Skip to main content
Log in

Dynamics of Two Interacting Kinks for the \(\phi ^{6}\) Model

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the nonlinear wave equation known as the \(\phi ^{6}\) model in dimension 1+1. We describe the long-time behavior of this model’s solutions close to a sum of two kinks with energy slightly larger than twice the minimum energy of non-constant stationary solutions. We prove orbital stability of two moving kinks. We show for low energy excess \(\epsilon \) that these solutions can be described for a long time of order \(-\ln {(\epsilon )}\epsilon ^{-\frac{1}{2}}\) as the sum of two moving kinks such that each kink’s center is close to an explicit function which is a solution of an ordinary differential system. We give an optimal estimate in the energy norm of the remainder and we prove that this estimate is achieved during a finite instant t of order \(-\ln {(\epsilon )}\epsilon ^{-\frac{1}{2}}.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility

The author can confirm that all relevant data are included in this article and its supplementary information files.

References

  1. Bethuel, F., Orlandi, G., Smets, D.: Dynamics of multiple degree Ginzburg–Landau vortices. C. R. Math. 342, 837–842 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bishop, A.R., Schneider, T., Matter, S.N.S.D.C.: National Science Foundation (U.S.). In: Solitons and Condensed Matter Physics: Proceedings of the Symposium on Nonlinear (Soliton) Structure and Dynamics in Condensed Matter, Oxford, England, June 27–29, 1978. Lecture Notes in Economic and Mathematical Systems. Springer (1978)

  3. Coddington, A., Levinson, N.: Theory of Ordinary Differential Equations. International Series in Pure and Applied Mathematics. McGraw-Hill Companies, New York (1955)

    MATH  Google Scholar 

  4. Colliander, J.E., Jerrard, R.L.: Vortex dynamics for the Ginzburg–Landau–Schrödinger equation. Int. Math. Res. Not. 333–358, 1998 (1998)

    MATH  Google Scholar 

  5. Delort, J.-M., Masmoudi, N.: Long-Time Dispersive Estimates for Perturbations of a Kink Solution of One-Dimensional Cubic Wave Equations Space Time Dimensions, volume 1 of Memoirs of European Mathematical Society. EMS Press, Zurich (2022)

    Book  MATH  Google Scholar 

  6. Dorey, P., Mersh, K., Romanczukiewicz, T., Shnir, Y.: Kink-antikink collisions in the \(\phi ^6\) model. Phys. Rev. Lett. 107, 091602 (2011)

    Article  ADS  Google Scholar 

  7. Dunajski, M., Manton, N.S.: Reduced dynamics of Ward solitons. Nonlinearity 18(4), 1677–1689 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Gani, V.A., Kudryavtsev, A.E., Lizunova, M.A.: Kink interactions in the (1+1)-dimensional \(\phi ^6\) model. Phys. Rev. D Part. Fields 89, 125009 (2014)

    Article  ADS  Google Scholar 

  9. Giblin, J.T., Hui, L., Lim, E.A., Yang, I.-S.: How to run through walls: dynamics of bubble and soliton collisions. Phys. Rev. D Part. Fields 82, 045019 (2010)

    Article  ADS  Google Scholar 

  10. Gorshkov, K.A., Ostrovsky, L.A.: Interactions of solitons in nonintegrable systems: direct perturbation method and applications. Phys. D 3, 428–438 (1981)

    Article  MATH  Google Scholar 

  11. Gustafson, S., Sigal, I.M.: Effective dynamics of magnetic vortices. Adv. Math. 199, 448–498 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hawking, S.W., Moss, I.G., Stewart, J.M.: Bubble collisions in the very early universe. Phys. Rev. D 26, 2681–2713 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  13. Jendrej, J., Kowalczyk, M., Lawrie, A.: Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line. Duke Math. J. 171(18), 3643–3705 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jerrard, R.L., Soner, H.M.: Dynamics of Ginzburg–Landau vortices. Arch. Ration. Mech. Anal. 142, 99–125 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jerrard, R.L., Spirn, D.: Refined Jacobian estimates and Gross–Pitaevsky vortex dynamics. Arch. Ration. Mech. Anal. 190, 425–475 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kowalczyk, M., Martel, Y., Muñoz, C.: Kink dynamics in the \(\phi ^{4}\) model: asymptotic stability for odd perturbations in the energy space. J. Am. Math. Soc. 30, 769–798 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kowalczyk, M., Martel, Y., Muñoz, C., Van Den Bosch, H.: A sufficient condition for asymptotic stability of kinks in general (1+1)-scalar field models. Ann. PDE 7, 1–98 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lohe, M.A.: Soliton structures in \(p(\phi )_{2}\). Phys. Rev. D 20(12), 3120 (1979)

    Article  ADS  Google Scholar 

  19. Manton, N., Sutcliffe, P.: Topological Solitons. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  20. Manton, N.S., Speight, J.M.: Asymptotic interactions of critically coupled vortices. Commun. Math. Phys. 236, 535–555 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Manton, N.: Forces between kinks and antikinks with long-range tails. J. Phys. A Math. Theor. 52(6), 065401 (2019)

    Article  ADS  MATH  Google Scholar 

  22. Martel, Y., Merle, F., Tsai, T.-P.: Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations. Commun. Math. Phys. 231, 347–373 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Muñoz, C.: The Gardner equation and the stability of multi-kink solutions of the mKdV equation. Discrete Contin. Dyn. Syst. 16(7), 3811–3843 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ovchinnikov, Y.N., Sigal, I.M.: The Ginzburg–Landau equation III. Vortices dynamics. Nonlinearity 11(5), 1277–1294 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Raphaël, P., Szeftel, J.: Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical nls. J. Am. Math. Soc. 24(2), 471–546 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sandier, E., Serfaty, S.: Gamma-convergence of gradient flows and applications to Ginzburg–Landau vortex dynamics. Commun. Pure Appl. Math. 57, 1627–1672 (2004)

    Article  MATH  Google Scholar 

  27. Shatah, J., Struwe, M.: Geometric Wave Equation, volume 2 of Courant Lecture Notes. AMS, Boston (2000)

    MATH  Google Scholar 

  28. Stuart, D.: Dynamics of Abelian Higgs vortices in the near Bogolmony regime regime. Commun. Math. Phys. 159, 51–91 (1994)

    Article  ADS  MATH  Google Scholar 

  29. Stuart, D.: The geodesic approximation for Yang–Mills–Highs equations. Commun. Math. Phys. 166, 149–190 (1994)

    Article  ADS  MATH  Google Scholar 

  30. Stuart, D.: Analysis of the adiabatic limit for solitons in classical field theory. Proc. R. Soc. A 463, 2753–2781 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Vilenkin, A., Shellard, E.P.S.: Cosmic Strings and Other Topological Defects. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the L’École doctorale Galilée for the help and the financial support provided by EUR (Ecole Universitaire de Recherche) during the work of this project. The author would also like to thank his supervisors Thomas Duyckaerts and Jacek Jendrej for providing helpful comments and orientation, which were essential to conclude this paper. Finally, the author is grateful to the math department LAGA of the University Sorbonne Paris Nord and the referee for providing remarks and suggestions in the writing of this manuscript.

