by Lemma 3.4. Hence \(\Gamma _T^Y(J_H)\) exists as an antiunitary involution on \(\mathcal {F}_T(\mathcal {H})\) by Lemma 3.16 c). Consequently, \(\Gamma _T^Y(S_H)=\Gamma _T^Y(J_H)\Gamma _T(\Delta _H^{1/2})\) (3.57) exists as an operator on \(\mathcal {F}_T(\mathcal {H})\) as well.
Let us write \(\mathcal {D}_{H,n}{:}{=}[H^{\otimes n}]+i[H^{\otimes n}]\subset \mathcal {H}_{T,n}\), where the brackets \([\,\cdot \,]\) indicate the \(\Vert \cdot \Vert _T\)closure of the quotient by \({\text {ker}}P_{T,n}\). This subspace is invariant under \(R_{T,n}\) by Lemma 3.24. Thus we have \(a_{L,T}(\xi )\mathcal {D}_{H,n}\subset \mathcal {D}_{H,n1}\) for any \(\xi \in \mathcal {D}_H\). As \(a_{L,T}^\star (\xi )\mathcal {D}_{H,n}\subset \mathcal {D}_{H,n+1}\) is clear for any \(\xi \in \mathcal {D}_H\), it follows inductively that
where \(\phi _{L,T}^H(\xi )=a_{L,T}^\star (\xi )+a_{L,T}(S_H\xi )\). Now we consider the Tomita operator S of \((\mathcal {L}_{T}(H),\Omega )\) and prove inductively
where \(\xi _1,\ldots ,\xi _n\in \mathcal {D}_H\) and \(\xi _1',\ldots , \xi _n'\in \mathcal {D}_{H'}\) are arbitrary. This claim clearly holds for \(n=1\), as \(S\xi _1=S\phi ^H_{L,T}(\xi _1)\Omega =\phi ^H_{L,T}(\xi _1)^\star \Omega =S_H\xi _1\).
For the induction step, we split off terms with highest particle number,
By induction hypothesis, \(E_n^\perp \phi _{L,T}^H(\xi _1)\cdots \phi _{L,T}(\xi _n)\Omega \) lies in \(\hat{\mathcal {D}}_{H,n1}\subset \mathcal {D}(S)\) and is mapped by S to a vector in \(\hat{\mathcal {D}}_{H,n1}\) with vanishing nparticle component. As \(\phi _{L,T}^H(\xi _1)\cdots \phi _{L,T}^H(\xi _n)\Omega \in \mathcal {D}(S)\) as well and is mapped to \(\phi _{L,T}^H(S_H\xi _n)\cdots \phi _{L,T}^H(S_H\xi _1)\Omega \), we obtain \([\xi _1\otimes \ldots \otimes \xi _n]\in \mathcal {D}(S)\) and \(S[\xi _1\otimes \ldots \otimes \xi _n]=[S_H\xi _n\otimes \ldots \otimes S_H\xi _1]\) as claimed. This one sees by observing that for any polynomial Q in the fields \(\phi _{L,T}^{H'}(h_k')\), \(h_k'\in H'\), of degree up to \(n1\), satisfies
We now obtain \(\hat{\mathcal {D}}_{H,n}\subset \mathcal {D}(S)\) by closedness of S. But the above argument can be repeated in complete analogy for \(S^\star \) and \(S_{H'}\) instead of S and \(S_H\) (and left exchanged with right), noting that the operators \(\phi _{L,T}^{H'}(\xi ')\), \(\xi '\in \mathcal {D}_{H'}\), are affiliated with the commutant \(\mathcal {L}_{T}(H)'\supset \mathcal {R}_{T}(H')\) (Theorem 3.22 a)), which completes the induction.
We have shown \(\Gamma _T^Y(S_H)\subset S\) and \(\Gamma _T^Y(S_H^*)\subset S^*\). Thus we also obtain \(\Gamma _T^Y(S_H)^\star =\Gamma _T^Y(S_{H'})\subset S^\star \) and hence \(\Gamma _T^Y(S_H)=S\).
The claims about J and \(\Delta ^{it}\) now follow by polar decomposition (Lemma 3.16 c)).
b) For any \(\eta _1, \eta _2 \in H+iH\) and for any \(\eta _1^\prime , \eta _2^\prime \in H^\prime +iH^\prime \), we have
Hence, \([F(S_H\otimes S_H),T]=0\) and, by the polar decomposition, we must have that \([T,\Delta ^{it}_H\otimes \Delta ^{it}_H ]=0=[T,F(J_H\otimes J_H)]\). \(\square \)
This result generalizes several theorems known in special cases [EO73, LRT78, BJL02, Shl97, BLS11, Lec12].
Remark 3.26
Part b) of this theorem states that a Tomita operator of the “second quantized form”(3.57) requires T to be compatible with H. Such situations (\(\Omega \) separating for \(\mathcal {L}_T(H)\) despite T not being compatible with H) actually occur, as we explain now.
Notice that, if \(H\subset \mathcal {H}\) is a standard subspace, we discussed in Example 3.13 that for each \(n\in \mathbb {N}\),
is a braided crossing symmetric twist, where \(E^{\Delta _H}_{(\frac{1}{n},n)}\) are the spectral projections of \(\Delta _H\) on the intervals \((\frac{1}{n},n)\). Therefore, \(\Omega \) is cyclic and separating for \(\mathcal {L}_T(H)\) thanks to Theorem 3.22. Let us now take \(K\subset H\) another standard subspace. Then, \(\Omega \) is also cyclic and separating for \(\mathcal {L}_T(K)\). Suppose that \(T\in {{\mathcal {T}}}_{\ge }(K)\) for every \(n \in \mathbb {N}\). Then,
This forces \([E^{\Delta _K}_{(\frac{1}{n},n)},E^{\Delta _H}_{(\frac{1}{n},n)}]=0\). Hence, the dense subspace
is invariant under the action of \(\Delta _K^{is}\) and \(\Delta _H^{is}\) for all \(s\in \mathbb {R}\). Therefore D is a common core for \(\log (\Delta _K)\) and \(\log (\Delta _H)\). On the other hand, we know that the closed operators \(S_K,S_H\) form an extension \(S_K\subset S_H\) because \(K\subset H\). The existence of a common core then yields \(S_K=S_H\), i.e., \(K=H\).
From this we see that, if \({\text {dim}}\mathcal {H}=\infty \), there are examples of a standard subspace K and of a braided twist T such that \(\Omega \) is cyclic and separating for \(\mathcal {L}_T(K)\), but T is not compatible with K and consequently the Tomita operator of \((\mathcal {L}_T(K),\Omega )\) is different from \(\Gamma _T^Y(S_K)\).
We also note that the properties of a twist T being compatible with a standard subspace, or being crossing symmetric w.r.t. H, do in general not pass to sub standard subspaces \(K\subset H\).
As a simple corollary to Proposition 3.25, we now obtain a duality between left and right twisted ArakiWoods algebras.
Corollary 3.27
Let \(H\subset \mathcal {H}\) be a standard subspace and \(T\in {{\mathcal {T}}}_{\ge }(H)\) a compatible twist that is braided and crossingsymmetric. Then
Proof
We apply Lemma 3.16 c), noting that \(Z=J_H\) satisfies \([J_H^{\otimes 2}F,T]=0\) by Lemma 3.4. In view of the form of the modular conjugation J established in Proposition 3.25, we therefore have \(J\mathcal {L}_{T}(H)J=\mathcal {R}_{T}(J_HH)=\mathcal {R}_{T}(H')\). As \(J\mathcal {L}_{T}(H)J=\mathcal {L}_{T}(H)'\) by Tomita’s Theorem, the claim follows. \(\square \)
4 Inclusions of Twisted ArakiWoods Algebras
Let \(\mathcal {H}\) be a Hilbert space and T a braided twist on \(\mathcal {H}\otimes \mathcal {H}\). In the previous sections we have constructed two maps
from the set \(\text {Std}_T(\mathcal {H})\) of all standard subspaces \(H\subset \mathcal {H}\) that are compatible with T to the set \(\text {vN}(\mathcal {F}_T(\mathcal {H}))\) of von Neumann subalgebras of \(\mathcal {B}(\mathcal {F}_T(\mathcal {H}))\).
Proposition 4.1
The maps (4.1) have the following properties.

a)
\(\mathcal {L}_{T}(K)\subset \mathcal {L}_{T}(H)\) and \(\mathcal {R}_{T}(K)\subset \mathcal {R}_{T}(H)\) for standard subspaces \(K\subset H\).

b)
If T is crossingsymmetric and \(H\in \text { Std}_T(\mathcal {H})\), then \(\Omega \) is cyclic and separating for \(\mathcal {L}_{T}(H)\) and \(\mathcal {R}_T(H)\), and duality holds, i.e. \(\mathcal {L}_{T}(H)'=\mathcal {R}_{T}(H')\).

c)
Let \(H\in \text { Std}_T(\mathcal {H})\) and U a unitary on \(\mathcal {H}\). If \([U\otimes U,T]=0\), then also \(UH\in \text { Std}_T(\mathcal {H})\), and
$$\begin{aligned} \Gamma _T(U)\mathcal {L}_{T}(H)\Gamma _T(U)^\star&= \mathcal {L}_{T}(UH),\end{aligned}$$(4.2)$$\begin{aligned} \Gamma _T(U)\mathcal {R}_{T}(H)\Gamma _T(U)^\star&= \mathcal {R}_{T}(UH). \end{aligned}$$(4.3)If T is crossing symmetric w.r.t. H, it is crossing symmetric w.r.t. UH.

