Skip to main content
Log in

Localization for Almost-Periodic Operators with Power-law Long-range Hopping: A Nash-Moser Iteration Type Reducibility Approach

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we develop a Nash-Moser iteration type reducibility approach to prove the (inverse) localization for some d-dimensional discrete almost-periodic operators with power-law long-range hopping. We also provide a quantitative lower bound on the regularity of the hopping. As an application, some results of Sarnak (Comm Math Phys 84(3):377–401, 1982), Pöschel (Comm Math Phys 88(4):447–463, 1983), Craig (Comm Math Phys 88(1):113–131, 1983) and Bellissard et al. (Comm Math Phys 88(4):465–477, 1983) are generalized to the power-law hopping case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The manuscript has no associated data.

Notes

  1. The exponential scale of smoothing operator was first introduced by Klainerman [Kla80].

References

  1. Aubry, S., André, G.: Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Israel Phys. Soc. 3, 133–164 (1980)

    MathSciNet  MATH  Google Scholar 

  2. Avila, A., Fayad, B., Krikorian, R.: A KAM scheme for \({\rm SL}(2,\mathbb{R} )\) cocycles with Liouvillean frequencies. Geom. Funct. Anal. 21(5), 1001–1019 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Alinhac, S., Gérard, P.: Pseudo-differential operators and the Nash-Moser theorem, volume 82 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2007. Translated from the 1991 French original by Stephen S. Wilson

  4. Altshuler, B.L., Levitov, L.S.: Weak chaos in a quantum Kepler problem. Phys. Rep. 288(1–6), 487–512 (1997)

    ADS  Google Scholar 

  5. Aizenman, M., Molchanov, S.: Localization at large disorder and at extreme energies: an elementary derivation. Comm. Math. Phys. 157(2), 245–278 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109(5), 1492–1505 (1958)

    ADS  Google Scholar 

  7. Arnold, V.I.: Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian. Uspehi Mat. Nauk 18(5), 13–40 (1963)

    MathSciNet  Google Scholar 

  8. Alvarez, G.A., Suter, D., Kaiser, R.: Localization-delocalization transition in the dynamics of dipolar-coupled nuclear spins. Science 349(6250), 846–848 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Avila, A.: On the spectrum and Lyapunov exponent of limit periodic Schrödinger operators. Comm. Math. Phys. 288(3), 907–918 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Avila, A., You, J., Zhou, Q.: Sharp phase transitions for the almost Mathieu operator. Duke Math. J. 166(14), 2697–2718 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Berti, M., Bolle, P.: Quasi-periodic solutions with Sobolev regularity of NLS on \(\mathbb{T} ^d\) with a multiplicative potential. J. Eur. Math. Soc. (JEMS) 15(1), 229–286 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Bellissard, J., Lima, R., Scoppola, E.: Localization in \(v\)-dimensional incommensurate structures. Comm. Math. Phys. 88(4), 465–477 (1983)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Bellissard, J., Lima, R., Testard, D.: A metal-insulator transition for the almost Mathieu model. Comm. Math. Phys. 88(2), 207–234 (1983)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Bourgain, J.: Estimates on Green’s functions, localization and the quantum kicked rotor model. Ann. Math. (2) 156(1), 249–294 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Bourgain, J.: Green’s function estimates for lattice Schrödinger operators and applications. Annals of Mathematics Studies, vol. 158. Princeton University Press, Princeton, NJ (2005)

  16. Chulaevsky, V.A., Dinaburg, E.I.: Methods of KAM-theory for long-range quasi-periodic operators on \({ Z}^\nu \). Pure point spectrum. Comm. Math. Phys. 153(3), 559–577 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Casati, G. and et al.: Stochastic behavior of a quantum pendulum under a periodic perturbation. In Stochastic behavior in classical and quantum Hamiltonian systems, pp. 334–352. Springer (1979)