Funding

The author acknowledges the support of the French State Program “Investissement d’Avenir”, managed by the “Angence Nationale de la Recherche” under the grant ANR-18-EURE-0024. The author is a Ph.D. candidate of University Sorbonne Paris Nord.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdon Moutinho.

Ethics declarations

Consent to Participate

The author is open to helping the referees in the necessary adjustment of this article.

Consent for Publication

The author hereby consents to the publication.

Additional information

Communicated by K. Nakanishi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Auxiliary Results

We start the Appendix Section by presenting the following lemma:

Lemma 19

With the same hypothesis as in Theorem 4 and using its notation, we have while \(\max _{j\in \{1,2\}}\left|d_{j}(t)-x_{j}(t)\right|<1\) that \(\max _{j\in \{1,\,2\}}\left|\ddot{d}_{j}(t)-\ddot{x}_{j}(t)\right|=O\Big (\max _{j\in \{1,\,2\}}\left|d_{j}(t)-x_{j}(t)\right|\epsilon +\epsilon z(t)e^{-\sqrt{2}z(t)} +\left\Vert \overrightarrow{g(t)}\right\Vert \epsilon ^{\frac{1}{2}}\Big ).\)

Lemma 20

For \(U(\phi )=\phi ^{2}(1-\phi ^{2})^{2},\) we have that

$$\begin{aligned}{} & {} \dot{U}\left( H^{x_{1}(t)}_{-1,0}(x)+H^{x_{2}(t)}_{0,1}(x)\right) - \dot{U}\left( H^{x_{1}(t)}_{-1,0}(x)\right) -\dot{U}\left( H^{x_{2}(t)}_{0,1}(x)\right) \\{} & {} \quad =24e^{-\sqrt{2}z(t)}\left( \frac{H^{x_{1}(t)}_{-1,0}(x)}{(1+e^{-2\sqrt{2}(x-x_{1}(t))})^{\frac{1}{2}}}+\frac{H^{x_{2}(t)}_{0,1}(x)}{(1+e^{2\sqrt{2}(x-x_{2}(t))})^{\frac{1}{2}}}\right) \\{} & {} \qquad {-}30e^{-\sqrt{2}z(t)}\left( \frac{H^{x_{1}(t)}_{-1,0}(x)^{3}}{(1+e^{-2\sqrt{2}(x-x_{1}(t))})^{\frac{1}{2}}}+\frac{H^{x_{2}(t)}_{0,1}(x)^{3}}{(1+e^{2\sqrt{2}(x-x_{2}(t))})^{\frac{1}{2}}}\right) +r(t,x), \end{aligned}$$

such that \(\left\Vert r(t)\right\Vert _{L^{2}_{x}({\mathbb {R}})}=O(e^{-2\sqrt{2}z(t)}).\)

Proof

By direct computations, we verify that

$$\begin{aligned}{} & {} \dot{U}\left( H^{x_{1}(t)}_{-1,0}+H^{x_{2}(t)}_{0,1}\right) - \dot{U}\left( H^{x_{1}(t)}_{-1,0}\right) -\dot{U}\left( H^{x_{2}(t)}_{0,1}\right) \\{} & {} \quad ={-}24H^{x_{1}(t)}_{-1,0}H^{x_{2}(t)}_{0,1}\left( H^{x_{1}(t)}_{-1,0}+H^{x_{2}(t)}_{0,1}\right) \\ {}{} & {} \qquad {+}\,30H^{x_{1}(t)}_{-1,0}H^{x_{2}(t)}_{0,1}\left[ \left( H^{x_{1}(t)}_{-1,0}\right) ^{3}+\left( H^{x_{2}(t)}_{0,1}\right) ^{3}\right] \\ {}{} & {} \qquad {+}\,60\left( H^{x_{1}(t)}_{-1,0}H^{x_{2}(t)}_{0,1}\right) ^{2}\left[ H^{x_{1}(t)}_{-1,0}+H^{x_{2}(t)}_{0,1}\right] . \end{aligned}$$

First, from the definition of \(H_{0,1}(x),\) we verify that

$$\begin{aligned} 60\left( H^{x_{1}(t)}_{-1,0}H^{x_{2}(t)}_{0,1}\right) ^{2}\left[ H^{x_{1}(t)}_{-1,0}+H^{x_{2}(t)}_{0,1}\right] =\,&\frac{60e^{-2\sqrt{2}z(t)}H^{x_{2}(t)}_{0,1}}{(1+e^{2\sqrt{2}(x-x_{2}(t))})(1+e^{-2\sqrt{2}(x-x_{1}(t))})}\\&{+}\,\frac{60e^{-2\sqrt{2}z(t)}H^{x_{1}(t)}_{-1,0}}{(1+e^{-2\sqrt{2}(x-x_{1}(t))})(1+e^{2\sqrt{2}(x-x_{2}(t))})}. \end{aligned}$$

