Skip to main content
Log in

Many Nodal Domains in Random Regular Graphs

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let G be a random d-regular graph on n vertices. We prove that for every constant \(\alpha > 0\), with high probability every eigenvector of the adjacency matrix of G with eigenvalue less than \(-2\sqrt{d-2}-\alpha \) has \(\Omega (n/\textrm{polylog}(n))\) nodal domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We restrict our attention to weak nodal domains as there are at least as many strong domains as weak domains.

  2. The quantum chaos literature considers eigenfunctions of Laplacians on manifolds in the high energy limit. We analogously consider the highest Laplacian eigenvalues of graphs of fixed degree with the number of vertices going to infinity. High eigenvalue eigenfunctions have high frequency, and therefore, by the Planck formula, high energy.

  3. As a starting point, Eldan, H. Huang, and Rudelson asked in 2020 [Rud20] whether the most negative eigenvector of a sparse G(np) graph has more than two nodal domains. Such graphs may have nontrivial nodal domain structure when p is near or below the connectivity threshold \(\log n/n\). However, these graphs have a different, irregular, Benjamini-Schramm limit from random \(d-\)regular graphs. We expect our methods to work in this new setting, but this would require significant modifications, and we have not pursued this in this work.

  4. The Green’s function \((A-zI)^{-1}\) of a random regular graph can only approximate that of the infinite tree when \(\Im (z)\geqslant \textrm{polylog}n/n\), meaning that it inherently reflects the aggregate behavior of \(\textrm{polylog}n\) eigenvectors.

References

  1. Arora, S., Bhaskara, A.: Eigenvectors of random graphs: delocalization and nodal domains. http://www.cs.princeton.edu/~bhaskara/files/deloc.pdf (2011)

  2. Berry, M.V.: Regular and irregular semiclassical wavefunctions. J. Phys. A: Math. Gen. 10(12), 2083 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Berkolaiko, G.: A lower bound for nodal count on discrete and metric graphs. Commun. Math. Phys. 278(3), 803–819 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Blum, G., Gnutzmann, S., Smilansky, U.: Nodal domains statistics: a criterion for quantum chaos. Phys. Rev. Lett. 88(11), 114101 (2002)

    Article  ADS  Google Scholar 

  5. Bauerschmidt, R., Huang, J., Yau, H.-T.: Local Kesten–McKay law for random regular graphs. Commun. Math. Phys. 369(2), 523–636 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Beigel, R., Margulis, G., Spielman, D.A.: Fault diagnosis in a small constant number of parallel testing rounds. In: Proceedings of the Fifth Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 21–29 (1993)

  7. Bordenave, C.: A new proof of Friedman’s second eigenvalue theorem and its extension to random lifts. In: Annales scientifiques de l’Ecole normale supérieure (2019)

  8. Band, R., Oren, I., Smilansky, U.: Nodal domains on graphs-how to count them and why? arXiv:0711.3416 (2007)

  9. Backhausz, Á., Szegedy, B.: On the almost eigenvectors of random regular graphs. Ann. Probab. 47(3), 1677–1725 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Courant, R., Hilbert, D.: Methods of Mathematical Physics: Partial Differential Equations. Wiley, New York (1953)

    MATH  Google Scholar 

  11. Davies, E.B., Gladwell, G., Leydold, J., Stadler, P.F.: Discrete nodal domain theorems. arXiv:math/0009120 (2000)

  12. Dekel, Y., Lee, J.R., Linial, N.: Eigenvectors of random graphs: nodal domains. Random Struct. Algorithms 39(1), 39–58 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Elon, Y.: Eigenvectors of the discrete Laplacian on regular graphs-a statistical approach. J. Phys. A: Math. Theor. 41(43), 435203 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Elon, Y.: Gaussian waves on the regular tree. arXiv:0907.5065 (2009)

  15. Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czechoslov. Math. J. 25(4), 619–633 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Friedman, J.: A proof of Alon’s second eigenvalue conjecture. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pp. 720–724 (2003)

  17. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. Am. Math. Soc. 43(4), 439–561 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, H., Rudelson, M.: Size of nodal domains of the eigenvectors of a graph. Random Struct. Algorithms 57(2), 393–438 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, J., Yau, H.-T.: Spectrum of random d-regular graphs up to the edge. arXiv:2102.00963 (2021)

  20. Kesten, H.: Symmetric random walks on groups. Trans. Am. Math. Soc. 92(2), 336–354 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kottos, T., Smilansky, U.: Quantum chaos on graphs. Phys. Rev. Lett. 79(24), 4794 (1997)

    Article  ADS  Google Scholar 

  22. Korte, B., Vygen, J.: Combinatorial Optimization, vol. 2. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  23. McKay, B.D.: The expected eigenvalue distribution of a large regular graph. Linear Algebra Appl. 40, 203–216 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rudnick, Z.: Quantum chaos? Notices of the AMS 55(1), 32–34 (2008)

    MATH  Google Scholar 

  25. Rudelson, M.: Delocalization of eigenvectors of random matrices. lecture notes. arXiv:1707.08461 (2017)

  26. Rudelson, M.: Nodal domains of G(n,p) graphs. https://www.youtube.com/watch?v=ItMCuWiDRcI (2020)

  27. Rudelson, M., Vershynin, R.: Delocalization of eigenvectors of random matrices with independent entries. Duke Math. J. 164(13), 2507–2538 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rudelson, M., Vershynin, R.: No-gaps delocalization for general random matrices. Geom. Funct. Anal. 26(6), 1716–1776 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Smilansky, U.: Discrete graphs—a paradigm model for quantum chaos. In: Chaos, pp. 97–124. Springer (2013)

  30. Zelditch, S.: Eigenfunctions of the Laplacian on a Riemannian Manifold, vol. 125. American Mathematical Society, New York (2017)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirshendu Ganguly.

Additional information

Communicated by J. Ding

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Shirshendu Ganguly supported by NSF Grant DMS-1855688, NSF Career Grant DMS-1945172, and a Sloan Fellowship.

Theo McKenzie supported by NSF GRFP Grant DGE-1752814 and NSF Grant DMS-2212881.

Sidhanth Mohanty supported by Google Ph.D. Fellowship.

Nikhil Srivastava supported by NSF Grant CCF-2009011.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganguly, S., McKenzie, T., Mohanty, S. et al. Many Nodal Domains in Random Regular Graphs. Commun. Math. Phys. 401, 1291–1309 (2023). https://doi.org/10.1007/s00220-023-04709-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04709-6

Navigation