  18. Casati, G., Guarneri, I., Shepelyansky, D.L.: Anderson transition in a one-dimensional system with three incommensurate frequencies. Phys. Rev. Lett. 62(4), 345–348 (1989)

    ADS  Google Scholar 

  19. Craig, W.: Pure point spectrum for discrete almost periodic Schrödinger operators. Comm. Math. Phys. 88(1), 113–131 (1983)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Damanik, D.: Schrödinger operators with dynamically defined potentials. Ergodic Theory Dynam. Syst. 37(6), 1681–1764 (2017)

    MATH  Google Scholar 

  21. Deng, X., et al.: One-dimensional quasicrystals with power-law hopping. Phys. Rev. Lett. 123(2), 025301 (2019)

    ADS  Google Scholar 

  22. Doron, E., Fishman, S.: Anderson localization for a two-dimensional rotor. Phys. Rev. Lett. 60(10), 867–870 (1988)

    ADS  Google Scholar 

  23. Damanik, D., Gan, Z.: Limit-periodic Schrödinger operators in the regime of positive Lyapunov exponents. J. Funct. Anal. 258(12), 4010–4025 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Damanik, D., Gan, Z.: Limit-periodic Schrödinger operators with uniformly localized eigenfunctions. J. Anal. Math. 115, 33–49 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Damanik, D., Gan, Z.: Limit-periodic Schrödinger operators on \(\mathbb{Z} ^d\): uniform localization. J. Funct. Anal. 265(3), 435–448 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Dinaburg, E.I., Sinai, J.G.: The one-dimensional Schrödinger equation with quasiperiodic potential. Funkcional. Anal. i Prilozen., 9(4), 8–21 (1975)

    MathSciNet  Google Scholar 

  27. Eliasson, L.H.: Floquet solutions for the \(1\)-dimensional quasi-periodic Schrödinger equation. Comm. Math. Phys. 146(3), 447–482 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Eliasson, L.H.: Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum. Acta Math. 179(2), 153–196 (1997)

    MathSciNet  MATH  Google Scholar 

  29. Fishman, S., Grempel, D.R., Prange, R.E.: Chaos, quantum recurrences, and Anderson localization. Phys. Rev. Lett. 49(8), 509–512 (1982)

    ADS  MathSciNet  Google Scholar 

  30. Figotin, A.L., Pastur, L.A.: An exactly solvable model of a multidimensional incommensurate structure. Comm. Math. Phys. 95(4), 401–425 (1984)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Grempel, D., Fishman, S., Prange, R.: Localization in an incommensurate potential: An exactly solvable model. Phys. Rev. Lett. 49(11), 833 (1982)

    ADS  Google Scholar 

  32. García-García, A.M., Wang, J.: Anderson transition in quantum chaos. Phys. Rev. Lett. 94(24), 244102 (2005)

    ADS  Google Scholar 

  33. Hörmander, L.: The boundary problems of physical geodesy. Arch. Rational Mech. Anal. 62(1), 1–52 (1976)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Hörmander, L.: Implicit function theorems. Lectures at Stanford University, summer quarter (1977)

  35. Izrailev, F.M.: Simple models of quantum chaos: Spectrum and eigenfunctions. Phys. Rep. 196(5–6), 299–392 (1990)

    ADS  MathSciNet  Google Scholar 

  36. José, J.V., Cordery, R.: Study of a quantum fermi-acceleration model. Phys. Rev. Lett. 56(4), 290–293 (1986)

    ADS  Google Scholar 

  37. Jitomirskaya, S., Kachkovskiy, I.: \(L^2\)-reducibility and localization for quasiperiodic operators. Math. Res. Lett. 23(2), 431–444 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Jitomirskaya, S., Kachkovskiy, I.: All couplings localization for quasiperiodic operators with monotone potentials. J. Eur. Math. Soc. (JEMS) 21(3), 777–795 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Jitomirskaya, S., Liu, W.: Arithmetic spectral transitions for the Maryland model. Comm. Pure Appl. Math. 70(6), 1025–1051 (2017)

