Skip to main content
Log in

Lagrangian Grassmannians, CKP Hierarchy and Hyperdeterminantal Relations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This work concerns the relation between the geometry of Lagrangian Grassmannians and the CKP integrable hierarchy. The Lagrange map from the Lagrangian Grassmannian of maximal isotropic (Lagrangian) subspaces of a finite dimensional symplectic vector space \(V\oplus V^*\) into the projectivization of the exterior space \(\Lambda V\) is defined by restricting the Plücker map on the full Grassmannian to the Lagrangian sub-Grassmannian and composing it with projection to the subspace of symmetric elements under dualization \(V \leftrightarrow V^*\). In terms of the affine coordinate matrix on the big cell, this reduces to the principal minors map, whose image is cut out by the \(2 \times 2 \times 2\) quartic hyperdeterminantal relations. To apply this to the CKP hierarchy, the Lagrangian Grassmannian framework is extended to infinite dimensions, with \(V\oplus V^*\) replaced by a polarized Hilbert space \( {{\mathcal {H}}} ={{\mathcal {H}}}_+\oplus {\mathcal H}_-\), with symplectic form \(\omega \). The image of the Plucker map in the fermionic Fock space \({{\mathcal {F}}}= \Lambda ^{\infty /2}{{\mathcal {H}}}\) is identified and the infinite dimensional Lagrangian map is defined. The linear constraints defining reduction to the CKP hierarchy are expressed as a fermionic null condition and the infinite analogue of the hyperdeterminantal relations is deduced. A multiparametric family of such relations is shown to be satisfied by the evaluation of the \(\tau \)-function at translates of a point in the space of odd flow variables along the cubic lattices generated by power sums in the parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data sharing

Data sharing is not applicable to this article since no new data were created or analyzed in this study.

Notes

  1. To compare with the notation of [20, 25, 26], set

    $$\begin{aligned} S_0= & {} A_0= h=a_0, \ S_1=A_1 = h_{(1)} = a_7, \ S_2 =A_2 =- h_{(2)}=-a_8,\ S_3 = A_3= h_{(3)}=a_9, \\ S_{0^*}= & {} A_{123}= h_{(123)} = a_0^*, \ S_{1^*} =A_{23}=h_{(23)} = a_4, \ S_{2^*}=A_{13} =-h_{(13)} = -a_5, \ S_{3^*} =A_{12} \\ {}= & {} h_{(12)} = a_6, T_1 = h^{(x)} =a_1, \ T_2= h^{(y)}=a_2, \ T_3 = h^{(z)} = a_3, \ T_{1^*} = h^{(x)}_{(1)} = a_1^*, \ T_{2^*} = h^{(y)}_{(2)}\\ {}= & {} a_2^*, \ T_{3^*} = h^{(x)}_{(3)} = a_3^*. \end{aligned}$$

References

  1. Arthamonov, S., Harnad, J., Hurtubise, J.: Tau functions, infinite Grassmannians and lattice recurrences. J. Math. Phys. 64(2), 023502 (2023)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Balogh, F., Harnad, J., Hurtubise, J.: Isotropic Grassmannians, Plücker and Cartan maps. J. Math. Phys. 62, 021701 (2021)

    Article  ADS  MATH  Google Scholar 

  3. Bobenko, A.I., Schief, W.K.: Discrete line complexes and integrable evolution of minors. Proc. R. Soc. A 471, 20140819 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bobenko, A.I., Schief, W.K.: Circle complexes and the discrete CKP equation. Int. Math. Res. Not. 2016, 1–58 (2016)

    MATH  Google Scholar 

  5. Bourbaki, N.: Éléments de mathématique. Première partie: les structures fondamentales de l’Analyse. Livre II: Algèbre. Chapitre 9. In: Formes Sesquilinéaires et Formes Quadratiques, Sec. 5. Actualités Sci. No. 1272. Hermann, Paris (1959)

  6. Bourbaki, N.: Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. In: Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes Engendrés par des Réflexions. Chapitre VI: Systèmes de Racines. Actualités Scientifiques et Industrielles, No. 1337. Hermann, Paris (1968)

  7. Cartan, E.: The Theory of Spinors. Dover Publications Inc, Mineola (1981)

    MATH  Google Scholar 

  8. Chevalley, C.: The Algebraic Theory of Spinors and Clifford Algebras. Springer, Berlin, Heidelberg (1997)

    MATH  Google Scholar 

  9. Cheng, J., He, J.: The “ghost’’ symmetry in the CKP hierarchy. J. Geom. Phys. 80, 49–57 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Chang, L., Wu, C.-Z.: Tau function of the CKP hierarchy and nonlinearizable Virasoro symmetries. Nonlinearity 26, 2577–2596 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Carrillo-Pacheco, J., Zaldivar, F.: On Lagrangian–Grassmannian codes. Des. Codes Cryptogr. 60, 291–298 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations. VI. KP hierarchies of orthogonal and symplectic type. J. Phys. Soc. Jpn. 50, 3813–3818 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations IV. A new hierarchy of soliton equations of KP type. Physica 4D, 343–365 (1982)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations. In: Jimbo, M., Miwa, T. (eds.) Nonlinear Integrable Systems—Classical Theory and Quantum Theory. World Scientific, Singapore (1983)