d)
Let \(H\in \text { Std}_T(\mathcal {H})\) and U an antiunitary on \(\mathcal {H}\). If \([F(U\otimes U),T]=0\), then also \(UH\in \text { Std}_T(\mathcal {H})\), and
$$\begin{aligned} \Gamma _T^Y(U)\mathcal {L}_{T}(H)\Gamma _T^Y(U)^\star&= \mathcal {R}_{T}(UH),\end{aligned}$$(4.4)$$\begin{aligned} \Gamma _T^Y(U)\mathcal {R}_{T}(H)\Gamma _T^Y(U)^\star&= \mathcal {L}_{T}(UH). \end{aligned}$$(4.5)If T is crossing symmetric w.r.t. H, it is crossing symmetric w.r.t. UH.
Proof
Part a) is obvious from the definition of these algebras and b) is the content of Thm. 3.22 and Cor. 3.27. The first part of c) follows by application of Lemma 2.7, and the second part by application of Lemma 3.16 c). The last statement follows easily by observing \(\Delta _{UH}=U\Delta _H U^*\) and \(J_{UH}=UJ_H U^*\). For d), the action of \(\Gamma _T(U)\) on \(\mathcal {L}_T(H)\) and \(\mathcal {R}_T(H)\) follows from Lemma 3.16 c), so we only need to explain the crossing symmetry w.r.t. UH. For arbitrary \(\psi _1,\ldots ,\psi _4\in \mathcal {H}\), we see that the function
lies in \({{\mathbb {H}}}^\infty _{\mathrm{c.bv.}}({{\mathbb {S}}}_{1/2})\), with
Hence T is crossing symmetric w.r.t. UH.
We note that for the crossing symmetry statements in c) and d), the assumption of T being compatible with H is not unnecessary. \(\square \)
Observe that in case \(T=F\) is the tensor flip, both nets coincide, i.e.
This easily follows from the fact that in this case, \(n!^{1}P_{F,n}\) is the projection of \(\mathcal {H}^{\otimes n}\) onto its totally symmetric subspace so that tensor multiplication from the left and right become identical. Let us point out that in general, the two nets are different and do not even form inclusions.
Lemma 4.2
Let T be a braided twist, \(H\subset K\in \text { Std}_T(\mathcal {H})\), and T crossing symmetric w.r.t. H and K. If \(\mathcal {L}_T(H)\subset \mathcal {R}_T(K)\), then

a)
\(\phi _{L,T}(\psi )=\phi _{R,T}(\psi )\) for all \(\psi \in \mathcal {H}\),

b)
\((1+T)(1F)=0\).
If T is a strict twist, \(\mathcal {L}_T(H)\subset \mathcal {R}_T(K)\) is impossible.
Proof
We have \(\phi _{R,T}(h)\Omega =h=\phi _{L,T}(h)\Omega \) for any \(h\in H\). Since the vacuum separates \(\mathcal {R}_T(K)\) and the field operators are affiliated, we conclude \(\phi _{L,T}(h)=\phi _{R,T}(h)\), \(h\in H\). The annihilation/creation structure then implies \(a_{L,T}^\star (h)=a_{R,T}^\star (h)\), which extends to arbitrary \(h\in \mathcal {H}\).
This implies in particular
for any \(h,k\in \mathcal {H}\), and hence \(P_{T,2}=1+T\) vanishes on antisymmetric vectors, i.e. \((1+T)(1F)=0\). For strict twist, \((1+T)\) is invertible, which yields a contradiction. \(\square \)
As \(\mathcal {L}_T(H)\ne \mathcal {R}_T(H)\) in general, it is interesting to consider the relative positions of the \(\mathcal {L}_T\) and \(\mathcal {R}_T\)algebras. This relates in particular to inclusions of twisted ArakiWoods algebras: Given an inclusion of standard subspaces \(K\subset H\subset \mathcal {H}\), we will consider the corresponding inclusion
of von Neumann algebras.^{Footnote 8}
The structure of this inclusion depends strongly on the standard subspace inclusion \(K\subset H\) as well as the twist T. We here focus on the relative commutants
which contains information on the relative position of the \(\mathcal {L}_T\) and \(\mathcal {R}_T\)systems.
For general twist T and standard subspaces \(K\subset H\), a detailed analysis of (4.8) is quite complicated. For instance, setting \(K=H\) this question contains the question whether \(\mathcal {L}_T(H)\) is a factor. For the special twists \(T=qF\), this question has been completely settled only very recently–see [KSW23] and the references therein.
In a few special cases, more is known: If \(T=F\) is the tensor flip (Bose case), then \(\mathcal {C}_{F}(K,H)=\mathcal {L}_{F}(K'\cap H)\), and \(\Omega \) is cyclic for \(\mathcal {F}_{F}(\mathcal {H})\) if and only if \(K'\cap H\) is a cyclic space. This follows from [LRT78] Thm. I.3.2] or [EO73, Lemma 1] by mapping our setting to the Bose Fock space via the unitary \(I=\bigoplus _n I_n\). Results about the Fermionic case \(T=F\) can be found in [Foi83]Prop. 2.5] and [BJL02, Prop. 3.4].
If \(T=T_S\in {{\mathcal {T}}}_{\textrm{Sym}}\) is a symmetric (in particular braided) twist coming from a solution S of the YangBaxter equation with spectral parameter as in (2.11), and S satisfies a number of conditions (including crossing symmetry), then the relative commutant \(\mathcal {C}_{T}(K,H)\) is known to be a type III\(_{1}\) factor having \(\Omega \) as a cyclic vector for certain inclusions \(K\subset H\) that arise in quantum field theory (see Sect. 5) [AL17].
In particular, there seem to exist few results on the inclusions \(\mathcal {L}_{T}(K)\subset \mathcal {L}_{T}(H)\) in case the twist is not unitary, for instance in case \(\Vert T\Vert <1\). In this section, we investigate two types of inclusions in which the structure of \(\mathcal {C}_{T}(K,H)\) can be decided for \(\Vert T\Vert <1\).
4.1 Halfsided modular inclusions
Halfsided modular inclusions were introduced by Wiesbrock [Wie93b, Wie93a] and are of prominent importance in conformal quantum field theory. They are defined as follows.
Definition 4.3
An inclusion of two von Neumann algebras \(\mathcal {N}\subset \mathcal {M}\) with a joint cyclic separating vector \(\Omega \) is called halfsided modular if the modular unitaries \(\Delta ^{it}\) of \((\mathcal {M},\Omega )\) satisfy
For a nontrivial halfsided inclusion \((\mathcal {N}\subset \mathcal {M},\Omega )\), there exists no conditional expectation \(\mathcal {M}\rightarrow \mathcal {N}\) (hence no meaningful notion of index), and the inclusion is not split. Hence no standard methods for investigating the relative commutant of a halfsided inclusion are available.
The structure of a halfsided modular inclusion is closely related to that of a onedimensional Borchers triple, that we also recall here [BLS11].
Definition 4.4
A onedimensional Borchers triple \((\mathcal {M},U,\Omega )\) consists of a von Neumann algebra \(\mathcal {M}\) on a Hilbert space \(\mathcal {H}\), a strongly continuous unitary oneparameter group U with positive generator \({\textrm{P}}\), and a unit vector \(\Omega \in \mathcal {H}\) such that

a)
\(\Omega \) is cyclic and separating for \(\mathcal {M}\), and \(U(x)\Omega =\Omega \) for all \(x\in \mathbb {R}\),

b)
\(U(x)\mathcal {M}U(x)^{1}\subset \mathcal {M}\) for \(x\ge 0\).
Let us recall that for a onedimensional Borchers triple \((\mathcal {M},U,\Omega )\), Borchers’ Theorem [Bor92] asserts that
where \(J,\Delta \) are the modular data of \((\mathcal {M},\Omega )\). Thus U extends to a (anti)unitary representation of the affine group of \(\mathbb {R}\) (the “\(ax+b\) group”).
As a consequence of (4.10), the inclusion \({{\mathcal {N}}}{:}{=}U(1)\mathcal {M}U(1)\subset \mathcal {M}\) coming from a Borchers triple is halfsided modular. Conversely, given a halfsided modular inclusion \(({{\mathcal {N}}}\subset \mathcal {M},\Omega )\), there exists a strongly continuous unitary oneparameter group U such that \((\mathcal {M},U,\Omega )\) is a onedimensional Borchers triple, and \({{\mathcal {N}}}=U(1)\mathcal {M}U(1)\) [Wie93b, AZ05]. This oneparameter group is related to the modular unitaries of \(({{\mathcal {N}}},\Omega )\) and \((\mathcal {M},\Omega )\) by
We may therefore use the structure of onedimensional Borchers triples to define halfsided modular inclusions.
We will say that a halfsided inclusion has unique vacuum if the subspace of Uinvariant vectors is \(\mathbb {C}\Omega \). In case this condition holds and \({\text {dim}}\mathcal {H}>1\), the von Neumann algebras \(\mathcal {M}\) and \(\mathcal {N}\) are (not necessarily hyperfinite) type III\({}_1\) factors [Lon79, Wie93b].
To give examples that are of the form (4.7), we now consider a standard subspace H and a twist T with a compatible translation representation.
Definition 4.5
A translation group compatible with a standard subspace \(H\subset \mathcal {H}\) and a twist \(T\in {{\mathcal {T}}}_{\ge }\) is a strongly continuous oneparameter group U(x), \(x\in \mathbb {R}\), such that