    MathSciNet  MATH  Google Scholar 

  40. Klainerman, S.: Global existence for nonlinear wave equations. Comm. Pure Appl. Math. 33(1), 43–101 (1980)

  41. Kolmogorov, A.N.: On conservation of conditionally periodic motions for a small change in Hamilton’s function. Dokl. Akad. Nauk SSSR (N.S.) 98, 527–530 (1954)

  42. Kachkovskiy, I., Parnovski, L., Shterenberg, R.: Convergence of perturbation series for unbounded monotone quasiperiodic operators. arXiv:2006.00346 (2020)

  43. Marx, C.A., Jitomirskaya, S.: Dynamics and spectral theory of quasi-periodic Schrödinger-type operators. Ergodic Theory Dynam. Syst. 37(8), 2353–2393 (2017)

    MATH  Google Scholar 

  44. Moser, J.: A new technique for the construction of solutions of nonlinear differential equations. Proc. Nat. Acad. Sci. U.S.A. 47, 1824–1831 (1961)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Moser, J.: On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1962:1–20 (1962)

  46. Moser, J., Pöschel, J.: An extension of a result by Dinaburg and Sinai on quasiperiodic potentials. Comment. Math. Helv. 59(1), 39–85 (1984)

    MathSciNet  MATH  Google Scholar 

  47. Nash, J.: The imbedding problem for Riemannian manifolds. Ann. Math. 2(63), 20–63 (1956)

    MathSciNet  MATH  Google Scholar 

  48. Nabetani, A., et al.: Optical properties of two-dimensional dye aggregate. J. Chem. Phys. 102(13), 5109–5117 (1995)

    ADS  Google Scholar 

  49. Pöschel, J.: Examples of discrete Schrödinger operators with pure point spectrum. Comm. Math. Phys. 88(4), 447–463 (1983)

    ADS  MathSciNet  MATH  Google Scholar 

  50. Rodríguez, R., and et al.: Anderson transition in low-dimensional disordered systems driven by long-range nonrandom hopping. Phys. Rev. Lett. 90(2):027404, 1–4 (2003)

  51. Rodríguez, A., Malyshev, V.A., Domínguez-Adame, F.: Quantum diffusion and lack of universal one-parameter scaling in one-dimensional disordered lattices with long-range coupling. J. Phys. A Math. Gen. 33(15), L161–L166 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Rüssmann, H.: On the one-dimensional Schrödinger equation with a quasiperiodic potential. Ann. New York Acad. Sci. 357, 90–107 (1980)

    ADS  Google Scholar 

  53. Salamon, D.A.: The Kolmogorov-Arnold-Moser theorem. Math. Phys. Electron. J. 10, 1–37 (2004)

    MathSciNet  MATH  Google Scholar 

  54. Sarnak, P.: Spectral behavior of quasiperiodic potentials. Comm. Math. Phys. 84(3), 377–401 (1982)

    ADS  MathSciNet  MATH  Google Scholar 

  55. Shi, Y.: A multi-scale analysis proof of the power-law localization for random operators on \(\mathbb{Z} ^d\). J. Differ. Equ. 297, 201–225 (2021)

    ADS  MATH  Google Scholar 

  56. Simon, B.: Almost periodic Schrödinger operators: a review. Adv. Appl. Math. 3(4), 463–490 (1982)

    MathSciNet  MATH  Google Scholar 

  57. Simon, B.: Almost periodic Schrödinger operators. IV. The Maryland model. Ann. Phys. 159(1), 157–183 (1985)

    ADS  MATH  Google Scholar 

  58. Sinai, Y.G.: Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential. J. Stat. Phys. 46(5–6), 861–909 (1987)

    ADS  Google Scholar 

  59. Santhanam, M.S., Paul, S., Kannan, J.B.: Quantum kicked rotor and its variants: Chaos, localization and beyond. Phys. Rep. 956, 1–87 (2022)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSFC (No. 12271380). The author would like to thank the editor and referees for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfeng Shi.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest.

