Skip to main content
Log in

Non-perturbative Solution of the 1d Schrödinger Equation Describing Photoemission from a Sommerfeld Model Metal by an Oscillating Field

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We analyze non-perturbatively the one-dimensional Schrödinger equation describing the emission of electrons from a model metal surface by a classical oscillating electric field. Placing the metal in the half-space \(x\leqslant 0\), the Schrödinger equation of the system is \(i\partial _t\psi =-\frac{1}{2}\partial _x^2\psi +\Theta (x) (U-E x \cos \omega t)\psi \), \(t>0\), \(x\in {\mathbb {R}}\), where \(\Theta (x)\) is the Heaviside function and \(U>0\) is the effective confining potential (we choose units so that \(m=e=\hbar =1\)). The amplitude E of the external electric field and the frequency \(\omega \) are arbitrary. We prove existence and uniqueness of classical solutions of the Schrödinger equation for general initial conditions \(\psi (x,0)=f(x)\), \(x\in {\mathbb {R}}\). When the initial condition is in \(L^2\) the evolution is unitary and the wave function goes to zero at any fixed x as \(t\rightarrow \infty \). To show this we prove a RAGE type theorem and show that the discrete spectrum of the quasienergy operator is empty. To obtain positive electron current we consider non-\(L^2\) initial conditions containing an incoming beam from the left. The beam is partially reflected and partially transmitted for all \(t>0\). For these initial conditions we show that the solution approaches in the large t limit a periodic state that satisfies an infinite set of equations formally derived, under the assumption that the solution is periodic by Faisal et al. (Phys Rev A 72:023412, 2005). Due to a number of pathological features of the Hamiltonian (among which unboundedness in the physical as well as the spatial Fourier domain) the existing methods to prove such results do not apply, and we introduce new, more general ones. The actual solution exhibits a very complex behavior, as seen both analytically and numerically. It shows a steep increase in the current as the frequency passes a threshold value \(\omega =\omega _c\), with \(\omega _c\) depending on the strength of the electric field. For small E, \(\omega _c\) represents the threshold in the classical photoelectric effect, as described by Einstein’s theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Using the magnetic rather than the length gauge.

  2. We believe that the actual behavior below is \(O(t^{-3})\), but this results from difficult to calculate cancellations occurring in algebraically cumbersome expressions.

  3. The boundary terms vanish since we are dealing with an \(L^2\) function which is continuous in R, cf. Note 7, hence it goes to zero along some subsequence \(\{R_n\}_{n\in \mathbb {N}}\) where \(\lim _{n\rightarrow \infty }R_n=\infty \).

References

  1. Hommelhoff, P., Kealhofer, C., Kasevich, M.A.: Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses. Phys. Rev. Lett. 97, 247402 (2006). https://doi.org/10.1103/physrevlett.97.247402

    Article  ADS  Google Scholar 

  2. Schenk, M., Krüger, M., Hommelhoff, P.: Strong-field above-threshold photoemission from sharp metal tips. Phys. Rev. Lett. 105, 257601 (2010). https://doi.org/10.1103/physrevlett.105.257601

    Article  ADS  Google Scholar 

  3. Bormann, R., Gulde, M., Weismann, A., Yalunin, S.V., Ropers, C.: Tip-enhanced strong-field photoemission. Phys. Rev. Lett. 105, 147601 (2010). https://doi.org/10.1103/physrevlett.105.147601

    Article  ADS  Google Scholar 

  4. Krüger, M., Schenk, M., Hommelhoff, P.: Attosecond control of electrons emitted from a nanoscale metal tip. Nature 475, 78 (2011). https://doi.org/10.1038/nature10196

    Article  Google Scholar 

  5. Krüger, M., Schenk, M., Hommelhoff, P., Wachter, G., Lemell, C., Burgdörfer, J.: Interaction of ultrashort laser pulses with metal nanotips: a model system for strong-field phenomena. New J. Phys. 14, 085019 (2012). https://doi.org/10.1088/1367-2630/14/8/085019