a)
the generator \({\textrm{P}}\) of U(x) is positive,

b)
,

c)
\(U(x)H\subset H\), \(x\ge 0\),

d)
\([U(x)\otimes U(x),T]=0\) for all \(x\in \mathbb {R}\).
Proposition 4.6
Let \(H\subset \mathcal {H}\) be a standard subspace, \(T\in {{\mathcal {T}}}_{\ge }(H)\) a compatible braided crossing symmetric twist and U a compatible translation group. Then \((\mathcal {L}_{T}(H),\Gamma _T\circ U,\Omega )\) is a onedimensional Borchers triple with unique vacuum.
Proof
Thanks to Def. 4.5 d) and Lemma 2.7, \(x\mapsto \Gamma _T(U(x))\) is a unitary oneparameter group on \(\mathcal {F}_T(\mathcal {H})\). It is clear that it has positive generator and fixes the Fock vacuum \(\Omega \), and the latter is the only (up to multiples) translation invariant vector because U(x) has no nonzero fixed points.
Furthermore, we have the covariance relation (cf. Lemma 2.7 b))
As \(\Omega \) is cyclic and separating for \(\mathcal {L}_{T}(H)\) by Thm. 3.22, the proof is finished. \(\square \)
Examples of standard subspaces with compatible translation groups can be easily constructed with the help of positive energy representations of the Poincaré group as we shall discuss in Sect. 5.
To analyze the relative commutants \(\mathcal {C}_{T}(K,H)\), where \(K=U(1)H\subset H\) is given by a compatible translation group U, we will make use of a criterion that was recently developed in [LS22]. Given a onedimensional Borchers triple \((\mathcal {M},U,\Omega )\), one considers bounded open intervals \(I\subset \mathbb {R}\) and a family of von Neumann algebras \(I\mapsto \mathcal {A}(I)\) indexed by these intervals, namely
as well as the algebra at infinity,
Then the following holds.
Proposition 4.7
[LS22] Let \((\mathcal {M},U,\Omega )\) be a onedimensional Borchers triple with unique vacuum. Let \(J,\Delta \) denote the modular data of \((\mathcal {M},\Omega )\), and \(\mathcal {N}{:}{=}U(1)\mathcal {M}U(1)^{1}\subset \mathcal {M}\).

a)
The relative commutants \(\mathcal {A}((0,x))=\mathcal {M}\cap U(x)\mathcal {M}'U(x)^*\), \(x>0\), are trivial if and only if the onedimensional projection \(P_{\Omega }\) onto \(\mathbb {C}\Omega \) lies in \(\mathcal {A}_\infty \).

b)
If \(X\in {{\mathcal {N}}}\vee J{{\mathcal {N}}}J\) is such that exists, then \(L\in \mathcal {A}_\infty \).
We now apply this technique to the halfsided inclusions \(\mathcal {L}_{T}(K)\subset \mathcal {L}_{T}(H)\), \(K{:}{=}U(1) H\subset H\), defined by Prop. 4.6. For \(T=F\), the relative commutant \(\mathcal {C}_F(K,H)\) is known to be nontrivial for \(K'\cap H\ne \{0\}\), and for various symmetric twists it is expected to be nontrivial.
We begin with a preparatory lemma which does not rely on the halfsided structure. The lemma says that an operator A commuting with left and right fields is necessarily quite complicated in the sense that \(A\Omega \) cannot be a finite particle number vector. Here we only need to assume that T is strict (Def. 2.1).
Lemma 4.8
Let \(H, K\subset \mathcal {H}\) be standard subspaces with \({\text {dim}}K\ge 2\) and let \(T\in {{\mathcal {T}}}_{>}(H)\) be a strict twist. Let \(A\in \mathcal {L}_{T}(H)'\cap \mathcal {R}_{T}(K)'\), \(A\ne 0\). If
then \(A\in \mathbb {C}1\).
Proof
The supremum n(A) exists because \(A\ne 0\) and \(\Omega \) separates the intersection \(\mathcal {L}_{T}(H)'\cap \mathcal {R}_{T}(K)'\) (it even separates \(\mathcal {L}_{T}(H)'\) because H is standard, see Lemma 2.9), hence \(A\Omega \ne 0\). We have to show \(n(A)=0\) and proceed by contradiction, assuming \(n(A)>0\).
By assumption, A commutes with \(\phi ^H_{L,T}(\xi )\) and \(\phi ^K_{R,T}(\eta )\) for all \(\xi \in H+iH\) and all \(\eta \in K+iK\), i.e.
Since \([A\Omega ]_{n(A)+2}=0\), projecting these equations onto \(\mathcal {H}_{T,n(A)+1}\) gives (note that \({\text {ker}}P_{T,m}=0\) for all m because \(T\in {{\mathcal {T}}}_{>}\), hence we don’t have to project onto a quotient)
As H is standard, for each \(\eta \in K+iK\) we can find a sequence \((\xi ^\eta _l)_{l\in \mathbb {N}}\subset H+iH\) such that \(\Vert \xi ^\eta _l\eta \Vert _\mathcal {H}\rightarrow 0\) as \(l\rightarrow \infty \). By continuity and the first of the two equations above, we then have
for \(l\rightarrow \infty \). Comparing this equation with the second equation above yields
which is impossible because \((A\Omega )_{n(A)}\ne 0\) and \({\text {dim}}K>1\). \(\square \)
Theorem 4.9
Let \(H\subset \mathcal {H}\) be a standard subspace and \(T\in {{\mathcal {T}}}_{\ge }(H)\) a braided crossingsymmetric twist with \(\Vert T\Vert <1\). Let U be a translation group compatible with H and T, and set \(K{:}{=}U(1)H\subset H\).
Then the halfsided modular inclusion \(\mathcal {L}_{T}(K)\subset \mathcal {L}_{T}(H)\) has trivial relative commutant.
Proof
The idea is to use Prop. 4.7, namely to establish that the vacuum projection \(P_{\Omega }\) lies in the algebra at infinity. The easiest way to achieve this would be to realize it as a weak limit of \(\Delta ^{it}\phi _{L,T}(k)\phi _{R,T}(k')\Delta ^{it}\) as \(t\rightarrow \infty \) (with \(k\in K\), \(k'\in J_H K\)), see Prop. 4.7 b).
Hence we take \(h_1,h_2\in H\) such that \(k{:}{=}U(1)h_1\in K\) and \(k'{:}{=}U(1)J_Hh_2\) satisfy \(\langle k,k'\rangle =1\) (which is possible because H is cyclic), and consider the field operators
these are bounded operators because \(\Vert T\Vert <1\).
In view of the form of the modular unitaries \(\Delta ^{it}\) of \((\mathcal {L}_{T}(H),\Omega )\) (Prop. 3.25), we have
To investigate the limit \(t\rightarrow \infty \), we first recall that \(\Delta _H\) has purely absolutely continuous spectrum and hence \(\Delta _H^{it}\rightarrow 0\) weakly as \(t\rightarrow \infty \) by the RiemannLebesgue–Lemma. This is a consequence of the commutation relations (4.10) and \({\text {ker}}{\textrm{P}}=\{0\}\), which imply that \(\log P\) and \(\log \Delta _H\) satisfy canonical commutation relations and are hence a multiple of the Schrödinger representation [Lon08, Prop. 1.7.1].
This implies that for any \(\xi \in \mathcal {H}\), we have \(a_{L,T}(\Delta _H^{it}\xi )\rightarrow 0\) and \(a_{R,T}(\Delta _H^{it}\xi )\rightarrow 0\) in the strong operator topology as \(t\rightarrow \infty \) (evident on vectors of the form \(\psi _1\otimes \ldots \otimes \psi _n\), then apply uniform boundedness–note that our assumptions imply that T is strict, i.e. \(\mathcal {H}^{\otimes n}=\mathcal {H}_{T,n}\)).
Taking into account the uniform bound (2.18), we see that the first three summands converge weakly to zero as \(t\rightarrow \infty \). With Lemma 3.20, the last term may be rewritten on a vector \(\Psi _n\in \mathcal {H}^{\otimes n}\) as
Here the first term \(a^\star a\) converges weakly to zero as \(t\rightarrow \infty \), and the second term equals \(E_0\Psi _n\) for all t.
Since \(\phi _{L,T}(k)\phi _{R,T}(k')\) is a bounded operator and the unit ball in \({{\mathcal {B}}}(\mathcal {F}_T(\mathcal {H}))\) is compact in the weak operator topology, \(\Delta ^{it}\phi _{L,T}(k)\phi _{R,T}(k')\Delta ^{it}\) has a weak limit for \(t\rightarrow \infty \) along a suitably chosen net \((t_j)_j\) going to \(\infty \). By construction, the limit lies in the algebra at infinity \(\mathcal {A}_\infty \) (4.13).
Hence we conclude that
exists as a bounded operator and \(Q{:}{=}E_0 + W\) lies in \(\mathcal {A}_\infty \). Moreover, Q is selfadjoint because \(\Delta ^{it}\phi _{L,T}(k)\phi _{R,T}(k')\Delta ^{it}\) is selfadjoint for any t. Clearly, \(\Omega \) is an eigenvector of Q, with eigenvalue 1. Hence the spectral projection \(\Pi ^Q_1\in {{\mathcal {B}}}(\mathcal {F}_T(\mathcal {H}))\) of Q for eigenvalue 1 also lies in \(\mathcal {A}_\infty \) and satisfies \(\Pi ^Q_1\ge E_0\).
If we even have \(\Pi ^Q_1=E_0\), Prop. 4.7 a) immediately concludes the proof of the theorem. But in general, the equality \(\Pi ^Q_1=E_0\) is not clear and we have to use Lemma 4.8. In order to be able to do so, we now show that there exists \(n_T\in \mathbb {N}\) such that \(\Pi ^Q_1\) satisfies
To prove this claim, it will be advantageous to work with the Tindependent tensor product norm \(\Vert \cdot \Vert \) instead of \(\Vert \cdot \Vert _T\). Recall that \(\mathcal {H}^{\otimes n}=\mathcal {H}_{T,n}\) as vector spaces because \(\mathcal {H}^{\otimes n}\subset \mathcal {H}_{T,n}\) is dense in the norm \(\Vert \cdot \Vert _T\) and the two norms \(\Vert \cdot \Vert \), \(\Vert \cdot \Vert _T\) are equivalent because of our assumptions on T.
As the operators
are well defined operators on \(\mathcal {H}^{\otimes n}\), \(n\in \mathbb {N}\), with operator norm (w.r.t. the norm \(\Vert \cdot \Vert \)) bounded by \(\Vert W_n(t)\Vert \le \Vert k\Vert \Vert k'\Vert \Vert T\Vert ^n\), the limit \(W_n{:}{=}{{\,\mathrm{{wlim}}\,}}_{j\rightarrow \infty } W_n(t_j)\) also exists in the weak operator topology given by the norm \(\Vert \cdot \Vert \), i.e. \(W_n\) satisfies the same bound on its \(\Vert \cdot \Vert \)operator norm.
Now any \(\Psi _n\in \textrm{Ran}(\Pi ^Q_1)\cap \mathcal {H}^{\otimes n}\) satisfies
As \(\Vert T\Vert ^n\rightarrow 0\) for \(n\rightarrow \infty \), this is only possible for \(\Vert \Psi _n\Vert =0\) (and hence \(\Vert \Psi _n\Vert _T=0\)) for sufficiently large n. This proves the existence of \(n_T\in \mathbb {N}\) such that (4.15) holds.
To finish the proof of the theorem, let \(A\in \mathcal {R}_{T}(U(1)H')\cap \mathcal {L}_{T}(H)\) be an element of the relative commutant of the halfsided modular inclusion \(\mathcal {L}_{T}(K)\subset \mathcal {L}_{T}(H)\). Then A commutes with any element of the algebra at infinity and in particular with \(\Pi ^Q_1\ge E_0\). So we obtain
But the vector \(\Pi ^Q_1A\Omega \) is contained in \(\bigoplus _{n=0}^{n_T}\mathcal {H}_{T,n}\), whereas Lemma 4.8 tells us that \(A\Omega \) is not an element of this space unless \(A\in \mathbb {C}1\). \(\square \)
The significance of this result in quantum field theory will be explained in Sect. 5. Here we note that the following instability result: If we take \(T=qF\), then Theorem 4.9 shows that the halfsided inclusion \(\mathcal {L}_{qF}(K)\subset \mathcal {L}_{qF}(H)\) has trivial relative commutant for any \(1<q<1\), whereas the relative commutant equals \(\mathcal {L}_F(K'\cap H)\) (which has \(\Omega \) as a standard vector) for \(q=1\) because of the familiar structure of second quantization factors. Such instability phenomena of inclusions under deformations are in line with the observations in [BLS11, Tan12, LS22].
4.2 \(L^2\)nuclearity and quasisplit inclusions
So far we have obtained results about (halfsided) inclusions \(\mathcal {L}_{T}(K)\subset \mathcal {L}_{T}(H)\) of twisted ArakiWoods algebras having trivial relative commutant \(\mathcal {R}_{L,T}(H,K)=\mathbb {C}\). We now add a complementary result, showing that other inclusions of the form \(\mathcal {L}_{T}(K)\subset \mathcal {L}_{T}(H)\) can also have large relative commutants.
The mechanism behind this discussion is the \(L^2\)nuclearity condition of Buchholz, D’Antoni, and Longo [BDL07] and the theory of (quasi)split inclusions [DL84, Fid01].
Definition 4.10
An inclusion \({{\mathcal {N}}}\subset \mathcal {M}\) of von Neumann algebras with joint cyclic separating vector and corresponding modular operators \(\Delta _{{\mathcal {N}}}\), \(\Delta _\mathcal {M}\) is said to satisfy \(L^2\)nuclearity if \(\Delta _\mathcal {M}^{1/4}\Delta _{{\mathcal {N}}}^{1/4}\) is of trace class.
If \({{\mathcal {N}}}\subset \mathcal {M}\) satisfies \(L^2\)nuclearity, then it is quasisplit, namely there exist type I factors \(\mathcal {I}\), \(\tilde{\mathcal {I}}\) such that \({{\mathcal {N}}}\otimes \mathbb {C}\subset \mathcal {I}\subset \mathcal {M}\otimes \tilde{\mathcal {I}}\). If \({{\mathcal {N}}}\) or \(\mathcal {M}\) is a factor, we even have the split property, namely \({{\mathcal {N}}}\subset \mathcal {I}\subset \mathcal {M}\) with some type I factor \(\mathcal {I}\).
A consequence of \({{\mathcal {N}}}\subset \mathcal {M}\) being quasisplit is that whenever \(\mathcal {M}\) is of type III, then also the relative commutant \({{\mathcal {N}}}'\cap \mathcal {M}\) is of type III. These results are generalizations of [DL84] to the nonfactor case [Fid01], see [BM22, Cor. 3.11].
We now state our nontriviality result for the relative commutant \(\mathcal {C}_{T}(K,H)\) under quite strong assumptions. This result is closely related to the work of D’Antoni, Longo, and Radulescu [DLR01] who considered the case \(T=0\).
Proposition 4.11
Let \(K\subset H\) be an inclusion of standard subspaces and T a braided twist such that