Using (4), we can verify using by induction for any \(k\in {\mathbb {N}}\) that

$$\begin{aligned} \left|\frac{d^{k}}{dx^{k}}\left[ \frac{1}{(1+e^{2\sqrt{2}x})}\right] \right|=\left|\frac{d^{k}}{dx^{k}}\left[ 1-\frac{e^{2\sqrt{2}x}}{(1+e^{2\sqrt{2}x})}\right] \right|=\left|\frac{d^{k}}{dx^{k}}\left[ H_{0,1}(x)^{2}\right] \right|=O(1),\nonumber \\ \end{aligned}$$
(A1)

and since \( \frac{H_{0,1}(x)}{(1+e^{2\sqrt{2}x})}=\frac{e^{\sqrt{2}x}}{(1+e^{2\sqrt{2}x})^{\frac{3}{2}}} \) is a Schwartz function, we deduce using Lemma 6 that \(60(H^{x_{1}(t)}_{-1,0}H^{x_{2}(t)}_{0,1})^{2}(H^{x_{1}(t)}_{-1,0}+H^{x_{2}(t)}_{0,1})\) is in \(H^{k}_{x}({\mathbb {R}})\) and it satisfies for all \(k>0\) the following estimate

$$\begin{aligned} \left\Vert \frac{\partial ^{k}}{\partial x^{k}}\left[ (H^{x_{1}(t)}_{-1,0}H^{x_{2}(t)}_{0,1})^{2}(H^{x_{1}(t)}_{-1,0}+H^{x_{2}(t)}_{0,1})\right] \right\Vert _{L^{2}}=O\left( e^{-2\sqrt{2}z(t)}\right) . \end{aligned}$$
(A2)

Next, using the identity

$$\begin{aligned} H^{x_{1}(t)}_{-1,0}(x)H^{x_{2}(t)}_{0,1}(x)=-\frac{e^{-\sqrt{2}z(t)}}{(1+e^{2\sqrt{2}(x-x_{2}(t))})^{\frac{1}{2}}(1+e^{-2\sqrt{2}(x-x_{1}(t))})^{\frac{1}{2}}}, \end{aligned}$$
(A3)

the identity

$$\begin{aligned} 1-\frac{1}{(1+e^{2\sqrt{2}x})^{\frac{1}{2}}}=\frac{e^{2\sqrt{2}x}}{(1+e^{2\sqrt{2}x})^{\frac{1}{2}}+(1+e^{2\sqrt{2}x})}, \end{aligned}$$

and Lemma 6, we deduce that

$$\begin{aligned} \left\Vert 24(H^{x_{1}(t)}_{-1,0})^{2}H^{x_{2}(t)}_{0,1}+24e^{-\sqrt{2}z(t)}\frac{H^{x_{1}(t)}_{-1,0}(x)}{(1+e^{-2\sqrt{2}(x-x_{1}(t))})^{\frac{1}{2}}}\right\Vert _{L^{2}}=\,&O\left( e^{-2\sqrt{2}z(t)}\right) , \end{aligned}$$
(A4)
$$\begin{aligned} \left\Vert 30(H^{x_{1}(t)}_{-1,0})^{4}H^{x_{2}(t)}_{0,1}+30e^{-\sqrt{2}z(t)}\left( \frac{(H^{x_{1}(t)}_{-1,0}(x))^{3}}{(1+e^{-2\sqrt{2}(x-x_{1}(t))})^{\frac{1}{2}}}\right) \right\Vert _{L^{2}}=\,&O\left( e^{-3\sqrt{2}z(t)}\right) . \end{aligned}$$
(A5)

The estimate of the remaining terms \(-24H^{x_{1}(t)}_{-1,0}\left( H^{x_{2}(t)}_{0,1}\right) ^{2},\,30H^{x_{1}(t)}_{-1,0}\left( H^{x_{2}(t)}_{0,1}\right) ^{4}\) is completely analogous to (A4) and (A5) respectively. In conclusion, all of the estimates above imply the estimate stated in the Lemma 20. \(\square \)

Proof of Lemma 19

First, we recall the global estimate \(e^{-\sqrt{2}z(t)}\lesssim \epsilon .\) We also recall the identity (33)

$$\begin{aligned} \int _{{\mathbb {R}}}\big (8(H_{0,1}(x))^{3}-6(H_{0,1}(x))^{5}\big )e^{-\sqrt{2}x}\,dx=2\sqrt{2}, \end{aligned}$$

which, by integration by parts, implies that

$$\begin{aligned} \int _{{\mathbb {R}}}24\frac{H_{0,1}(x)\partial _{x}H_{0,1}(x)}{(1+e^{2\sqrt{2}(x)})^{\frac{1}{2}}}-30\frac{(H_{0,1}(x))^{3}\partial _{x}H_{0,1}(x)}{(1+e^{2\sqrt{2}(x)})^{\frac{1}{2}}}\,dx=4. \end{aligned}$$
(A6)

We recall \(d_{1}(t),\, d_{2}(t)\) defined in (8) and (9) respectively and \(d(t)=d_{2}(t)-d_{1}(t).\) Since \( \ddot{d}_{j}(t)=(-1)^{j}8\sqrt{2}e^{-\sqrt{2}d(t)}\) for \(j \in \{1,\, 2\},\) we have \(\ddot{d}(t)=16\sqrt{2}e^{-\sqrt{2}d(t)},\) which implies clearly with the identities

$$\begin{aligned} \left\Vert \partial _{x}H_{0,1}\right\Vert _{L^{2}}^{2}=\left\Vert \partial ^{2}_{x}H_{0,1}\right\Vert _{L^{2}}^{2}=\frac{1}{2\sqrt{2}} \end{aligned}$$

that \(\ddot{d}_{j}(t)\left\Vert \partial _{x}H_{0,1}\right\Vert _{L^{2}}^{2}=(-1)^{j}4e^{-\sqrt{2}d(t)}.\) We also recall the partial differential equation satisfied by the remainder g(tx) (II), which can be rewritten as

$$\begin{aligned}{} & {} \dot{U}\left( H^{x_{2}(t)}_{0,1}(x)+H^{x_{1}(t)}_{-1,0}(x)\right) -\dot{U}\left( H^{x_{1}(t)}_{-1,0}(x)\right) -\dot{U}\left( H^{x_{2}(t)}_{0,1}(x)\right) -\ddot{x}_{2}(t)\partial _{x}H^{x_{2}(t)}_{0,1}(x)\nonumber \\{} & {} \quad ={-}\left( \partial ^{2}_{t}g(t,x)-\partial ^{2}_{x}g(t,x)+\ddot{U}\left( H^{x_{2}(t)}_{0,1}(x)+H^{x_{1}(t)}_{-1,0}(x)\right) g(t,x)\right) \nonumber \\{} & {} \qquad {+}\,\sum _{k=3}^{6} U^{(k)}\left( H^{x_{1}(t)}_{-1,0}+H^{x_{2}(t)}_{0,1}\right) \frac{g(t)^{k-1}}{(k-1)!} -\dot{x}_{1}(t)^{2}\partial ^{2}_{x}H^{x_{1}(t)}_{-1,0}(x)\nonumber \\{} & {} \qquad {-}\,\dot{x}_{2}(t)^{2}\partial ^{2}_{x}H^{x_{2}(t)}_{0,1}(x) +\ddot{x}_{1}(t)\partial _{x}H^{x_{1}(t)}_{-1,0}(x). \end{aligned}$$
(A7)