    Article  ADS  Google Scholar 

  6. Thomas, S., Holzwarth, R., Hommelhoff, P.: Generating few-cycle pulses for nanoscale photoemission easily with an erbium-doped fiber laser. Opt. Express 20, 13663 (2012). https://doi.org/10.1364/oe.20.013663

    Article  ADS  Google Scholar 

  7. Herink, G., Solli, D.R., Gulde, M., Ropers, C.: Field-driven photoemission from nanostructures quenches the quiver motion. Nature 483, 190 (2012). https://doi.org/10.1038/nature10878

    Article  ADS  Google Scholar 

  8. Park, D.J., Piglosiewicz, B., Schmidt, S., Kollmann, H., Mascheck, M., Lienau, C.: Strong field acceleration and steering of ultrafast electron pulses from a sharp metallic nanotip. Phys. Rev. Lett. 109, 244803 (2012). https://doi.org/10.1103/physrevlett.109.244803

    Article  ADS  Google Scholar 

  9. Homann, C., Bradler, M., Förster, M., Hommelhoff, P., Riedle, E.: Carrier-envelope phase stable sub-two-cycle pulses tunable around 18 \(\rm \mu \)m at 100 kHz. Opt. Lett. 37, 1673 (2012). https://doi.org/10.1364/ol.37.001673

    Article  ADS  Google Scholar 

  10. Piglosiewicz, B., Schmidt, S., Park, D.J., Vogelsang, J., Groß, P., Manzoni, C., Farinello, P., Cerullo, G., Lienau, C.: Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nat. Photonics 8, 37 (2013). https://doi.org/10.1038/nphoton.2013.288

    Article  ADS  Google Scholar 

  11. Herink, G., Wimmer, L., Ropers, C.: Field emission at terahertz frequencies: AC-tunneling and ultrafast carrier dynamics. New J. Phys. 16, 123005 (2014). https://doi.org/10.1088/1367-2630/16/12/123005

    Article  ADS  Google Scholar 

  12. Ehberger, D., Hammer, J., Eisele, M., Krüger, M., Noe, J., Högele, A., Hommelhoff, P.: Highly coherent electron beam from a laser-triggered tungsten needle tip. Phys. Rev. Lett. 114, 227601 (2015). https://doi.org/10.1103/physrevlett.114.227601

    Article  ADS  Google Scholar 

  13. Bormann, R., Strauch, S., Schäfer, S., Ropers, C.: An ultrafast electron microscope gun driven by two-photon photoemission from a nanotip cathode. J. Appl. Phys. 118, 173105 (2015). https://doi.org/10.1063/1.4934681

    Article  ADS  Google Scholar 

  14. Yanagisawa, H., Schnepp, S., Hafner, C., Hengsberger, M., Kim, D.E., Kling, M.F., Landsman, A., Gallmann, L., Osterwalder, J.: Delayed electron emission in strong-field driven tunnelling from a metallic nanotip in the multi-electron regime. Sci. Rep. 6, 35877 (2016). https://doi.org/10.1038/srep35877

    Article  ADS  Google Scholar 

  15. Förg, B., Schötz, J., Süßmann, F., Förster, M., Krüger, M., Ahn, B., Okell, W.A., Wintersperger, K., Zherebtsov, S., Guggenmos, A., Pervak, V., Kessel, A., Trushin, S.A., Azzeer, A.M., Stockman, M.I., Kim, D., Krausz, F., Hommelhoff, P., Kling, M.F.: Attosecond nanoscale near-field sampling. Nat. Commun. 7, 11717 (2016). https://doi.org/10.1038/ncomms11717

    Article  ADS  Google Scholar 

  16. Rybka, T., Ludwig, M., Schmalz, M.F., Knittel, V., Brida, D., Leitenstorfer, A.: Sub-cycle optical phase control of nanotunnelling in the single-electron regime. Nat. Photonics 10, 667 (2016). https://doi.org/10.1038/nphoton.2016.174