a)
\(L^2\)nuclearity holds on the standard subspace level, i.e. \(\Vert \Delta _H^{1/4}\Delta _K^{1/4}\Vert _1<1\), where \(\Vert \cdot \Vert _1\) is the trace norm on \(\mathcal {H}\),

b)
T is crossingsymmetric w.r.t. H,

c)
T is compatible with K and H, and has norm \(\Vert T\Vert <1\).
Then \(\mathcal {L}_{T}(K)\subset \mathcal {L}_{T}(H)\) satisfies \(L^2\)nuclearity and is quasisplit. If \(\mathcal {L}_{T}(H)\) is of type III, also the relative commutant \(\mathcal {C}_{T}(K,H)\) is of type III.
Proof
We first note that in view of the assumptions, \(\Omega \) is cyclic and separating for \(\mathcal {L}_{T}(H)\) and hence also separating for the subalgebra \(\mathcal {L}_{T}(K)\). It is also cyclic for the subalgebra because K is a standard subspace, so we have \(\Omega \) as a joint cyclic separating vector.
Thanks to the compatibility assumption for K and H, the modular operators \(\hat{\Delta }_K\) and \(\hat{\Delta }_H\) of \(\mathcal {L}_{T}(K)\) and \(\mathcal {L}_{T}(H)\) are of second quantized form (Prop. 3.25). Hence the trace norm of \(\hat{\Delta }_H^{1/4}\hat{\Delta }_K^{1/4}\) is
where \(\Vert \cdot \Vert _{T,1}\) denotes the trace norm of the trace class in \({{\mathcal {B}}}(\mathcal {H}_{T,n})\).
As \(\Vert T\Vert <1\) is a strict twist, the operator \(P_{T,n}^{1/2}:\mathcal {H}^{\otimes n}\rightarrow \mathcal {H}_{T,n}\) is unitary. Hence \(\Vert (\Delta _H^{1/4}\Delta _K^{1/4})^{\otimes n}\Vert _{T,1}=\Vert P_{T,n}^{1/2}(\Delta _H^{1/4}\Delta _K^{1/4})^{\otimes n}P_{T,n}^{1/2}\Vert _{1}\), where \(\Vert \cdot \Vert _1\) denotes the trace norm of the trace class in \({{\mathcal {B}}}(\mathcal {H}^{\otimes n})\). But as T is compatible with K and H, the operators \(P_{T,n}^{\pm 1/2}\) commute with \((\Delta _H^{1/4}\Delta _K^{1/4})^{\otimes n}\) and thus drop out. Now we may use the tensor structure of \(\Vert \cdot \Vert _1\) to conclude
\(\square \)
Let us comment on the assumptions entering into this proposition. The compatibility condition for T with H and K is quite strong in general, but automatically satisfied for \(T=qF\), \(1<q<1\). In this case, it is also known from Hiai’s work that \(\mathcal {L}_{T}(H)\) is a type III\({}_1\) factor if \(\Delta _H\) does not have eigenvalue 1 [Hia01, Prop. 3.2].
The \(L^2\)nuclearity assumption on the level of the standard subspaces is also a strong assumption, but it is known to hold (including the norm inequality \(\Vert \Delta _H^{1/4}\Delta _K^{1/4}\Vert _1<1\)) for certain inclusions of standard subspaces arising QFT (see Sect. 5).
5 Applications to Quantum Field Theory
In this section we explain some applications of our constructions in algebraic quantum field theory [Haa96, BDFY15], where the main object of interest are families of von Neumann algebras labeled by open regions in some spacetime manifold, subject to several physically motivated conditions.
Since we will consider quantum field theories on a variety of different spacetimes, we use an abstract formulation. From the structure of spacetime as a globally hyperbolic Lorentzian manifold \({{\mathscr {M}}}\) we only need that \({{\mathscr {M}}}\) has a family \({{\mathscr {O}}}\) of “good” subsets (to be thought of as the causally complete convex regions), a notion of causal complement, mapping subsets \(\mathcal {O}\in {{\mathscr {O}}}\) to their complements \(\mathcal {O}'\in {{\mathscr {O}}}\) such that \((\mathcal {O}')'=\mathcal {O}\) for all \(\mathcal {O}\). Furthermore, we require that there exists a Lie group G acting on \({{\mathscr {M}}}\) such that \(g\mathcal {O}\in {{\mathscr {O}}}\) for \(\mathcal {O}\in {{\mathscr {O}}}\) and preserving complementation, \(g\mathcal {O}'=(g\mathcal {O})'\) for all \(g\in G\), \(\mathcal {O}\in {{\mathscr {O}}}\).
In this general setting, we require the existence of a reference region with the following properties.
 (reference wedge):