Furthermore, from the estimate (A6), Lemma 20 and Lemma 6, we obtain that

$$\begin{aligned}{} & {} \left\langle \dot{U}\left( H^{x_{1}(t)}_{-1,0}+H^{x_{2}(t)}_{0,1}\right) - \dot{U}\left( H^{x_{1}(t)}_{-1,0}\right) -\dot{U}\left( H^{x_{2}(t)}_{0,1}\right) ,\,\partial _{x}H^{x_{2}(t)}_{0,1}\right\rangle _{L^{2}}\nonumber \\{} & {} \quad =\ddot{x}_{2}(t)\left\Vert \partial _{x}H_{0,1}\right\Vert _{L^{2}}^{2} -(\ddot{x}_{2}(t)-\ddot{d}_{2}(t))\left\Vert \partial _{x}H_{0,1}\right\Vert _{L^{2}}^{2}\nonumber \\{} & {} \qquad {+}\,O\Big (\left|\ddot{x}_{1}(t)\right|z(t)e^{-\sqrt{2}z(t)}\Big )\nonumber \\{} & {} \qquad {+}\,O\Big (e^{-\sqrt{2}z(t)} \max _{j\in \{1,\,2\}}\left|x_{j}(t)-d_{j}(t)\right| +e^{-2\sqrt{2}z(t)}z(t)\Big ). \end{aligned}$$
(A8)

We recall from the proof of Theorem 14 the following estimate

$$\begin{aligned}{} & {} \left|\int _{{\mathbb {R}}}\left[ \ddot{U}\left( H^{x_{2}(t)}_{0,1}(x)\right) -\ddot{U}\left( H^{x_{2}(t)}_{0,1}(x)+H^{x_{1}(t)}_{-1,0}(x)\right) \right] \partial _{x}H^{x_{2}(t)}_{0,1}(x)g(t,x)\,dx\right|\\{} & {} \quad =O\Big (\left\Vert \overrightarrow{g(t)}\right\Vert e^{-\sqrt{2}z(t)}\Big ). \end{aligned}$$

Also, from the Modulation Lemma, we have that

$$\begin{aligned} \langle \partial ^{2}_{t}g(t),\partial _{x}H^{x_{2}(t)}_{0,1}\rangle _{L^{2}}&=\frac{d}{dt}\left[ \langle \partial _{t}g(t),\partial _{x}H^{x_{2}(t)}_{0,1}\rangle _{L^{2}} \right] +\dot{x}_{2}(t)\langle \partial _{t}g(t),\partial _{x}H^{x_{2}(t)}_{0,1}\rangle _{L^{2}} \\ {}&=\frac{d}{dt}\Big [\dot{x}_{2}(t)\langle g(t),\partial ^{2}_{x}H^{x_{2}(t)}_{0,1}\rangle _{L^{2}} \Big ]+\dot{x}_{2}(t)\langle \partial _{t}g(t),\partial _{x}H^{x_{2}(t)}_{0,1}\rangle _{L^{2}}\\ {}&=\ddot{x}_{2}(t)\langle g(t),\partial ^{2}_{x}H^{x_{2}(t)}_{0,1}\rangle _{L^{2}} +2\dot{x}_{2}(t)\langle \partial _{t}g(t),\partial _{x}H^{x_{2}(t)}_{0,1}\rangle _{L^{2}}\\&-\dot{x}_{2}(t)^{2}\langle g(t),\partial ^{3}_{x}H^{x_{2}(t)}_{0,1}\rangle _{L^{2}}. \end{aligned}$$

In conclusion, since \(\partial _{x}H^{x_{2}(t)}_{0,1}\in \ker D^{2}E_{pot}\left( H^{x_{2}(t)}_{0,1}\right) \) and \(e^{{-}\sqrt{2}z(t)}=O\left( \epsilon ^{\frac{1}{2}}\right) ,\) we obtain from (A8) and (A7) that

$$\begin{aligned} \left|\ddot{x}_{2}(t)-\ddot{d}_{2}(t)\right|=O\Big (\max _{j\in \{1,\,2\}}\left|d_{j}(t)-x_{j}(t)\right|\epsilon +\epsilon z(t)e^{-\sqrt{2}z(t)} +\left\Vert \overrightarrow{g(t)}\right\Vert \epsilon ^{\frac{1}{2}}\Big ), \end{aligned}$$

the estimate of \(\left|\ddot{x}_{1}(t)-\ddot{d}_{1}(t)\right|\) is completely analogous, which finishes the proof of Lemma 19. \(\square \)

Lemma 21

For any \(\delta >0\) there is a \(\epsilon (\delta )>0\) such that if

$$\begin{aligned} \left\Vert \phi (x) -H_{0,1}(x)\right\Vert _{H^{1}}<+\infty ,\, 0<E_{pot}(\phi (x))-E_{pot}(H_{0,1})<\epsilon (\delta ), \end{aligned}$$
(A9)

then there is a real number y such that

$$\begin{aligned} \left\Vert \phi (x)-H_{0,1}(x-y)\right\Vert _{H^{1}}\le \delta . \end{aligned}$$

Proof of Lemma 21

The proof of Lemma 21 will follow by a contradiction argument. We assume the existence of a sequence of real functions \(\left( \phi _{n}(x)\right) _{n}\) satisfying

$$\begin{aligned} \lim _{n\rightarrow +\infty } E_{pot}(\phi _{n})=\,&E_{pot}(H_{0,1}), \end{aligned}$$
(A10)
$$\begin{aligned} \left\Vert \phi _{n}(x)-H_{0,1}(x)\right\Vert _{H^{1}}<&{+}\,\infty , \end{aligned}$$
(A11)

such that

$$\begin{aligned} \lim _{n\rightarrow {+}\infty } \inf _{y\in {\mathbb {R}}} \left\Vert \phi _{n}(x)-H_{0,1}(x+y)\right\Vert _{H^{1}}>0. \end{aligned}$$
(A12)