    MATH  Google Scholar 

  15. Fu, W., Nijhoff, F.W.: Direct linearizing transform for three-dimensional discrete integrable systems: the lattice AKP, BKP and CKP equations. Proc. R. Soc. A 473, 20160915 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Fulton, W., Harris, J.: Representation Theory: A First Course. Graduate Texts in Mathematics, vol. 35. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  17. Griffiths, P., Harris, J.: Principles of Algebraic Geometry, Chapt. I.5. Wiley, New York (1978)

    Google Scholar 

  18. Harnad, J., Balogh, F.: Tau Functions and Their Applications. Monographs on Mathematical Physics series, Cambridge University Press, Cambridge (2021)

    Book  MATH  Google Scholar 

  19. Hirota, R.: The Direct Method in Soliton Theory. Cambridge Tracts in Mathematics, vol. 155 (transl. A. Nagai, J. Nimmo and C. Gilson). Cambridge University Press, Cambridge (2009)

  20. Holtz, O., Sturmfels, B.: Hyperdeterminantal relations among symmetric principal minors. J. Algebra 316, 634–648 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jimbo, M., Miwa, T.: Solitons and infinite-dimensional Lie algebras. Publ. Res. Inst. Math. Sci. 19, 943–1001 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jimbo, M., Miwa, T.: Irreducible decomposition of fundamental modules for \(A^{(1)}_l\) and \(C^{(1)}_l\) and Hecke modular forms. Group Represent. Syst. Differ. Equ. Adv. Stud. Pure Math. 4, 97–119 (1984)

    Article  Google Scholar 

  23. Kashaev, R.: On discrete three-dimensional equations associated with the local Yang–Baxter equation. Lett. Math. Phys. 33, 389–397 (1996)

    Article  ADS  MATH  Google Scholar 

  24. Kasman, A., Pedings, K., Reiszl, A., Shiota, T.: Universality of rank \(6\) Plücker relations and Grassmann cone preserving maps. Proc. Am. Math. Soc. 136, 77–87 (2008)

    Article  MATH  Google Scholar 

  25. Kenyon, R., Pemantle, R.: Principal minors and rhombus tilings. J. Phys. A Math. Theor. 47, 474010 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kenyon, R., Pemantle, R.: Double-dimers, the Ising model and the hexahedron recurrence. J. Comb. Theory A137, 27–63 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Krichever, I., Zabrodin, A.: Kadomtsev–Petviashvili turning points and CKP hierarchy. Commun. Math. Phys. 386, 643–1683 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  29. Miwa, T.: On Hirota’s difference equations. Proc. Jpn. Acad. 58(A), 9–12 (1982)

    MathSciNet  MATH  Google Scholar 

  30. Nimmo, J.J.C.: Darboux transformations and the discrete KP equation. J. Phys. A Math. Gen. 30, 8693–8704 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Novikov, S.P., Manakov, S.V., Pitaevsky, L.P., Zakharov, V.E.: Theory of Solitons: The Inverse Scattering Method. Plenum, New York (1984)

    Google Scholar 

  32. Oeding, L.: Set-theoretic defining equations of the variety of principal minors of symmetric matrices. Algebra Number Theory 5(1), 75–109 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sato, M.: Soliton equations as dynamical systems on infinite dimensional Grassmann manifold. Kokyuroku, RIMS, pp. 30–46 (1981)

  34. Sato, M., Sato, Y.: Soliton equations as dynamical systems on an infinite dimensional Grassmann manifold. Lect. Notes Appl. Anal. 5, 259–271 (1982); North-Holland Math. Stud. 81, 259–271 (1983)

  35. Schief, W.K.: Lattice geometry of the discrete Darboux, KP, BKP and CKP equations. Menelaus’ and Carnot’s theorems. J. Nonlinear Math. Phys. 10(Supp. 2), 194–208 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Shigyo, Y.: On addition formulae of KP, mKP and BKP hierarchies. SIGMA 9, 035 (2013)

    MathSciNet  MATH  Google Scholar 

  37. Segal, G., Wilson, G.: Loop groups and equations of KdV type. Publ. Math. IHÉS 6, 5–65 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  38. Stanley, R.P.: Enumerative Combinatorics, Chapt. 7. Cambridge Studies in Advanced Mathematics, vol. 2. Cambidge University Press, New Yorl (2012)

    Google Scholar 

  39. Van Geeman, B., Marrani, A.: Lagrangian Grassmannians and spinor varieties in characteristic two. SIGMA 15, 064 (2019)

    MathSciNet  MATH  Google Scholar 

  40. Van de Leur, J.W., Orlov, A.Yu., Shiota, T.: CKP hierarchy, bosonic tau function and bosonization formulae. SIGMA 8, 28 (2012)

Download references

Acknowledgements

The authors would like to thank M. Jimbo, R. Kenyon, J. van de Leur, L. Oeding and A. Zabrodin for helpful exchanges that contributed greatly to clarifying the results presented here. This work was partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Harnad.

Additional information

Communicated by J. de Gier.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arthamonov, S., Harnad, J. & Hurtubise, J. Lagrangian Grassmannians, CKP Hierarchy and Hyperdeterminantal Relations. Commun. Math. Phys. 401, 1337–1381 (2023). https://doi.org/10.1007/s00220-023-04670-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04670-4

Navigation