There exists \(W_0\in {{\mathscr {O}}}\) such that there is a oneparameter group \(\lambda _0(t)\in G\), \(t\in \mathbb {R}\), and an involution \(j_0\in G\) such that \(\lambda _0(t)W_0=W_0\) for all \(t\in \mathbb {R}\), and \(j_0W_0=W_0'\) as well as \(j_0\lambda _0(t)=\lambda _0(t)j_0\).
We will refer to the reference region \(W_0\) as “reference wedge” although its geometrical shape can be quite different (see examples below), and to elements of the Gorbit \({{\mathscr {W}}}{:}{=}GW_0\subset {{\mathscr {O}}}\) as “wedges”.
 (wedge separation property):

For any \(\mathcal {O}_1,\mathcal {O}_2\in {{\mathscr {O}}}\) with \(\mathcal {O}_1\subset \mathcal {O}_2'\), there exists a wedge \(W\in {{\mathscr {W}}}\) such that \(\mathcal {O}_1\subset W\subset \mathcal {O}_2'\).
 (wedge intersection property):

For any \(\mathcal {O}\in {{\mathscr {O}}}\), there holds
$$\begin{aligned} \mathcal {O}= \bigcap _{W\in {{\mathscr {W}}}:W\supset \mathcal {O}}W. \end{aligned}$$(5.1)
Two examples of this setting are the following.

a)
Minkowski spacetime \({{\mathscr {M}}}=\mathbb {R}^{1+s}\), \(s\ge 1\), with \({{\mathscr {O}}}\) the set of all convex causally complete regions, \(\mathcal {O}'\) the causal complement, G the Poincaré group, and \(W_0=\{x\in \mathbb {R}^{1+s}:\,x_1>x_0\}\) the Rindler wedge. Here \(\lambda _0(t)\) are the Lorentz boosts in \(x_1\)direction with parameter t, and \(j_0\) is the reflection at the edge of \(W_0\).

b)
The lightray \({{\mathscr {M}}}=\mathbb {R}\) with \({{\mathscr {O}}}\) the set of all open intervals and halflines, \(\mathcal {O}'\) the settheoretic complement, G the affine group of \(\mathbb {R}\), and \(W_0=\mathbb {R}_+\). Here \(\lambda _0(t)\) are the dilations \(x\mapsto e^tx\) and \(j_0\) is the reflection \(x\mapsto x\).
Further examples include the circle \({{\mathscr {M}}}=S^1\) with Möbius group symmetry or de Sitter spacetime with Lorentz group symmetry. These examples are well known, and recently a general grouptheoretic formulation has been developed which includes these and further cases [MN21, MNO22].
The first step to a quantum field theory on \({{\mathscr {M}}}\) consists in describing the oneparticle localization structure, which we shall do by modular localization. As explained in the work of Brunetti, Guido and Longo [BGL02] and later generalizations [Mun03, MN21], we consider an (anti)unitary representation U of G on a Hilbert space \(\mathcal {H}\), namely a strongly continuous group homomorphism U from G to the group of (anti)unitary operators on \(\mathcal {H}\) such that \(U(j_0)\) is antiunitary. Denoting the connected component of the identity by \(G^\uparrow \subset G\), we then have \(G=G^\uparrow \rtimes {{\mathbb {Z}}}_2\), where \({{\mathbb {Z}}}_2\) acts by conjugation with \(j_0\). We also write \(G^\downarrow {:}{=}G\backslash G^\uparrow =G^\uparrow j_0\).
Then \(t\mapsto U(\lambda _0(t))=e^{itB}\) is a unitary oneparameter group with some selfadjoint generator B, and \(U(j_0)\) is an antiunitary involution. Setting
we obtain a standard subspace \(H_0\subset \mathcal {H}\) with the modular data specified above.
We shall assume that \(H_0\) is localized in \(W_0\) in the sense that
This inclusion property is known to be closely linked to positive energy properties of the representation U: It holds if U is a positive energy representation of the Poincaré group (in the Minkowski space example a)) [BGL02], or if if the generator of translations in the affine group is positive (lightray example b)). See also [MN21] for a general spectral condition implying (5.3) for \(g\in G^\uparrow \).
Once (5.3) holds, we may consistently interpret the vectors in \(H_0\) as being localized in \(W_0\), and obtain a net of standard subspaces for wedges, namely
Note that this map is welldefined thanks to the inclusion property (5.3) which implies that the stabilizer group of \(W_0\) fixes \(H_0\) in the representation U. The standard subspace net has the duality property
For \(W=W_0\) this follows by choosing \(g=j_0\) in (5.4) and observing \(U(j_0)H_0=J_{H_0}H_0=H_0'\), and for general wedges by covariance.
To connect to the twisted ArakiWoods algebras, we need to amplify U to a representation on \(\mathcal {F}_T(\mathcal {H})\) for suitable twists T. Since we also need T to be braided and crossing symmetric for our standardness results to hold, we add these assumptions here.
Definition 5.1
Let U be an (anti)unitary representation of G such that (5.3) holds. A twist \(T\in {{\mathcal {T}}}_{\ge }\) is called admissible if it is braided, Ginvariant in the sense that
and crossingsymmetric w.r.t. \(H_0\).
The Ginvariance condition amounts to T respecting the symmetries of the spacetime under consideration. It is trivially satisfied if \(T=qF\), \(1\le q\le 1\). Note that an admissible twist is automatically compatible with \(H_0\) (and hence any H(W), \(W\in {{\mathscr {W}}}\)), in the sense of Def. 3.1.
For admissible T, the operators
are welldefined (anti)unitary operators on \(\mathcal {F}_T(\mathcal {H})\) (Lemma 2.7 and Lemma 3.16). It is clear that \(U_T\) is a (anti)unitary representation that leaves \(\Omega \) invariant.
Given a representation U and admissible T, we thus obtain a representation \(U_T\) of G on \(\mathcal {F}_T(\mathcal {H})\) and two maps
from wedges \(W\in {{\mathscr {W}}}\) to von Neumann algebras on \(\mathcal {F}_T(\mathcal {H})\).
Proposition 5.2
Let U be a (anti)unitary Grepresentation with the inclusion property (5.3), and T and admissible twist. Then the nets (5.8) satisfy

(a)
Isotony: \(\mathcal {L}_T(H(W_1))\subset \mathcal {L}_T(H(W_2))\) for wedges \(W_1\subset W_2\), and analogously for \(\mathcal {R}_T\),

(b)
Covariance: For any \(W\in {{\mathscr {W}}}\),
$$\begin{aligned} U_T(g)\mathcal {L}_T(H(W))U_T(g)^{1}= {\left\{ \begin{array}{ll} \mathcal {L}_T(H(gW)) &{} g\in G^\uparrow \\ \mathcal {R}_T(H(gW)) &{} g\in G^\downarrow \end{array}\right. }, \end{aligned}$$(5.9)and analogously with \(\mathcal {L}_T\) and \(\mathcal {R}_T\) exchanged.

(c)
ReehSchlieder property: \(\Omega \) is cyclic and separating for \(\mathcal {L}_T(W)\) and \(\mathcal {R}_T(W)\), \(W\in {{\mathscr {W}}}\).