    Article  ADS  Google Scholar 

  17. Förster, M., Paschen, T., Krüger, M., Lemell, C., Wachter, G., Libisch, F., Madlener, T., Burgdörfer, J., Hommelhoff, P.: Two-color coherent control of femtosecond above-threshold photoemission from a tungsten nanotip. Phys. Rev. Lett. 117, 217601 (2016). https://doi.org/10.1103/physrevlett.117.217601

    Article  ADS  Google Scholar 

  18. Li, S., Jones, R.R.: High-energy electron emission from metallic nano-tips driven by intense single-cycle terahertz pulses. Nat. Commun. 7, 13405 (2016). https://doi.org/10.1038/ncomms13405

    Article  ADS  Google Scholar 

  19. Hoff, D., Krüger, M., Maisenbacher, L., Sayler, A.M., Paulus, G.G., Hommelhoff, P.: Tracing the phase of focused broadband laser pulses. Nat. Phys. 13, 947 (2017). https://doi.org/10.1038/nphys4185

    Article  Google Scholar 

  20. Storeck, G., Vogelgesang, S., Sivis, M., Schäfer, S., Ropers, C.: Nanotip-based photoelectron microgun for ultrafast LEED. Struct. Dyn. 4, 044024 (2017). https://doi.org/10.1063/1.4982947

    Article  Google Scholar 

  21. Putnam, W.P., Hobbs, R.G., Keathley, P.D., Berggren, K.K., Kärtner, F.X.: Optical-field-controlled photoemission from plasmonic nanoparticles. Nat. Phys. 13, 335 (2016). https://doi.org/10.1038/nphys3978

    Article  Google Scholar 

  22. Jensen, K.L.: Introduction to the Physics of Electron Emission. Wiley, New York (2017)

    Book  Google Scholar 

  23. Wimmer, L., Karnbach, O., Herink, G., Ropers, C.: Phase space manipulation of free-electron pulses from metal nanotips using combined terahertz near fields and external biasing. Phys. Rev. B 95, 165416 (2017). https://doi.org/10.1103/physrevb.95.165416

    Article  ADS  Google Scholar 

  24. Krüger, M., Lemell, C., Wachter, G., Burgdörfer, J., Hommelhoff, P.: Attosecond physics phenomena at nanometric tips. J. Phys. B Atom. Mol. Opt. Phys. 51, 172001 (2018). https://doi.org/10.1088/1361-6455/aac6ac

    Article  ADS  Google Scholar 

  25. Li, C., Chen, K., Guan, M., Wang, X., Zhou, X., Zhai, F., Dai, J., Li, Z., Sun, Z., Meng, S., Liu, K., Dai, Q.: Study of electron emission from 1D nanomaterials under super high field, arXiv:1812.10114 (2018)

  26. Schötz, J., Mitra, S., Fuest, H., Neuhaus, M., Okell, W.A., Förster, M., Paschen, T., Ciappina, M.F., Yanagisawa, H., Wnuk, P., Hommelhoff, P., Kling, M.F.: Nonadiabatic ponderomotive effects in photoemission from nanotips in intense midinfrared laser fields. Phys. Rev. A 97, 013413 (2018). https://doi.org/10.1103/physreva.97.013413

    Article  ADS  Google Scholar 

  27. Fowler, R.H., Nordheim, L.: Electron emission in intense electric fields. Proc. R. Soc. A Math. Phys. Eng. Sci. 119, 173 (1928). https://doi.org/10.1098/rspa.1928.0091

    Article  ADS  MATH  Google Scholar 

  28. Faisal, F.H.M., Kamiński, J.Z., Saczuk, E.: Photoemission and high-order harmonic generation from solid surfaces in intense laser fields. Phys. Rev. A 72, 023412 (2005). https://doi.org/10.1103/physreva.72.023412