First, the condition (A10) and the fact that \(\lim _{\phi \rightarrow {+\infty }}U(\phi )={+}\infty \) imply the existence of a positive constant c,  which satisfies \(\left\Vert \phi _{n}\right\Vert _{L^{\infty }}<c\) if \(n\gg 1.\)

Next, since \(U(\phi )=\phi ^{2}(1-\phi ^{2})^{2}\) and \(\left|E_{pot}(\phi _{n})-E_{pot}(H_{0,1})\right|\ll 1\) for \(1\ll n,\) it is not difficult to verify from the definition of the potential energy functional \(E_{pot}\) that if \(1\ll n,\) then

$$\begin{aligned} \left\Vert \phi _{n}(x)-1\right\Vert _{L^{2}\left( \{x\vert \phi _{n}(x)>1\}\right) }^{2}+\left\Vert \frac{d\phi _{n}(x)}{dx}\right\Vert _{L^{2}\left( \{x\vert \phi _{n}(x)>1\}\right) }^{2}\lesssim \left|E_{pot}(\phi _{n})-E_{pot}(H_{0,1})\right|. \end{aligned}$$

By an analogous argument, we can verify that

$$\begin{aligned}{} & {} \left\Vert \phi _{n}(x)\right\Vert _{L^{2}(\{x\vert {-}\frac{1}{2}<\phi _{n}(x)<0\})}^{2}+\left\Vert \frac{d\phi _{n}(x)}{dx}\right\Vert _{L^{2}(\{x\vert {-}\frac{1}{2}<\phi _{n}(x)<0\})}^{2}\\{} & {} \quad \lesssim \left|E_{pot}(\phi _{n})-E_{pot}(H_{0,1})\right|, \end{aligned}$$

and if there is \(x_{0}\in {\mathbb {R}}\) such that \(\phi _{n}(x_{0})\le -\frac{1}{2},\) we would obtain that

$$\begin{aligned}{} & {} \int _{x_{0}}^{+\infty }\frac{1}{2}\frac{d\phi _{n}(x)}{dx}^{2}+U(\phi _{n}(x))\,dx\\{} & {} \quad =\int _{x_{0}}^{+\infty }\sqrt{2U(\phi _{n}(x))}\left|\frac{d\phi _{n}(x)}{dx}\right|\,dx+\frac{1}{2}\int _{x_{0}}^{+\infty }\left( \left|\frac{d\phi _{n}(x)}{dx}\right|-\sqrt{2U(\phi _{n}(x))}\right) ^{2}\,dx\\{} & {} \quad \ge \int _{-\frac{1}{2}}^{1}\sqrt{2U(\phi )}\,d\phi = E_{pot}(H_{0,1})+\int _{-\frac{1}{2}}^{0}\sqrt{2U(\phi )}\,d\phi >E_{pot}(H_{0,1}), \end{aligned}$$

which contradicts (A10) if \(n\gg 1.\) Thus, if we consider the following function

$$\begin{aligned} \varphi _{n}(x)=\min \left( \max \left( \phi _{n}(x),0\right) ,1\right) , \end{aligned}$$

which satisfies \(E_{pot}\left( \varphi _{n}\right) \ge E_{pot}\left( H_{0,1}\right) \) and

$$\begin{aligned} \frac{d\varphi _{n}(x)}{dx}={\left\{ \begin{array}{ll} \frac{d \phi _{n}(x)}{dx} \text {, if } 0<\phi _{n}(x)<1,\\ 0 \text {, for almost every } x\in {\mathbb {R}} \text { satisfying either } \phi _{n}(x)\le 0 \text { or } \phi _{n}(x)\ge 1, \end{array}\right. } \end{aligned}$$

we can deduce with the estimates above and inequality \(\limsup _{n\rightarrow {+}\infty }\left\Vert \phi _{n}\right\Vert _{L^{\infty }}<c\) that if \(n\gg 1,\) then

$$\begin{aligned} \left\Vert \phi _{n}(x)-\varphi _{n}(x)\right\Vert _{L^{2}}^{2}+\left\Vert \frac{d\phi _{n}(x)}{dx}-\frac{d\varphi _{n}(x)}{dx}\right\Vert _{L^{2}}^{2}&\lesssim \left| E_{pot}\left( \phi _{n}\right) -E_{pot}\left( H_{0,1}\right) \right| ,\\ \left| E_{pot}\left( \phi _{n}\right) -E_{pot}\left( \varphi _{n}\right) \right|&\lesssim \left| E_{pot}\left( \phi _{n}\right) -E_{pot}\left( H_{0,1}\right) \right| . \end{aligned}$$

Consequently, using triangle inequality and conditions (A10), (A12), we would obtain that

$$\begin{aligned} \lim _{n\rightarrow {+}\infty }\inf _{y\in {\mathbb {R}}}\left\Vert \varphi _{n}(x)-H_{0,1}(x+y)\right\Vert _{H^{1}}>0. \end{aligned}$$

In conclusion, we can restrict the proof to the case where \(0\le \phi _{n}(x)\le 1\) and \(n\gg 1.\)

Now, from the density of \(H^{2}({\mathbb {R}})\) in \(H^{1}({\mathbb {R}}),\) we can also restrict the contradiction hypotheses to the situation where \(\frac{d\phi _{n}}{dx}(x)\) is a continuous function for all \(n\in {\mathbb {N}}.\) Also, we have that if \(\left\Vert \phi (x)-H_{0,1}(x)\right\Vert _{H^{1}}<+\infty ,\) then \(E_{pot}(\phi (x))\ge E_{pot}(H_{0,1}(x)).\) In conclusion, there is a sequence of positive numbers \(\left( \epsilon _{n}\right) _{n}\) such that

$$\begin{aligned} E_{pot}(\phi _{n})=E_{pot}(H_{0,1})+\epsilon _{n},\,\lim _{n\rightarrow +\infty }\epsilon _{n}=0. \end{aligned}$$