(d)
Relative locality: For wedges \(W_1\subset W_2'\), we have
$$\begin{aligned} \mathcal {L}_T(H(W_1)) \subset \mathcal {R}_T(H(W_2))', \end{aligned}$$(5.10)and analogously with \(\mathcal {L}_T\) and \(\mathcal {R}_T\) exchanged.
Proof
a) follows from (5.3) and Prop. 4.1 a). Item b) is a consequence of Prop. 4.1 c), taking into account \(U_T(j_0)=J_{H_0}\). Item c) is contained in Thm. 3.22, and d) follows from
\(\square \)
We may interpret this structure as a quantum field theory in two different ways. In the first version, we consider \(G^\uparrow \) as our symmetry group. Then both nets \(W\mapsto \mathcal {L}_T(H(W))\) and \(W\mapsto \mathcal {R}_T(H(W))\) are \(G^\uparrow \)covariant and relatively local in the sense of item d) above. However, for \(T\ne F\) typically neither \(\mathcal {L}_T\) nor \(\mathcal {R}_T\) is local (see Lemma 4.2).
In the second version, we consider G as our symmetry group. Then the transformation behavior from item b) above imposes an additional constraint in case there exists \(g_0\in G^\uparrow \) with \(g_0W_0=W_0'\). Namely, in that case we must have \(\mathcal {L}_T(H_0')=\mathcal {R}_T(H_0')\) for \(W\mapsto \mathcal {L}_T(H(W))\) to be Gcovariant. Apart from \(T=F\), this is typically not the case (see Lemma 4.2). However, this conflict does not occur in several situations of interest, such as twodimensional Minkowski space, the lightray example, or higherdimensional Minkowski space with a restricted symmetry group (see [BS07] for similar considerations). If \(W_0'\not \in G^\uparrow W_0\), we may take
as the definition of our net, which is then Gcovariant and local as a consequence of items b) and d) above. Analogously, we could work with \(\mathcal {R}_T\) instead of \(\mathcal {L}_T\).
We will adopt this second point of view because it leads to local nets \(\tilde{\mathcal {L}}_T\), and refer to [Lec12] for a scheme (for special twists) in which the restriction to lowdimensional spacetime or smaller symmetry groups can be overcome.
The net \(\tilde{\mathcal {L}}_T\) is so far defined on the set of wedges \({{\mathscr {W}}}\), but naturally extends to the larger set \({{\mathscr {O}}}\) of localization regions. Here the assumptions of wedge separation and wedge intersection enter.
Proposition 5.3
Let U be a representation with the inclusion property (5.3), T an admissible twist, and assume that \(G^\uparrow W_0\) does not contain \(W_0'\). Then the map
is welldefined,

a)
Gcovariant, namely \(U_T(g)\mathcal {A}_{U,T}(\mathcal {O})U_T(g^{1})=\mathcal {A}_{U,T}(g\mathcal {O})\), \(g\in G\), \(\mathcal {O}\in {{\mathscr {O}}}\),

b)
isotonous, namely \(\mathcal {A}_{U,T}(\mathcal {O}_1)\subset \mathcal {A}_{U,T}(\mathcal {O}_2)\) for \(\mathcal {O}_1\subset \mathcal {O}_2\),

c)
local, namely \(\mathcal {A}_{U,T}(\mathcal {O}_1)\subset \mathcal {A}_{U,T}(\mathcal {O}_2)'\) for \(\mathcal {O}_1\subset \mathcal {O}_2'\).
Proof
The map is welldefined because any \(\mathcal {O}\in {{\mathscr {O}}}\) is contained in a wedge by the wedge intersection property. a) and b) are obvious. For c), note that for \(\mathcal {O}_1\subset \mathcal {O}_2'\) there exists a wedge W such that \(\mathcal {O}_1\subset W\) and \(\mathcal {O}_2\subset W'\) (wedge separation property). Hence either W or \(W'\) lies in the \(G^\uparrow \)orbit of \(W_0\). In case \(W=gW_0\), \(g\in G^\uparrow \), we have \(\mathcal {A}_{U,T}(\mathcal {O}_1)\subset \mathcal {L}_{T}(H(W))\) and
which implies the claim. The case \(W'=gW_0\), \(g\in G^\uparrow \), is analogous. \(\square \)
Given a representation U and a twist T satisfying our assumptions, we therefore get a net \(\mathcal {A}_{U,T}\) satisfying the basic properties of a quantum field theory. In particular, this construction recovers the free field for \(T=F\).
The representation U entering the definition of \(\mathcal {A}_{U,T}\) encodes the single particle structure (such as particle masses and spins), and the twist T is expected to be characteristic of the interaction in the underlying theory. This is well understood in case T comes from a YangBaxter solution with spectral parameter (Example 2.4), in which case it precisely encodes the twoparticle scattering operator and leads to a scheme for the operatoralgebraic construction of integrable QFTs [Lec08, AL17]. In this case, our notion of crossing symmetry also coincides with the scattering theory definition of crossing symmetry (Remark 3.15).
In general, it is expected that the local algebras (5.12) may fail to have \(\Omega \) as a cyclic vector, or be too small to allow for interesting observables localized in \(\mathcal {O}\). In some cases, we will give proofs of these expectations below. One should therefore view \(\mathcal {A}_{U,T}\) as a “germ” of a quantum field theory (also called “wedgelocal quantum field theory”). The class of all wedgelocal models contains both, “strictly local” models in which \(\Omega \) is cyclic for all \(\mathcal {A}_{U,T}(\mathcal {O})\), \(\mathcal {O}\in {{\mathscr {O}}}\), as well as nonlocal models in which this property does not hold.
The challenge to efficiently decide which class a given tuple U, T corresponds to constitutes the QFT part of the motivation for the present article. We here comment on models with \(\Vert T\Vert <1\) which have not been investigated so far.
Typically for a given region \(\mathcal {O}\in {{\mathscr {O}}}\), there will exist two wedges \(W_1=g_1W_0\), \(W_2=g_2W_0\), \(g_1,g_2\in G^\uparrow \), such that
This is for instance the case for \(\mathcal {O}\) a double cone in Minkowski space, or an interval on the lightray, where \(W_1\) is a wedge (halfline) open to the right, and \(W_2'\) is a wedge (halfline) open to the left. In this situation,
namely \(\mathcal {A}_{U,T}(\mathcal {O})\) is a subalgebra contained in the relative commutant of the inclusion \(\mathcal {L}_T(H(W_1))\subset \mathcal {L}_T(H(W_2))\). In the cases mentioned above (twodimensional Minkowski space or lightray), we actually have equality between \(\mathcal {A}_{U,T}(\mathcal {O})\) and the relative commutant.
Our results on relative commutants (Theorem 4.9 and Proposition 4.11) then apply as follows.

Lightlike inclusions of wedges or lightrays. Consider \(W_0+a\subset W_0\) a lightlike inclusion of wedges (i.e. \(a=(\lambda ,\lambda ,0,\ldots ,0)\), \(\lambda >0\)) in the Minkowski example a), or \(\mathbb {R}_++\lambda \subset \mathbb {R}_+\), \(\lambda >0\), an inclusion of half lines in the lightray example b). In a positive energy representation, we are then in the situation of Def. 4.5 and hence the corresponding inclusions \(\mathcal {L}_T(H(W_0+a))\subset \mathcal {L}_T(H(W_0))\) and \(\mathcal {L}_T(H(\mathbb {R}_++\lambda ))\subset \mathcal {L}_T(H(\mathbb {R}_+))\) are halfsided modular. Now consider an arbitrary admissible twist with \(\Vert T\Vert <1\) (for example, \(T=qF\) with \(q<1\), or a scaled YangBaxter solution \(T=qT_S\) as in Example 2.5). Then Theorem 4.9 implies that the halfsided inclusion has trivial relative commutant. In the context of the net \(\mathcal {A}_{U,T}\), the interpretation of this fact is that there are no observables strictly localized in the relative complement of the inclusion, i.e. on the lightfront \(\overline{W_0'+a}\cap {\overline{W}}_0\) or the lightlike interval \((0,\lambda )\). Hence \(\mathcal {A}_{U,T}\) is nonlocal from this point of view.