    Article  ADS  Google Scholar 

  29. Yalunin, S.V., Gulde, M., Ropers, C.: Strong-field photoemission from surfaces: theoretical approaches. Phys. Rev. B 84, 195426 (2011). https://doi.org/10.1103/physrevb.84.195426

    Article  ADS  Google Scholar 

  30. Bauer, D.: Lecture notes on the Theory of intense laser-matter interaction (2006). https://www.scribd.com/document/80058830/D-Bauer-Theory-of-intense-laser-matter-interaction

  31. Krüger, M., Schenk, M., Förster, M., Hommelhoff, P.: Attosecond physics in photoemission from a metal nanotip. J. Phys. B Atom. Mol. Opt. Phys. 45, 074006 (2012). https://doi.org/10.1088/0953-4075/45/7/074006

    Article  ADS  Google Scholar 

  32. Pant, M., Ang, L.K.: Ultrafast laser-induced electron emission from multiphoton to optical tunneling. Phys. Rev. B 86, 045423 (2012). https://doi.org/10.1103/physrevb.86.045423

    Article  ADS  Google Scholar 

  33. Yalunin, S.V., Herink, G., Solli, D.R., Krüger, M., Hommelhoff, P., Diehn, M., Munk, A., Ropers, C.: Field localization and rescattering in tip-enhanced photoemission. Annalen der Physik 525, L12 (2012). https://doi.org/10.1002/andp.201200224

    Article  Google Scholar 

  34. Ciappina, M.F., Pérez-Hernández, J.A., Shaaran, T., Lewenstein, M., Krüger, M., Hommelhoff, P.: High-order-harmonic generation driven by metal nanotip photoemission: theory and simulations. Phys. Rev. A 89, 013409 (2014). https://doi.org/10.1103/physreva.89.013409

    Article  ADS  Google Scholar 

  35. Zhang, P., Lau, Y.Y.: Ultrafast strong-field photoelectron emission from biased metal surfaces: exact solution to time-dependent Schrödinger Equation. Sci. Rep. 6, 19894 (2016). https://doi.org/10.1038/srep19894

    Article  ADS  Google Scholar 

  36. Forbes, R.G.: Field electron emission theory, proceedings of young researchers in vacuum micro/nano. Electronics (2016). https://doi.org/10.1109/VMNEYR.2016.7880403

    Article  Google Scholar 

  37. Luo, Y., Zhou, Y., Zhang, P.: Few-cycle optical-field-induced photoemission from biased surfaces: an exact quantum theory. Phys. Rev. B 103, 085410 (2021). https://doi.org/10.1103/physrevb.103.085410

    Article  ADS  Google Scholar 

  38. Costin, O., Costin, R., Jauslin, I., Lebowitz, J.L.: Exact solution of the 1D time-dependent Schrödinger equation for the emission of quasi-free electrons from a flat metal surface by a laser. J. Phys. A Math. Theor. 53, 365201 (2020). https://doi.org/10.1088/1751-8121/aba1b6

    Article  MATH  Google Scholar 

  39. Costin, O., Costin, R.D., Lebowitz, J.L.: Nonperturbative time dependent solution of a simple ionization model. Commun. Math. Phys. 361, 217 (2018). https://doi.org/10.1007/s00220-018-3105-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Wolkow, D.M.: Über eine Klasse von Lösungen der Diracschen Gleichung. Zeitschrift für Physik 94, 250 (1935). https://doi.org/10.1007/bf01331022

    Article  ADS  MATH  Google Scholar 

  41. Dombi, P., Pápa, Z., Vogelsang, J., Yalunin, S.V., Sivis, M., Herink, G., Schäfer, S., Groß, P., Ropers, C., Lienau, C.: Strong-field nano-optics. Rev. Mod. Phys. 92, 025003 (2020). https://doi.org/10.1103/revmodphys.92.025003