Also, \(\tau _{y}\phi (x)=\phi (x-y)\) satisfies \(E_{pot}(\phi (x))=E_{pot}(\tau _{y}\phi (x))\) for any \(y\in {\mathbb {R}}.\) In conclusion, since for all \(n\in {\mathbb {N}},\) \(\lim _{x\rightarrow +\infty }\phi _{n}(x)=1\) and \(\lim _{x\rightarrow -\infty }\phi _{n}(x)=0,\) we can restrict to the case where

$$\begin{aligned} \phi _{n}(0)=\frac{1}{\sqrt{2}}, \end{aligned}$$

for all \(n\in {\mathbb {N}}.\)

Next, we consider the notations \((v)_{+}=\max (v,0)\) and \((v)_{-}=-\left( v-(v)_{+}\right) .\) Since \(\frac{d\phi _{n}(x)}{dx} \) is a continuous function on x,  we deduce that \(\left( \frac{d\phi _{n}(x)}{dx} \right) _{+}\) and \(\left( \frac{d\phi _{n}(x)}{dx}\right) _{-}\) are also continuous functions on x for all \(n \in {\mathbb {N}}.\) In conclusion, for any \(n\in {\mathbb {N}},\) we have that the set

$$\begin{aligned} U=\left\{ x\in {\mathbb {R}}\vert \,\frac{d\phi _{n}(x)}{dx}<0\right\} \end{aligned}$$
(A13)

is an enumerable union of disjoint open intervals \((a_{k,n},b_{k,n})_{k \in {\mathbb {N}}}\), which are bounded, since \(\lim _{x\rightarrow +\infty }\phi _{n}(x)=1,\,\lim _{x\rightarrow -\infty }\phi _{n}(x)=0\) and \(0\le \phi _{n}(x)\le 1.\)

Now, let E be a set of disjoint open bounded intervals \((h_{i,n},l_{i,n})\subset {\mathbb {R}}\) satisfying the conditions

$$\begin{aligned} \phi _{n}(h_{i,n})=\phi _{n}(l_{i,n}), \end{aligned}$$
(A14)

and \(\{i\vert \,(h_{i,n},l_{i,n})\in E \}=I\subset {\mathbb {Z}}.\) For any \(i\in I,\) the following function

$$\begin{aligned} f_{i,n}(x)={\left\{ \begin{array}{ll} \phi _{n}(x)\text { if } x\le h_{i,n},\\ \phi _{n}(x+l_{i,n}-h_{i,n}) \text { if } x>h_{i,n},\\ \end{array}\right. } \end{aligned}$$

satisfies \(E_{pot}(H_{0,1})\le E_{pot}(f_{i,n})\le E_{pot}(\phi _{n})=E_{pot}(H_{0,1})+\epsilon _{n},\) which implies that

$$\begin{aligned} \int _{h_{i,n}}^{l_{i,n}}\frac{1}{2}\frac{d\phi _{n}(x)}{dx}^{2}+U(\phi _{n}(x))\le \epsilon _{n}. \end{aligned}$$

Furthermore, we can deduce from Lebesgue’s dominated convergence theorem that

$$\begin{aligned} \sum _{i\in I} \int _{h_{i,n}}^{l_{i,n}}\frac{1}{2}\frac{d\phi _{n}(x)}{dx}^{2}+U(\phi _{n}(x))\le \epsilon _{n}, \end{aligned}$$
(A15)

for every finite or enumerable collection E of disjoint open bounded intervals \((h_{i,n},l_{i,n})\subset {\mathbb {R}},\,i\in I\subset {\mathbb {Z}}\) such that \(\phi _{n}(h_{i,n})=\phi _{n}(l_{i,n}).\) In conclusion, we can deduce from (A15) that

$$\begin{aligned} \int _{{\mathbb {R}}}\left( \frac{d\phi _{n}(x)}{dx}\right) _{-}^{2}\,dx\le 2\epsilon _{n}, \end{aligned}$$
(A16)

and so for \(1 \ll n\) we have that

$$\begin{aligned} \left\Vert \frac{d\phi _{n}(x)}{dx}-\left|\frac{d\phi _{n}(x)}{dx}\right|\right\Vert _{L^{2}}^{2}\le 8\epsilon _{n},\,\phi _{n}(0)=\frac{1}{\sqrt{2}}. \end{aligned}$$
(A17)

Moreover, we can verify that

$$\begin{aligned} E_{pot}(\phi _{n})=\frac{1}{2}\left[ \int _{{\mathbb {R}}}\left( \left|\frac{d\phi _{n}(x)}{dx}\right|-\sqrt{2U(\phi _{n}(x))}\right) ^{2}\,dx\right] +\int _{{\mathbb {R}}}\sqrt{2U(\phi _{n}(x))}\left|\frac{d\phi _{n}(x)}{dx}\right|\,dx, \end{aligned}$$

from which we deduce with \(\lim _{x\rightarrow -\infty }\phi _{n}(x)=0\) and \(\lim _{x\rightarrow +\infty }\phi _{n}(x)=1\) that

$$\begin{aligned} E_{pot}(H_{0,1})+\epsilon _{n}\ge&\frac{1}{2}\left[ \int _{{\mathbb {R}}}\left( \left|\frac{d\phi _{n}(x)}{dx}\right|-\sqrt{2U(\phi _{n}(x))}\right) ^{2}\,dx\right] +\int _{0}^{1}\sqrt{2 U(\phi )}\,d\phi \\ =\,&\frac{1}{2}\left[ \int _{{\mathbb {R}}}\left( \left|\frac{d\phi _{n}(x)}{dx}\right|-\sqrt{2U(\phi _{n}(x))}\right) ^{2}\,dx\right] +E_{pot}(H_{0,1}). \end{aligned}$$

Then, from estimate (A17), we have that

$$\begin{aligned} \frac{d\phi _{n}(x)}{dx}=\sqrt{2U(\phi _{n}(x))}+r_{n}(x),\,\phi _{n}(0)=\frac{1}{\sqrt{2}}, \end{aligned}$$
(A18)

with \(\left\Vert r_{n}\right\Vert _{L^{2}}^{2}\lesssim \epsilon _{n}\) for all \(1\ll n.\)