\(L^2\)modular inclusions for massless theories. Consider Minkowski space \(\mathbb {R}^{d+1}\), \(d\ge 1\), two double cones \(\mathcal {O}_1,\mathcal {O}_2\) with \(\overline{\mathcal {O}_1}\subset \mathcal {O}_2\), and the representation U defining the free massless scalar field. Then the corresponding standard subspaces \(H(\mathcal {O}_1)\subset H(\mathcal {O}_2)\) satisfy \(L^2\)nuclearity including the trace norm bound \(\Vert \Delta _{H(\mathcal {O}_2)}^{1/4}\Delta _{H(\mathcal {O}_1)}^{1/4}\Vert _1<1\) if the distance between \(\mathcal {O}_1\) and \(\partial \mathcal {O}_2\) is sufficiently large [BDL07]. Now consider an arbitrary admissible twist with \(\Vert T\Vert <1\); for example, \(T=qF\) with \(q<1\). As the modular operators do not have eigenvalue 1, in this case \(\mathcal {L}_T(H(\mathcal {O}_i))\) are type III\({}_1\) factors and it follows from Prop 4.11 implies that the relative commutant of the inclusion \(\mathcal {L}_T(H(\mathcal {O}_1))\subset \mathcal {L}_T(H(\mathcal {O}_2))\) is of type III as well. The interpretation of this fact is that there are lots of elements of \(\mathcal {L}_T(H(\mathcal {O}_2))\) that are localized in \(\mathcal {O}_1'\cap \mathcal {O}_2\) in the sense that they commute with the subalgebra \(\mathcal {L}_T(H(\mathcal {O}_1))\).
The first result can be understood as a sign that the models with \(\Vert T\Vert <1\) are strongly nonlocal. It complements results establishing large relative commutants for special twists with \(\Vert T\Vert =1\), and we view such examples as counterexamples to the construction of strictly local theories. The second result does not strictly fit to the wedgelocal setting because of the different geometry (double cone inclusions), but does indicate that nets which appear strongly nonlocal might contain more local observables than anticipated.
We expect to learn from both scenarios and other examples how to better control the local observable content of twisted models in future work on constructive algebraic quantum field theory.
Data Availability Statement
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
Notes
Recall that a standard subspace H of a complex Hilbert space \(\mathcal {H}\) is a real linear closed subspace such that \(H+iH\) is dense in \(\mathcal {H}\) and \(H\cap iH=\{0\}\), see Sect. 2.
Here and hereafter, we use the notation \(T_k{:}{=}1^{\otimes (k1)}\otimes T\otimes 1^{\otimes (nk1)}\in \mathcal {B}(\mathcal {H}^{\otimes n})\).
In [JSW95, Thm. 2.3.2] this conclusion is shown under the slightly stronger assumption \(\Vert T\Vert <\frac{1}{2}\), but the arguments given there carry over to \(\Vert T\Vert \le \frac{1}{2}\).
For \({\text {dim}}\mathcal {H}<\infty \), these solutions have been classified in [LPW19, Thm. 4.8].
That is, the equation \(S(\theta )_1S(\theta +\theta ')_2S(\theta ')_1=S(\theta ')_2S(\theta +\theta ')_1S(\theta )_2\) holds in \(\mathcal {B}(\mathcal {K}^{\otimes 3})\) for almost all \(\theta ,\theta '\in \mathbb {R}\). This condition is automatically satisfied if \(\mathcal {K}=\mathbb {C}\).
These operators generalize free quantum fields, hence the name.
A remark on notation: We use square brackets to indicate the equivalence classes in the quotient (2.6), also extended to direct sums over several particle numbers. Indices n denote projection to the nparticle subspace. For example, \([\phi _{L,T}(h_1)\phi _{L,T}(h_2)\Omega ]_2=[h_1\otimes h_2]\) denotes the 2particle component of the equivalence class \([h_1\otimes h_2]\).
By taking commutants, one also obtains a “right” version \(\mathcal {R}_{T}(H')\subset \mathcal {R}_{T}(K')\), and in case \([T,F]=0\) (e.g., for \(T=qF\)), the unitary Y (3.39) satisfies \(Y\mathcal {L}_T(H)Y^\star =\mathcal {R}_T(H)\) for every standard subspace H (Lemma 3.16 c)), so that the inclusions \(\mathcal {L}_{T}(K)\subset \mathcal {L}_{T}(H)\) and \(\mathcal {R}_{T}(K)\subset \mathcal {R}_{T}(H)\) are isomorphic. The investigation of the relation between the \(\mathcal {L}_T\) and \(\mathcal {R}_T\)inclusions for general T is left to future work.
References
Abdalla, E., Abdalla, M., Rothe, K.: Nonperturbative Methods in TwoDimensional Quantum Field Theory. World Scientific (2001)
Alazzawi, S., Lechner, G.: Inverse scattering and locality in integrable quantum field theories. Commun. Math. Phys. 354, 913–956 (2017). https://doi.org/10.1007/s0022001728910
Araki, H., Woods, E.: A classification of factors. Publ. Res. Inst. Math. Sci. 4(1), 51–130 (1968)
Araki, H., Zsido, L.: Extension of the structure theorem of Borchers and its application to halfsided modular inclusions. Rev. Math. Phys. 17, 491–543 (2005)
Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J. (eds.): Advances in Algebraic Quantum Field Theory. Springer, Berlin (2015)
Buchholz, D., D’Antoni, C., Longo, R.: Nuclearity and thermal states in conformal field theory. Commun. Math. Phys. 270, 267–293 (2007)
Bros, J., Epstein, H., Glaser, V.: A proof of the crossing property for twoparticleamplitudes in general quantum field theory. Commun. Math. Phys. 1, 240–264 (1965)
Brunetti, R., Guido, D., Longo, R.: Modular localization and Wigner particles. Rev. Math. Phys. 14, 759–786 (2002)
Baumgärtel, H., Jurke, M., Lledó, F.: Twisted duality of the CAR algebra. J. Math. Phys. 43, 4158–4179 (2002)
Bożejko, M., Kümmerer, B., Speicher, R.: qGaussian processes: noncommutative and classical aspects. Commun. Math. Phys. 185(1), 129–154 (1997)
Buchholz, D., Lechner, G.: Modular nuclearity and localization. Ann. Henri Poincaré 5, 1065–1080 (2004)
Buchholz, D., Lechner, G., Summers, S.J.: Warped convolutions, Rieffel deformations and the construction of quantum field theories. Commun. Math. Phys. 304, 95–123 (2011). https://doi.org/10.1007/s0022001011371
Bikram, P., Mukherjee, K.: Generator masas in qdeformed ArakiWoods von Neumann algebras and factoriality. J. Funct. Anal. 273(4), 1443–1478 (2017). https://doi.org/10.1016/j.jfa.2017.03.005
Bikram, P., Mukherjee, K.: On the commutants of generators of qdeformed ArakiWoods von Neumann algebras. Publ. Res. Inst. Math. Sci. Kyoto 58(2), 532 (2022)
Borchers, H.J.: The CPT theorem in twodimensional theories of local observables. Commun. Math. Phys. 143, 315–332 (1992). https://doi.org/10.1007/BF02099011
Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics II. Springer, Berlin (1997)
Bożejko, M., Speicher, R.: An example of a generalized Brownian motion. Commun. Math. Phys. 137(3), 519–531 (1991). https://doi.org/10.1007/BF02100275
Bożejko, M., Speicher, R.: Completely positive maps on coxeter groups, deformed commutation relations, and operator spaces. Math. Ann. 300, 97–120 (1994)
Buchholz, D., Summers, S.J.: String and branelocalized fields in a strongly nonlocal model. J. Phys. A 40, 2147–2163 (2007)
Bischoff, M., Tanimoto, Y.: Integrable QFT and longowitten endomorphisms. Ann. Henri Poincaré 16(2), 569–608 (2015)
Daletskii, A., Kalyuzhny, A., Lytvynov, E., Proskurin, D.: Fock representations of multicomponent (particularly nonAbelian anyon) commutation relations. Rev. Math. Phys. 32(05), 2030004 (2020)
Doplicher, S., Longo, R.: Standard and split inclusions of von Neumann algebras. Invent. Math. 75, 493–536 (1984)
D’Antoni, C., Longo, R., Radulescu, F.: Conformal nets, maximal temperature and models from free probability. J. Oper. Theory 45, 195–2008 (2001)
Evans, D., Kawahigashi, Y.: Quantum symmetries and operator algebras. Oxford Science Publications, Oxford (1998)
Eckmann, J.P., Osterwalder, K.: An application of Tomita’s theory of modular Hilbert algebras: duality for free Bose fields. J. Funct. Anal. 13(1), 1–12 (1973)
Frisch, U., Bourret, R.: Parastochastics. J. Math. Phys. 11(2), 364–390 (1970)
Figliolini, F., Guido, D.: On the type of second quantization factors. J. Oper. Theory 31(2), 229–252 (1994)
Fidaleo, F.: On the Split Property for Inclusions of W*Algebras. Proc. Am. Math. Soc. 130(1), 121–127 (2001)
Foit, J.J.: Abstract Twisted Duality for Quantum Free Fermi Fields. Publ. Res. Inst. Math. Sci. Kyoto 19, 729–741 (1983)
Guionnet, A., Shlyakhtenko, D.: Free monotone transport. Invent. Math. 197(3), 613–661 (2014)
Haag, R.: Local Quantum PhysicsFields, Particles, 2nd edn. Springer, Berlin (1996)
Hiai, F.: \(q\)deformed ArakiWoods Algebras, vol. 1250, pp. 169–202. Bucharest, Theta (2001)
Hollands, S., Lechner, G.: \(SO(d,1)\)invariant YangBaxter operators and the dS/CFTcorrespondence. Commun. Math. Phys. 357(1), 159–202 (2018). https://doi.org/10.1007/s0022001729426
Iagolnitzer, D.: Factorization of the multiparticle Smatrix in twodimensional spacetime models. Phys. Rev. D 18, 1275 (1978)
Jaffe, A., Liu, Z.: Planar para algebras, reflection positivity. Commun. Math. Phys. 352, 95–133 (2017)
Jørgensen, P.E.T., Proskurin, D.P., Samoilenko, Y.S.: The kernel of Fock representations of Wick algebras with braided operator of coefficients. Pacific J. Math. 198(1), 109–123 (2001)
Jørgensen, P., Schmitt, L., Werner, R.: Positive representations of general commutation relations allowing Wick ordering. J. Funct. Anal. 134(1), 33–99 (1995)
Junge, M.: Operator spaces and ArakiWoods factors: a quantum probabilistic approach. Int. Math. Res. Pap. IMRP 2006, 76978 (2006). https://doi.org/10.1155/IMRP/2006/76978
Kumar, M., Skalski, A. & Wasilewski, M. Full Solution of the Factoriality Question for qArakiWoods von Neumann Algebras Via Conjugate Variables. Commun. Math. Phys. (2023). https://doi.org/10.1007/s00220023047345
Lechner, G.: Polarizationfree quantum fields and interaction. Lett. Math. Phys. 64, 137–154 (2003)
Lechner, G.: Construction of quantum field theories with factorizing Smatrices. Commun. Math. Phys. 277, 821–860 (2008)
Lechner, G.: Deformations of quantum field theories and integrable models. Commun. Math. Phys. 312(1), 265–302 (2012). https://doi.org/10.1007/s002200111390y
Lechner, G., Longo, R.: Localization in nets of standard spaces. Commun. Math. Phys. 336(1), 27–61 (2015). https://doi.org/10.1007/s0022001421992
Liguori, A., Mintchev, M.: Fock representations of quantum fields with generalized statistics. Commun. Math. Phys. 169, 635–652 (1995)
Liguori, A., Mintchev, M.: Fock spaces with generalized statistics. Lett. Math. Phys. 33, 283–295 (1995)
Liguori, A., Mintchev, M., Rossi, M.: Unitary group representations in Fock spaces with generalized exchange properties. Lett. Math. Phys. 35, 163–177 (1995)
Longo, R., Morinelli, V., Rehren, K.H.: Where infinite spin particles are localizable. Commun. Math. Phys. 345, 587–614 (2016)
Longo, R.: Notes on algebraic invariants for noncommutative dynamical systems. Commun. Math. Phys. 69, 195–207 (1979)
Longo, R.: Real Hilbert subspaces, modular theory, SL(2, R) and CFT. Theta Ser. Adv. Math. 10, 458 (2008)
Lechner, G., Pennig, U., Wood, S.: YangBaxter representations of the infinite symmetric group. Adv. Math. 355, 106769 (2019)
Leylands, P., Roberts, J.E., Testard, D.: Duality for Quantum Free Fields. Preprint (1978)
Lechner, G., Schützenhofer, C.: Towards an operatoralgebraic construction of integrable global gauge theories. Ann. Henri Poincaré 15(4), 645–678 (2014)
Lechner, G., Scotford, C.: Deformations of halfsided modular inclusions and nonlocal chiral field theories. Commun. Math. Phys. 391, 269–291 (2022)
Longo, R., Tanimoto, Y., Ueda, Y.: Free products in AQFT. Ann. Inst. Fourier (Grenoble) 3(69), 1229–1258 (2019)
Longo, R., Witten, E.: An algebraic construction of boundary quantum field theory. Commun. Math. Phys. 303(1), 213–232 (2011). https://doi.org/10.1007/s0022001011335
Martin, A.: Scattering Theory: Unitarity, Analyticity and Crossing. Lecture Notes in Physics. Springer (1969)
Mizera, S.: Bounds on crossing symmetry. Phys. Rev. D 103, 081701 (2021)
Morinelli, V., Neeb, K.H.: Covariant homogeneous nets of standard subspaces. Commun. Math. Phys. 386(1), 305–358 (2021)
Morinelli, V., Neeb, K.H., Olafsson, G.: From Euler elements and 3gradings to noncompactly causal symmetric spaces. arXiv preprint arXiv:2207.14034 (2022)
Mund, J.: Modular localization of massive particles with any spin in D = 2+1. J. Math. Phys. 44, 2037–2057 (2003)
Nelson, B.: Free monotone transport without a trace. Commun. Math. Phys. 334(3), 1245–1298 (2015)
Niedermaier, M.R.: A derivation of the cyclic form factor equation. Commun. Math. Phys. 196, 411–428 (1998)
Nou, A.: Non injectivity of the qdeformed von Neumann algebra. Math. Ann. 330(1), 17–38 (2004)
Petz, D.: An Invitation to the Algebra of Canonical Commutation Relations. Springer, Berlin (1990)
Ricard, E.: Factoriality of qGaussian von Neumann algebras (2003). arXiv preprint arXiv:math/0311413
Rieffel, M.A., van Daele, A.: A bounded operator approach to TomitaTakesaki theory. Pac. J. Math. 69(1), 552 (1977)
Schroer, B.: A critical look at 50 years particle theory from the perspective of the crossing property. Found. Phys. 40, 1800–1857 (2010)
Shlyakhtenko, D.: Free quasifree states. Pac. J. Math. 177(2), 329–368 (1997)
Shlyakhtenko, D.: Some estimates for nonmicrostates free entropy dimension with applications to qsemicircular families. Int. Math. Res. Not. 2004(51), 2757–2772 (2004)
Smirnov, F.A.: Form Factors in Completely Integrable Models of Quantum Field Theory. World Scientific, Singapore (1992)
Sniady, P.: Factoriality of BozejkoSpeicher von Neumann algebras. Commun. Math. Phys. 246(3), 5–7 (2004)
Tanimoto, Y.: Construction of wedgelocal nets of observables through LongoWitten endomorphisms. Commun. Math. Phys. 314(2), 443–469 (2012). https://doi.org/10.1007/s0022001214627
Voiculescu, D.V., Dykema, K.J., Nica, A.: Free Random Variables. Number 1. American Mathematical Soc. (1992)
Voiculescu, D.: Symmetries of some reduced free product C*algebras. In: Operator algebras and their connections with topology and ergodic theory, pp. 556–588. Springer (1985)
Wiesbrock, H.: Conformal quantum field theory and half sided modular inclusions of von Neumann algebras. Commun. Math. Phys. 158, 537–544 (1993)
Wiesbrock, H.: Half sided modular inclusions of von Neumann algebras. Commun. Math. Phys. 157, 83–92 (1993)
Zamolodchikov, A.B.: Massless factorized scattering and sigma models with topological terms. Nucl. Phys. B 379, 602–623 (1992)
Acknowledgements
We thank Maximilian Duell for discussions at the beginning of this work, Roberto Longo for highlighting the possibility of split inclusions in [DLR01], and Roland Speicher for an exchange about the von Neumann algebras \(\mathcal {L}_{T}(H)\). Support by the German Research Foundation DFG through the Heisenberg project “Quantum Fields and Operator Algebras” (LE 2222/31) is gratefully acknowledged.
Funding
Open Access funding enabled and organized by Projekt DEAL.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Y. Kawahigashi.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix A. Diagram Calculus for Twisted npoint Functions
Appendix A. Diagram Calculus for Twisted npoint Functions
In this section we explain a diagram calculus for the twisted npoint functions \(W_{2n}^{\xi _1,\ldots ,\xi _{2n}}(t)\) (3.11).
Our diagrams consist of a disc with 2n marked points on its boundary, labelled \(1,2,\ldots ,2n\) in clockwise orientation. The points are paired by directed edges, which are curves c lying in the interior of the disc, starting at a marked point \(s(c)\in \{1,\ldots ,2n\}\) and ending at a marked point \(t(c)\in \{1,\ldots ,2n\}\), such that