    Article  ADS  MathSciNet  Google Scholar 

  42. Costin, O., Lebowitz, J.L., Tanveer, S.: Ionization of coulomb systems in \({\mathbb{R} }^3\) by time periodic forcings of arbitrary size. Commun. Math. Phys. 296, 681 (2010). https://doi.org/10.1007/s00220-010-1023-x

    Article  ADS  MATH  Google Scholar 

  43. Costin, O., Xia, X.: From the Taylor series of analytic functions to their global analysis. Nonlinear Anal. Theory Methods Appl. 119, 106 (2015). https://doi.org/10.1016/j.na.2014.08.014

    Article  MathSciNet  MATH  Google Scholar 

  44. Fokas, A.S.: A unified transform method for solving linear and certain nonlinear PDEs. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 453, 1411 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Reed, M., Simon, B.: Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness, 2nd edn. Academic Press, New York (1975)

    MATH  Google Scholar 

  46. Kato, T.: Perturbation Theory for Linear Operators. Springer, New York (1966)

    Book  MATH  Google Scholar 

  47. Costin, O.: Asymptotics and Borel Summability. Chapman and Hall/CRC, 2008. https://doi.org/10.1201/9781420070323

  48. Écalle, J.: Les fonctions résurgentes, Publications Mathématiques d’Orsay (Université de Paris-Sud, 1981) 3 volumes

  49. DLMF: NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.6 of 2022-06-30 (2022)

Download references

Acknowledgements

The authors wish to thank David Huse for valuable discussions, as well as the Institute for Advanced Study for its hospitality. OC was partially supported by the NSF Grants DMS-1515755 and DMS-2206241. OC, RC, IJ and JLL were partially supported by AFOSR Grant FA9550-16-1-0037. IJ was partially supported by NSF Grant DMS-1802170 and by a grant from the Simons Foundation, Grant Number 825876.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ovidiu Costin.

Additional information

Communicated by A. Giuliani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Laplace Transform Versus Discrete-Laplace Transform

In a way similar to the classical Poisson summation formula approach, working in distributions, taking a Laplace transform, which we denote by \({\mathcal {L}}\), followed by a discrete Fourier transform is related to a discrete-Laplace transform in the original variable, as seen below.

$$\begin{aligned} \frac{1}{2\pi }\sum _{n\in \mathbb {Z}}({\mathcal {L}}\psi )(-i\sigma -in\omega )\textrm{e}^{-i(\sigma +n\omega )r}&=\frac{1}{\omega }\left[ \psi (r)\Theta (r)+\sum _{k=1}^\infty \textrm{e}^{i\sigma \frac{2k\pi }{\omega }}\psi \left( r+\frac{2k\pi }{\omega }\right) \right] \nonumber \\&:=({\mathcal {P}}_\sigma \psi )(r) \end{aligned}$$
(A.1)

where \(-\tfrac{\pi }{\omega }\le r<\tfrac{\pi }{\omega }\) and \(\sigma \in [0,\omega )\).

