Skip to main content
Log in

Critical Varieties in the Grassmannian

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce a family of spaces called critical varieties. Each critical variety is a subset of one of the positroid varieties in the Grassmannian. The combinatorics of positroid varieties is captured by the dimer model on a planar bipartite graph G, and the critical variety is obtained by restricting to Kenyon’s critical dimer model associated to a family of isoradial embeddings of G. This model is invariant under square/spider moves on G, and we give an explicit boundary measurement formula for critical varieties which does not depend on the choice of G. This extends our recent results for the critical Ising model, and simultaneously also includes the case of critical electrical networks. We systematically develop the basic properties of critical varieties. In particular, we study their real and totally positive parts, the combinatorics of the associated strand diagrams, and introduce a shift map motivated by the connection to zonotopal tilings and scattering amplitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Notes

  1. Strictly speaking, we have \({\text {wt}}_{\varvec{\theta }}(e)=\frac{1}{2i}{\text {wt}}_{\textbf{t}}(e)\) for all non-boundary \(e\in E(G)\), but this rescaling does not affect the boundary measurements since \({\text {wt}}_{\textbf{t}}\) and \({\text {wt}}_{\varvec{\theta }}\) are gauge-equivalent; see the proof of Lemma 5.9.

  2. By linearity of Ohm’s and Kirchhoff’s laws, knowing \(\Lambda ^{{\mathbb {T}}}_{p,q}\) for all \(1\leqslant p,q\leqslant N\) allows one to solve the more general problem: for any known voltages that are applied to the boundary vertices, one finds the resulting currents flowing through each boundary vertex.

  3. More precisely, Lam’s embedding lands in \({\text {Gr}}_{\geqslant 0}(N-1,2N)\). To get an element of \({\text {Gr}}_{\geqslant 0}(N+1,2N)\), one needs to apply the duality discussed in Sect. 3.2.

  4. The point \(X_0^{({k,n})}\) is the unique element of \({\text {Gr}}_{\geqslant 0}(k,n)\) satisfying \(S(X_0^{({k,n})})=X_0^{({k,n})}\), where \(S:{\text {Gr}}_{\geqslant 0}(k,n)\rightarrow {\text {Gr}}_{\geqslant 0}(k,n)\) is the cyclic shift automorphism discussed in Sect. 3.1.

  5. When (un)contracting a degree 2 interior vertex, we always assume that both edges incident to it have weight 1; this is always achievable by applying gauge transformations.

  6. We thank Lauren Williams for comments motivating the below results.

  7. The name is explained by the fact that if \({\varvec{\theta }}\) and \({\textbf{t}}\) are related by (5.1) then up to a simple transformation, the rows of \(F_{f,{\textbf{t}}}\) yield the Fourier coefficients of \(\varvec{\gamma }_{f,{\varvec{\theta }}}(t)\), viewed as a \(2\pi \)-periodic function of t.

  8. In order to invoke [OPS15, Proposition 9.8] one needs to assume that the Grassmann necklace of f is connected. However, even when it is not connected, the Grassmann necklace curve may be deformed slightly into a simple closed curve surrounding \(\Sigma _k(G)\); see the discussion around [BW20, Definition 4.4].

  9. The names (M1), (M2), (M3) for the moves in Fig. 23 are taken from [Gal18]: these moves are obtained from a single transformation of 3-dimensional zonotopal tilings by taking horizontal sections by planes \(z=k\) for \(k=1,2,3\), respectively; see [Gal18, Figure 8].

References

  1. Arkani-Hamed, N., Bourjaily, J., Cachazo, F., Goncharov, A., Postnikov, A., Trnka, J.: Grassmannian Geometry of Scattering Amplitudes. Cambridge University Press, Cambridge (2016)