Additional information

Communicated by J. Ding.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

In this appendix we prove Lemma 3.1.

Proof of Lemma 3.1

The proof is standard and is based on the Hölder inequality. For any \(X\in \mathcal {M}^s\), recall that

$$\begin{aligned} X_\textbf{k}=(X_\textbf{k}(\textbf{i}))_{\textbf{i}\in \mathbb Z^d},\ X_\textbf{k}(\textbf{i})=X_{\textbf{i}, \textbf{i}-\textbf{k}}. \end{aligned}$$

We first show if \(Z=XY,\) then

$$\begin{aligned} Z_\textbf{k}=\sum _{\textbf{j}\in \mathbb Z^d}X_\textbf{j}(\sigma _\textbf{j}Y_{\textbf{k}-\textbf{j}}). \end{aligned}$$
(6.6)

In fact, we have

$$\begin{aligned} Z_\textbf{k}(\textbf{i})=Z_{\textbf{i},\textbf{i}-\textbf{k}} =\sum _{\textbf{j}\in \mathbb Z^d}X_{\textbf{i},\textbf{i}-\textbf{j}}Y_{\textbf{i}-\textbf{j}, \textbf{i}-\textbf{k}}=\sum _{\textbf{j}\in \mathbb Z^d}X_\textbf{j}(\textbf{i})(\sigma _{\textbf{j}}Y_{\textbf{k}-\textbf{j}})(\textbf{i}), \end{aligned}$$

which implies (A.1).

Next, from (2.2), we obtain since (A.1)

$$\begin{aligned} \Vert Z\Vert _s^2=\sum _{\textbf{k}\in \mathbb Z^d}\Vert Z_\textbf{k}\Vert _\mathfrak {B}^2\langle \textbf{k}\rangle ^{2s}&=\sum _{\textbf{k}\in \mathbb Z^d}\Vert \sum _{\textbf{j}\in \mathbb Z^d}X_\textbf{j}(\sigma _\textbf{j}Y_{\textbf{k}-\textbf{j}})\Vert _\mathfrak {B}^2\langle \textbf{k}\rangle ^{2s}\\&\le \sum _{\textbf{k}\in \mathbb Z^d}\left( \sum _{\textbf{j}\in \mathbb Z^d}\Vert X_\textbf{j}\Vert _\mathfrak {B}\Vert \sigma _\textbf{j}Y_{\textbf{k}-\textbf{j}}\Vert _\mathfrak {B}\right) ^2\langle \textbf{k}\rangle ^{2s}\\&= \sum _{\textbf{k}\in \mathbb Z^d}\left( \sum _{\textbf{j}\in \mathbb Z^d}\Vert X_\textbf{j}\Vert _\mathfrak {B}\Vert Y_{\textbf{k}-\textbf{j}}\Vert _\mathfrak {B}\right) ^2\langle \textbf{k}\rangle ^{2s}, \end{aligned}$$

where in the last equality we use the translation invariance of \(\mathfrak {B}\). Let \(a_\textbf{k}=\Vert X_\textbf{k}\Vert _\mathfrak {B},\ b_{\textbf{k}}=\Vert Y_{\textbf{k}}\Vert _\mathfrak {B}\). It suffices to study the sum \( \left( \sum _{\textbf{j}\in \mathbb Z^d}a_\textbf{j}b_{\textbf{k}-\textbf{j}}\right) ^2\langle \textbf{k}\rangle ^{2\,s}. \) We have the following two cases.