To deduce this formula, we calculate

$$\begin{aligned}{} & {} \frac{1}{2\pi }\sum _{n\in \mathbb {Z}}({\mathcal {L}}\psi )(-i\sigma -in\omega )\textrm{e}^{-in\omega r}=\frac{1}{2\pi }\sum _{n\in \mathbb {Z}}\int _0^\infty e^{(i\sigma +in\omega )t}\psi (t)\textrm{e}^{-in\omega r}\, dt\nonumber \\{} & {} \quad =\frac{1}{2\pi }\sum _{n\in \mathbb {Z}}\left[ \int _0^{\pi /\omega } e^{(i\sigma +in\omega )t}\psi (t)\textrm{e}^{-in\omega r}\, dt +\sum _{k=1}^\infty \int _{(2k-1)\pi /\omega }^{(2k+1)\pi /\omega } e^{(i\sigma +in\omega )t}\psi (t)\textrm{e}^{-in\omega r}\, dt \right] \nonumber \\{} & {} \quad =\frac{1}{2\pi }\sum _{n\in \mathbb {Z}}\int _{-{\pi /\omega }}^{\pi /\omega }e^{i\sigma t}\psi (t) \Theta (t)\,e^{in\omega (t-r)}\, dt \nonumber \\{} & {} \qquad +\frac{1}{2\pi }\sum _{n\in \mathbb {Z}}\sum _{k=1}^\infty \int _{-\pi /\omega }^{\pi /\omega } e^{i\sigma (s+\frac{2k\pi }{\omega })} \psi (s+\frac{2k\pi }{\omega })e^{in\omega (s-r+\frac{2k\pi }{\omega })} \end{aligned}$$
(A.2)

where we let \(t=\tfrac{2k\pi }{\omega }+s\). Using the fact that \(\tfrac{1}{2\pi }\sum _ne^{in\omega (s-r)}=\frac{1}{\omega }\delta _{s-r}\) formula (A.1) follows.

Fig. 2
figure 2

The normalized current \(\frac{j}{k}\) at the interface (in atomic units, so \(\frac{j}{k}\) is dimensionless) as a function of \(\frac{t\omega }{2\pi }\) for \(\omega =1.55\ \textrm{eV}\) and for the electric field: \(E=25\, \textrm{V}\,\textrm{nm}^{-1}\). The dotted line is the graph of \(\cos (\omega t)\) (not to scale)

Fig. 3
figure 3

An average of the current after a number of periods as a function of \(\omega -\omega _c\), for various values of the field: \(E=3\ \textrm{V}\,\textrm{nm}^{-1}\) (blue), \(E=10\ \textrm{V}\,\textrm{nm}^{-1}\) (red). For the sake of comparison, we have also plotted the asymptotic current predicted in [28] as dotted lines: green for \(E=3\ \textrm{V}\,\textrm{nm}^{-1}\) and purple for \(E=10\ \textrm{V}\,\textrm{nm}^{-1}\). All four curves are almost on top of each other. We see a sharp transition as \(\omega \) crosses the critical frequency \(\omega _c=U-\frac{k^2}{2}+\frac{E^2}{4\omega _c^2}\)

Figures

As already mentioned in the introduction Eq. (1.5) is the underlying basic model used for the interpretation of experiments of electron emission from a metal surface irradiated by lasers of different frequencies [1, 4, 22, 24, 27,28,29,30,31,32,33,34,35,36,37]. This is so despite the fact that the system described by (1.5) is very idealized, both in the description of the metal and in the use of a classical electric field. The literature therefore contains many approximate qualitative solutions of (1.5) or some modification of it. Our analysis which proves the existence of physical solutions to (1.5) does not give a visualization of the form of such solutions. To do that requires carefully controlled numerical solutions. Figure 2 shows the complex behavior of the current at early times for large fields. Figure 3 shows the steep rise of the current as the frequency of the applied field crosses the field dependent critical frequency, which is the energy that is necessary for an electron to absorb in order to be extracted from the metal: it is the real solution to the cubic equation \(\omega _c=U-\frac{k^2}{2}+\frac{E^2}{4\omega ^2_c}\) (the term \(\frac{E^2}{4\omega _c^2}\) comes from the “Zitterbewegung” [40]). For small E, this reproduces the usual physical picture of the photoelectric effect.

The figures are obtained by solving the integral equation numerically for \(\psi (x,t)\) with controlled approximations [38].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costin, O., Costin, R., Jauslin, I. et al. Non-perturbative Solution of the 1d Schrödinger Equation Describing Photoemission from a Sommerfeld Model Metal by an Oscillating Field. Commun. Math. Phys. 402, 2031–2078 (2023). https://doi.org/10.1007/s00220-023-04771-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04771-0

Navigation