    Book  MATH  Google Scholar 

  2. Arkani-Hamed, N., Lam, T., Spradlin, M.: Positive configuration space. arXiv:2003.03904v2 (2020)

  3. Arkani-Hamed, N., Trnka, J.: The amplituhedron. J. High Energy Phys. 2014(10), 30 (2014)

    Article  MATH  Google Scholar 

  4. Ardila, F., Rincón, F., Williams, L.: Positroids and non-crossing partitions. Trans. Am. Math. Soc. 368(1), 337–363 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baxter, R.J.: Solvable eight-vertex model on an arbitrary planar lattice. Philos. Trans. R. Soc. Lond. Ser. A 289(1359), 315–346 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  6. Baxter, R.J.: Free-fermion, checkerboard and \({ Z}\)-invariant lattice models in statistical mechanics. Proc. R. Soc. Lond. Ser. A 404(1826), 1–33 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  7. Britto, R., Cachazo, F., Feng, B., Witten, E.: Direct proof of the tree-level scattering amplitude recursion relation in Yang–Mills theory. Phys. Rev. Lett. 94(18), 181602, 4 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bott, R., Taubes, C.: On the self-linking of knots. J. Math. Phys. 35(10), 5247–5287 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Balitskiy, A., Wellman, J.: Flip cycles in plabic graphs. Sel. Math. (N.S.), 26(1), Paper No. 15, 29 (2020)

  10. Chelkak, D., Laslier, B., Russkikh, M.: Dimer model and holomorphic functions on t-embeddings of planar graphs. arXiv:2001.11871v1 (2020)

  11. Corteel, S., Williams, L.K.: Tableaux combinatorics for the asymmetric exclusion process and Askey–Wilson polynomials. Duke Math. J. 159(3), 385–415 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dubédat, J.: Exact bosonization of the Ising model. arXiv:1112.4399v1 (2011)

  13. Fomin, S., Pylyavskyy, P., Shustin, E., Thurston, D.: Morsifications and mutations. arXiv:1711.10598v3 (2017)

  14. Fomin, S., Zelevinsky, A.: Cluster algebras. I. Foundations. J. Am. Math. Soc. 15(2), 497–529 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Galashin, P.: Plabic graphs and zonotopal tilings. Proc. Lond. Math. Soc. (3) 117(4), 661–681 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Galashin, P.: Poset associahedra. arXiv:2110.07257v1 (2021)

  17. Galashin, P.: Symmetries of stochastic colored vertex models. Ann. Probab. 49(5), 2175–2219 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Galashin, P.: Totally nonnegative critical varieties. arXiv:2110.08548v1 (2021)

  19. Galashin, P.: A formula for boundary correlations of the critical Ising model. Probab. Theory Relat. Fields 182(1–2), 615–640 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  20. Galashin, P., Karp, S.N., Lam, T.: Regularity theorem for totally nonnegative flag varieties. J. Am. Math. Soc. 35(2), 513–579 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Galashin, P., Karp, S.N., Lam, T.: The totally nonnegative Grassmannian is a ball. Adv. Math., 397, Paper No. 108123, 23 (2022)

  22. Galashin, P., Lam, T.: Positroid varieties and cluster algebras. Ann. Sci. Éc. Norm. Supér. arXiv:1906.03501v1 (2019, to appear)

  23. Galashin, P., Lam, T.: Parity duality for the amplituhedron. Compos. Math. 156(11), 2207–2262 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Galashin, P., Lam, T.: Positroids, knots, and \(q,t\)-Catalan numbers. arXiv:2012.09745v2 (2020)

  25. Galashin, P., Pylyavskyy, P.: Ising model and the positive orthogonal Grassmannian. Duke Math. J. 169(10), 1877–1942 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Galashin, P., Postnikov, A., Williams, L.: Higher secondary polytopes and regular plabic graphs. arXiv:1909.05435v1 (2019)

  27. Karp, S.N.: Sign variation, the Grassmannian, and total positivity. J. Combin. Theory Ser. A 145, 308–339 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Karp, S.N.: Moment curves and cyclic symmetry for positive Grassmannians. Bull. Lond. Math. Soc. 51(5), 900–916 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kenyon, R.: Tiling a polygon with parallelograms. Algorithmica 9(4), 382–397 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kenyon, R.: The Laplacian and Dirac operators on critical planar graphs. Invent. Math. 150(2), 409–439 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Kenyon, R., Lam, W.Y., Ramassamy, S., Russkikh, M.: Dimers and Circle patterns. arXiv:1810.05616v2 (2018)