We recall that \(U(\phi )=\phi ^{2}(1-\phi ^{2})^{2}\) is a Lipschitz function in the set \(\{\phi \vert \,0\le \phi \le 1\}.\) Then, because \(H_{0,1}(x)\) is the unique solution of the following ordinary differential equation

$$\begin{aligned} {\left\{ \begin{array}{ll} \begin{aligned} \frac{d\phi (x)}{dx}=\,&{}\sqrt{2U(\phi (x))},\\ \phi (0)=\,&{}\frac{1}{\sqrt{2}}, \end{aligned} \end{array}\right. } \end{aligned}$$

we deduce from Gronwall Lemma that for any \(K>0\) we have

$$\begin{aligned} \lim _{n\rightarrow +\infty } \left\Vert \phi _{n}(x)-H_{0,1}(x)\right\Vert _{L^{\infty }[-K,K]}=0,\,\lim _{n\rightarrow +\infty }\left\Vert \frac{d\phi _{n}(x)}{dx}-\dot{H}_{0,1}(x)\right\Vert _{L^{2}[-K,K]}=0.\nonumber \\ \end{aligned}$$
(A19)

Also, if \(1\ll n,\) then \(\left\Vert \frac{d\phi _{n}(x)}{dx}\right\Vert _{L^{2}}^{2}<2E_{pot}(H_{0,1})+1,\) and so we obtain from Cauchy–Schwarz inequality that

$$\begin{aligned} \left|\phi _{n}(x)-\phi _{n}(y)\right|\le \left|x-y\right|^{\frac{1}{2}}\left\Vert \frac{d\phi _{n}}{dx}\right\Vert _{L^{2}}^{2}<M\left|x-y\right|^{\frac{1}{2}}, \end{aligned}$$
(A20)

for a constant \(M>0.\) The inequality (A20) implies that for any \(1>\omega >0\) there is a number \(h(\omega )\in {\mathbb {N}}\) such that if \(n\ge h(\omega )\) then

$$\begin{aligned} \left\Vert \phi _{n}(x)-H_{0,1}(x)\right\Vert _{L^{\infty }\{x\vert \,\frac{1}{\omega }<\left|x\right|\}}<\omega , \end{aligned}$$
(A21)

otherwise we would obtain that there are \(0<\theta <\frac{1}{4},\) a subsequence \((m_{n})_{n\in {\mathbb {N}}}\) and a sequence of real numbers \((x_{n})_{n\in {\mathbb {N}}}\) with \(\lim _{n\rightarrow +\infty }m_{n}=+\infty ,\,\left|x_{n}\right|> n+1\) such that

$$\begin{aligned} \left|\phi _{m_{n}}(x_{n})-1\right|&>\theta \text { if } x_{n}>0, \end{aligned}$$
(A22)
$$\begin{aligned} \left|\phi _{m_{n}}(x_{n})\right|&>\theta \text { if } x_{n}<0. \end{aligned}$$
(A23)

However, since we are considering \(\phi _{n}(x)\in C^{1}({\mathbb {R}})\) and \(0\le \phi _{n}\le 1,\) we would obtain from the intermediate value theorem that there would exist a sequence \((y_{n})_{n}\) with \(y_{n}>x_{n}>n+1\) or \(y_{n}<x_{n}<-n-1\) such that

$$\begin{aligned} 1-\theta&\le \phi _{m_{n}}(y_{n})\le 1+\theta , \text { if } y_{n}>0, \end{aligned}$$
(A24)
$$\begin{aligned} \phi _{m_{n}}(y_{n})&= \theta \text { otherwise.} \end{aligned}$$
(A25)

But, estimates (A20), (A24), (A25) and identity \(U(\phi )=\phi ^{2}(1-\phi ^{2})^{2}\) would imply that

$$\begin{aligned} 1\lesssim \int _{\left|x\right|\ge n-2}U(\phi _{m_{n}}(x))\,dx \text { for all } n\gg 1, \end{aligned}$$
(A26)

and because of estimate (A19) and the following identity

$$\begin{aligned} \lim _{K\rightarrow +\infty }\int _{-K}^{K}\frac{1}{2}\dot{H}_{0,1}(x)^{2}+U(H_{0,1}(x))=E_{pot}(H_{0,1}(x)), \end{aligned}$$
(A27)

estimate (A26) would imply that \(\lim _{n\rightarrow +\infty }E_{pot}(\phi _{m_{n}})>E_{pot}(H_{0,1})\) which contradicts our hypotheses.

In conclusion, for any \(1>\omega >0\) there is a number \(h(\omega )\) such that if \(n\ge h(\omega )\) then (A21) holds. So we deduce for any \(0<\omega <1\) that there is a number \(h_{1}(\omega )\) such that

$$\begin{aligned} \text {if } n\ge h_{1}(\omega ), \text { then } \left|\phi _{n}(x)-H_{0,1}(x)\right|\le \omega \text { for all } x\in {\mathbb {R}}. \end{aligned}$$
(A28)

Then, if \(\omega \le \frac{1}{100},\,n\ge h(\omega )\) and \(K\ge 200,\) estimates (A28) and (A19) imply that

$$\begin{aligned} \int _{K}^{+\infty }U(\phi _{n}(x))+\frac{1}{2}\frac{d\phi _{n}(x)}{dx}^{2}\, dx&\ge \frac{1}{2}\int _{K}^{+\infty }\left( 1-\phi _{n}(x)\right) ^{2}+\frac{d\phi _{n}(x)}{dx}^{2}\,dx, \end{aligned}$$
(A29)
$$\begin{aligned} \int _{-\infty }^{-K}U(\phi _{n}(x))+\frac{1}{2}\frac{d\phi _{n}(x)}{dx}^{2}\, dx&\ge \frac{1}{2}\int _{-\infty }^{-K}\phi _{n}(x)^{2}+\frac{d\phi _{n}(x)}{dx}^{2}\,dx. \end{aligned}$$
(A30)

In conclusion, from estimates (A28), (A29), (A30) and

$$\begin{aligned} \lim _{K\rightarrow +\infty }\int _{\vert x\vert \ge K}\frac{1}{2}\dot{H}_{0,1}(x)^{2}+U(H_{0,1}(x))\,dx=0, \end{aligned}$$

we obtain that \(\lim _{n\rightarrow +\infty }\left\Vert \phi _{n}(x)-H_{0,1}(x)\right\Vert _{L^{2}}=0\) and, from the initial value problem (A18) satisfied for each \(\phi _{n},\) we conclude that \(\lim _{n\rightarrow +\infty }\left\Vert \frac{d\phi _{n}}{dx}(x)-\dot{H}_{0,1}(x)\right\Vert _{L^{2}}=0.\) In conclusion, inequality (A12) is false. \(\square \)