Case 1.:

\(\textbf{j}\in \mathcal {I}_\textbf{k}:=\{\textbf{j}\in \mathbb Z^d:\ {\langle \textbf{k}\rangle ^{2\,s}}{\langle \textbf{k}-\textbf{j}\rangle ^{-2\,s}}\le 10\}.\) In this case we have

$$\begin{aligned} {\langle \textbf{k}\rangle ^{2s}}{\langle \textbf{k}-\textbf{j}\rangle ^{-2s}}\langle \textbf{j}\rangle ^{-2\alpha _0}\le 10\langle \textbf{j}\rangle ^{-2\alpha _0}. \end{aligned}$$
(6.7)

Hence we have by using the Hölder inequality

$$\begin{aligned} \sum _{\textbf{k}\in \mathbb Z^d}\left( \sum _{\textbf{j}\in \mathcal {I}_\textbf{k}}a_\textbf{j}b_{\textbf{k}-\textbf{j}}\right) ^2\langle \textbf{k}\rangle ^{2s}&\le \sum _{\textbf{k}\in \mathbb Z^d}\left( \sum _{\textbf{j}\in \mathcal {I}_\textbf{k}}a_\textbf{j}^2\langle \textbf{j}\rangle ^{2\alpha _0}\right) \left( \sum _{\textbf{j}\in \mathcal {I}_\textbf{k}}b_{\textbf{k}-\textbf{j}}^2\langle \textbf{j}\rangle ^{-2\alpha _0}\right) \langle \textbf{k}\rangle ^{2s}\\&\le \Vert X\Vert _{\alpha _0}^2\sum _{\textbf{k}\in \mathbb Z^d}\left( \sum _{\textbf{j}\in \mathcal {I}_\textbf{k}}b_{\textbf{k}-\textbf{j}}^2\langle \textbf{k}-\textbf{j}\rangle ^{2s}\langle \textbf{j}\rangle ^{-2\alpha _0}\langle \textbf{k}\rangle ^{2s}\langle \textbf{k}-\textbf{j}\rangle ^{-2s}\right) \\&\le 10\Vert X\Vert _{\alpha _0}^2\sum _{\textbf{k}\in \mathbb Z^d}\left( \sum _{\textbf{j}\in \mathcal {I}_\textbf{k}}b_{\textbf{k}-\textbf{j}}^2\langle \textbf{k}-\textbf{j}\rangle ^{2s}\langle \textbf{j}\rangle ^{-2\alpha _0}\right) \ (\mathrm{since (A.2)})\\&\le 10\Vert X\Vert _{\alpha _0}^2\sum _{\textbf{j}\in \mathbb Z^d}\langle \textbf{j}\rangle ^{-2\alpha _0}\left( \sum _{\textbf{k}\in \mathbb Z^d}b_{\textbf{k}-\textbf{j}}^2\langle \textbf{k}-\textbf{j}\rangle ^{2s}\right) \\&\le M_0^2\Vert X\Vert _{\alpha _0}^2\Vert Y\Vert _{s}^2, \end{aligned}$$

where \(M_0=\sqrt{10\sum \limits _{\textbf{k}\in \mathbb Z^d}\langle \textbf{k}\rangle ^{-2\alpha _0}}<\infty \) since \(\alpha _0>d/2.\)

Case 2.:

\(\textbf{j}\notin \mathcal {I}_\textbf{k}.\) In this case we must have \(\textbf{k}\ne \textbf{0}.\) Then

$$\begin{aligned} \langle \textbf{k}\rangle&>10^{\frac{1}{2s}}\langle \textbf{k}-\textbf{j}\rangle >10^{\frac{1}{2s}}|\textbf{k}-\textbf{j}|\ge 10^{\frac{1}{2s}}(|\textbf{k}|-|\textbf{j}|)\ge 10^{\frac{1}{2s}}(\langle \textbf{k}\rangle -\langle \textbf{j}\rangle ), \end{aligned}$$

which yields

$$\begin{aligned} \langle \textbf{j}\rangle ^{-2s}\le (1-10^{-\frac{1}{2s}})^{-2s}\langle \textbf{k}\rangle ^{-2s}. \end{aligned}$$
(A.1)