  32. Knutson, A., Lam, T., Speyer, D.E.: Positroid varieties: juggling and geometry. Compos. Math. 149(10), 1710–1752 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kostant, B.: Flag manifold quantum cohomology, the Toda lattice, and the representation with highest weight \(\rho \). Sel. Math. (N.S.) 2(1), 43–91 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kenyon, R.W., Propp, J.G., Wilson, D.B.: Trees and matchings. Electron. J. Combin. 7, Research Paper 25, 34 (2000)

  35. Lam, T.: Totally nonnegative Grassmannian and Grassmann polytopes. In: Current Developments in Mathematics 2014, pp. 51–152. Int. Press, Somerville, MA (2016)

  36. Lam, T.: Electroid varieties and a compactification of the space of electrical networks. Adv. Math. 338, 549–600 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lukowski, T., Parisi, M., Williams, L.K.: The positive tropical Grassmannian, the hypersimplex, and the m=2 amplituhedron. arXiv:2002.06164v2 (2020)

  38. Lusztig, G.: Total positivity in reductive groups. In: Lie Theory and Geometry, volume 123 of Progr. Math., pp. 531–568. Birkhäuser Boston, Boston, MA (1994)

  39. Lusztig, G.: Introduction to total positivity. In: Positivity in Lie Theory: Open Problems, volume 26 of De Gruyter Exp. Math., pp. 133–145. de Gruyter, Berlin (1998)

  40. Mercat, C.: Discrete Riemann surfaces and the Ising model. Commun. Math. Phys. 218(1), 177–216 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Marsh, R.J., Scott, J.S.: Twists of Plücker coordinates as dimer partition functions. Commun. Math. Phys. 341(3), 821–884 (2016)

    Article  ADS  MATH  Google Scholar 

  42. Muller, G., Speyer, D.E.: The twist for positroid varieties. Proc. Lond. Math. Soc. (3) 115(5), 1014–1071 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Suho, O., Postnikov, A., Speyer, D.E.: Weak separation and plabic graphs. Proc. Lond. Math. Soc. (3) 110(3), 721–754 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Postnikov, A.: Total positivity, Grassmannians, and networks. Preprint, http://math.mit.edu/~apost/papers/tpgrass.pdf (2006)

  45. Parisi, M., Sherman-Bennett, M., Williams, L.: The m=2 amplituhedron and the hypersimplex: signs, clusters, triangulations, Eulerian numbers. arXiv:2104.08254v3 (2021)

  46. Postnikov, A., Speyer, D., Williams, L.: Matching polytopes, toric geometry, and the totally non-negative Grassmannian. J. Algebraic Comb. 30(2), 173–191 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rietsch, K.: Totally positive Toeplitz matrices and quantum cohomology of partial flag varieties. J. Am. Math. Soc. 16(2), 363–392 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. Simion, R.: A type-B associahedron. volume 30, pp. 2–25 (2003). Formal power series and algebraic combinatorics (Scottsdale, AZ, 2001)

  49. Shende, V., Treumann, D., Williams, H., Zaslow, E.: Cluster varieties from Legendrian knots. Duke Math. J. 168(15), 2801–2871 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  50. Talaska, K.: A formula for Plücker coordinates associated with a planar network. Int. Math. Res. Not. Art. ID rnn081 (2008)

Download references

Acknowledgements

I am indebted to Pasha Pylyavskyy for his numerous contributions at various stages of the development of [Gal22], where the boundary measurement formula was first discovered in the context of the Ising model. The generalization to the Grassmannian level was inspired by the results of [CLR20, KLRR18], presented by Marianna Russkikh at the “Dimers in Combinatorics and Cluster Algebras” conference at the University of Michigan. I thank Marianna for bringing these results to my attention, and also thank the organizers of the conference (Sebastian Franco, Gregg Musiker, Richard Kenyon, David Speyer, and Lauren Williams) for making such an interaction possible. Finally, I am grateful to Lauren Williams and to the anonymous referee for their valuable comments on the first version of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Galashin.

Additional information

Communicated by P. Francesco

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

P. G. was supported by an Alfred P. Sloan Research Fellowship and by the National Science Foundation under Grants No. DMS-1954121 and No. DMS-2046915.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galashin, P. Critical Varieties in the Grassmannian. Commun. Math. Phys. 401, 3277–3333 (2023). https://doi.org/10.1007/s00220-023-04718-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04718-5

Navigation