(D1)
every \(k\in \{1,\ldots ,2n\}\) is connected to exactly one curve,

(D2)
for every curve c, we have \(t(c)>s(c)\),

(D3)
the curves are drawn in such a way that the number of crossings is minimal and there are no points where three or more curves meet.
Examples of such diagrams are
Calling the family of all such diagrams \({\mathscr {D}}_{2n}\), the idea is that any \(D\in {\mathscr {D}}_{2n}\) represents a number \(\langle D\rangle ^{\xi _1,\ldots ,\xi _{2n}}\) defined in a manner familiar from knot theory: Every line segment (between two crossings, i.e. an internal line, or between a crossing and a marked boundary point, i.e. an external line) carries a vector in \(\mathcal {H}\). In case of an external line starting (or ending) at k, this vector is \(\xi _k\) (or \(S_H\xi _k\)), and in case of an internal line, it is a vector from some orthonormal basis of \(\mathcal {H}\). A crossing represents a matrix element of T, namely
and \(\langle D\rangle \) is defined by taking the product over all crossings of D and summing over the orthonormal bases labelling all internal lines. Then
For general twists T, the rules (D1)–(D3) are however ambiguous and do not uniquely determine \(\langle D\rangle ^{\xi _1,\ldots ,\xi _{2n}}\). Only in case T is braided the above definition of \(\langle D\rangle ^{\xi _1,\ldots ,\xi _{2n}}\) is unambiguous. This can for example be seen by looking at the two diagrams
which both agree with the diagrammatic rules (D1)–(D3), but only give the same value \(\langle D\rangle \) in case T is braided (invariance under Reidemeister moves of type III).
For twists that are not braided, this results in somewhat cumbersome diagram rules which we avoid to spell out in detail. Nonetheless, \(\langle D\rangle \) is well defined for diagrams with at most two crossings. For the particular diagram with three crossings depicted above, the left version is the correct one for (A.1) to be true for \(n=3\) (this can be seen by noting that \(P_{T,3}\) contains a term \(T_2T_1T_2\) and not \(T_1T_2T_1\)).
For following the calculations underlying Prop. 3.8 and in particular Lemma 3.10, the diagrammatic rule is very useful. The diagrammatic form of the expansion of the 6point function (3.26) looks as follows:
Here the diagrams are listed in the same order as the terms in the algebraic expansions of the \(w_k(t)\).
For the analytic continuation in t from \(\mathbb {R}\) to \(\mathbb {R}i\), another diagrammatic rule is helpful: The analytic continuation of the function \(\langle D\rangle ^{\xi _1,\ldots ,\Delta _H^{it}\xi _{2n}}\) is
where the diagram \(D'\) is obtained from D by clockwise rotation by the angle \(\frac{\pi }{n}\) and reversing the orientation of the curve ending in 2n. For example:
With such a diagram calculus, the calculations in Lemma 3.10 are easily verified.
We also mention a diagrammatic representation of crossing symmetry. In the usual graphical notation for tensor product operators [EK98, Chapt. 2.6], crossing symmetry takes the form (with a subscript indicating the action of modular unitaries \(\Delta _H^{it}\) and a line reversing its up/down direction indicating the action of a modular conjugation \(J_H\))
It is curious to note that this diagram looks similar to the string Fourier transforms of Jaffe and Liu [JL17], but we shall not investigate this connection any further in the present work.
Finally, the diagrammatic view on crossing symmetry gives also a different perspective on the derivation of the YangBaxter equation in Thm. 3.12 b). The analytic continuation can be seen as a twofold application of the crossing symmetry above, which transforms \(T_2T_1T_2\) into \(T_1T_2T_1\):
Here \(J=J_H\), and in combination with the cyclic permutation underlying the KMS condition, one obtains the YangBaxter equation.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Correa da Silva, R., Lechner, G. Modular Structure and Inclusions of Twisted ArakiWoods Algebras. Commun. Math. Phys. 402, 2339–2386 (2023). https://doi.org/10.1007/s0022002304773y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s0022002304773y