Thus using again the Hölder inequality implies

$$\begin{aligned} \sum _{\textbf{k}\in \mathbb Z^d}\left( \sum _{\textbf{j}\notin \mathcal {I}_{\textbf{k}}}a_\textbf{j}b_{\textbf{k}-\textbf{j}}\right) ^2\langle \textbf{k}\rangle ^{2s}&\le \sum _{\textbf{k}\in \mathbb Z^d}\left( \sum _{\textbf{j}\in \mathbb Z^d}b_{\textbf{k}-\textbf{j}}^2\langle \textbf{k}-\textbf{j}\rangle ^{2\alpha _0}\right) \left( \sum _{\textbf{j}\notin \mathcal {I}_\textbf{k}}a_{\textbf{j}}^2\langle \textbf{k}-\textbf{j}\rangle ^{-2\alpha _0}\right) \langle \textbf{k}\rangle ^{2s}\\&\le \Vert Y\Vert _{\alpha _0}^2\sum _{\textbf{k}\in \mathbb Z^d}\left( \sum _{\textbf{j}\notin \mathcal {I}_\textbf{k}}a_{\textbf{j}}^2\langle \textbf{j}\rangle ^{2s}\langle \textbf{k}-\textbf{j}\rangle ^{-2\alpha _0}\langle \textbf{j}\rangle ^{-2s}\langle \textbf{k}\rangle ^{2s}\right) \\&\le (1-10^{-\frac{1}{2s}})^{-2s}\Vert Y\Vert _{\alpha _0}^2\sum _{\textbf{k}\in \mathbb Z^d}\left( \sum _{\textbf{j}\in \mathbb Z^d}a_{\textbf{j}}^2\langle \textbf{j}\rangle ^{2s}\langle \textbf{k}-\textbf{j}\rangle ^{-2\alpha _0}\right) \ (\mathrm{since (A.3)})\\&\le (1-10^{-\frac{1}{2s}})^{-2s}\Vert Y\Vert _{\alpha _0}^2\sum _{\textbf{j}\in \mathbb Z^d}a_{\textbf{j}}^2\langle \textbf{j}\rangle ^{2s}\left( \sum _{\textbf{k}\in \mathbb Z^d}\langle \textbf{k}-\textbf{j}\rangle ^{-2\alpha _0}\right) \\&\le M_1^2(s)\Vert Y\Vert _{\alpha _0}^2\Vert X\Vert _{s}^2, \end{aligned}$$

where \(M_1(s)=(1-10^{-\frac{1}{2\,s}})^{-s}\sqrt{\sum \limits _{\textbf{k}\in \mathbb Z^d}\langle \textbf{k}\rangle ^{-2\alpha _0}}<\infty \) since \(\alpha _0>d/2.\)

Combining Case 1 and Case 2 implies

$$\begin{aligned} \Vert XY\Vert _s&\le \sqrt{2M^2_0(\alpha _0)\Vert X\Vert _{\alpha _0}^2\Vert Y\Vert _{s}^2+2M^2_1(s)\Vert Y\Vert _{\alpha _0}^2\Vert X\Vert _{s}^2}\\&\le K_0(\alpha _0)\Vert X\Vert _{\alpha _0}\Vert Y\Vert _{s}+K_1(s)\Vert X\Vert _{s}\Vert Y\Vert _{\alpha _0}, \end{aligned}$$

which proves Lemma 3.1, where \(K_0=\sqrt{2}M_0,\ K_1(s)=\sqrt{2}M_1(s).\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y. Localization for Almost-Periodic Operators with Power-law Long-range Hopping: A Nash-Moser Iteration Type Reducibility Approach. Commun. Math. Phys. 402, 1765–1806 (2023). https://doi.org/10.1007/s00220-023-04756-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04756-z

Navigation