From Lemma 21, we obtain the following corollary:

Corollary 22

For any \(\delta >0\) there exists \(\epsilon _{0}>0\) such that if \(0<\epsilon \le \epsilon _{0},\left\Vert \phi (x)-H_{0,1}(x)-H_{-1,0}(x)\right\Vert _{H^{1}}<+\infty \) and \(E_{pot}(\phi )=2E_{pot}(H_{0,1})+\epsilon ,\) then there exist \(x_{2},x_{1} \in {\mathbb {R}}\) such that

$$\begin{aligned} x_{2}-x_{1}\ge \frac{1}{\delta },\,\left\Vert \phi (x)-H_{0,1}(x-x_{2})+H_{-1,0}(x-x_{1})\right\Vert _{H^{1}}\le \delta . \end{aligned}$$
(A31)

Proof of Corollary 22

First, from a similar reasoning to the proof of Lemma 21 we can assume by density that \(\frac{d\phi (x)}{dx}\in H^{1}_{x}({\mathbb {R}}).\) Next, from hypothesis \(\left\Vert \phi (x)-H_{0,1}(x)-H_{-1,0}(x)\right\Vert _{H^{1}({\mathbb {R}})}<+\infty ,\) we deduce using the intermediate value theorem that there is a \(y\in {\mathbb {R}}\) such that \(\phi (y)=0.\) Now, we consider the functions

$$\begin{aligned} \phi _{-}(x)={\left\{ \begin{array}{ll} \phi (x)&{} \text { if } x\le y,\\ 0&{} \text { otherwise,} \end{array}\right. } \end{aligned}$$

and

$$\begin{aligned} \phi _{+}(x)={\left\{ \begin{array}{ll} 0 &{} \text { if } x\le y,\\ \phi (x) &{} \text { otherwise.} \end{array}\right. } \end{aligned}$$

Clearly, \(\phi (x)=\phi _{-}(x)\) for \(x<y\) and \(\phi (x)=\phi _{+}(x)\) for \(x>y.\) From identity \(U(0)=0,\) we deduce that

$$\begin{aligned} E_{pot}(\phi )=E_{pot}(\phi _{-})+E_{pot}(\phi _{+}), \end{aligned}$$

also, we have that

$$\begin{aligned} E_{pot}(H_{-1,0})< E_{pot}(\phi _{-}),\,E_{pot}(H_{0,1})<E_{pot}(\phi _{+}). \end{aligned}$$

In conclusion, since \(E_{pot}(\phi )=2E_{pot}(H_{0,1})+\epsilon ,\) Lemma 21 implies that if \(\epsilon <\epsilon _{0}\ll 1,\) then there exist \(x_{2},\,x_{1} \in {\mathbb {R}}\) such that

$$\begin{aligned}{} & {} \left\Vert \phi (x)-H_{0,1}(x-x_{2})-H_{-1,0}(x-x_{1})\right\Vert _{H^{1}}\nonumber \\{} & {} \quad \le \left\Vert \phi _{+}-H_{0,1}(x-x_{2})\right\Vert _{H^{1}}+\left\Vert \phi _{-}-H_{-1,0}(x-x_{1})\right\Vert _{H^{1}}\le e^{{-}\frac{4}{\delta }}\ll \delta . \end{aligned}$$
(A32)

So, to finish the proof of Corollary 22, we need only to verify that we have \(x_{2}-x_{1}\ge \frac{1}{\delta }\) if \(0<\epsilon _{0}\ll 1.\) But, we recall that \(H_{0,1}(0)=\frac{1}{\sqrt{2}},\) from which with estimate (A32) we deduce that

$$\begin{aligned} \left|\phi _{+}(x_{2})-\frac{1}{\sqrt{2}}\right|\lesssim \delta , \left|\phi _{-}(x_{1})+\frac{1}{\sqrt{2}}\right|\lesssim \delta , \end{aligned}$$
(A33)

so if \(\epsilon _{0}\ll 1,\) then \(x_{1}<y<x_{2}.\) Using the fact that U is a smooth function, Lemma 10 and identity (35), we can verify the existence of a constant \(C>0\) satisfying the following inequality

$$\begin{aligned} \left| DE_{pot}\left( H_{0,1}(x-x_{2})+H_{-1,0}(x-x_{1})+u\right) (v)\right| \le C \left\Vert v\right\Vert _{H^{1}}. \end{aligned}$$

for any \(u,\,v\in H^{1}({\mathbb {R}})\) such that \(\left\Vert u\right\Vert _{H^{1}}\le 1.\) Therefore, using estimate (A32) and the Fundamental Theorem of Calculus, we deduce that if \(0<\epsilon _{0}\ll 1,\) then

$$\begin{aligned} \left| E_{pot}(\phi )-E_{pot}\left( H_{0,1}(x-x_{2})+H_{-1,0}(x-x_{1})\right) \right|< e^{-2\sqrt{2}\frac{1}{\delta }}. \end{aligned}$$
(A34)

Furthermore, since the function \(A(z)=E_{pot}\left( H^{z}_{0,1}(x)+H_{{-}1,0}(x)\right) \) is a continuous function on \({\mathbb {R}}_{\ge 0}\) and \(A(z)>2E_{pot}\left( H_{0,1}\right) \) for any \(z\ge 0\), we have for any \(k>0\) that there exists \(\delta _{k}>0\) satisfying

$$\begin{aligned} \sup _{\{z\in [0,k]\}}A(z)>2E_{pot}\left( H_{0,1}\right) +\delta _{k}. \end{aligned}$$

In conclusion, we obtain from Lemma 7 and the estimate (A34) that \(x_{2}-x_{1}\ge \frac{1}{\delta }\) if \(0<\epsilon _{0}\ll 1\) and \(\epsilon <\epsilon _{0}.\) \(\square \)

Now, we complement our manuscript by presenting the proof of identity (33).

Proof of Identity (33)

From the definition of the function \(H_{0,1}(x),\) we have

$$\begin{aligned} \int _{{\mathbb {R}}}\big (8(H_{0,1}(x))^{3}-6(H_{0,1}(x))^{5}\big )e^{-\sqrt{2}x}\,dx=\int _{{\mathbb {R}}}\frac{8e^{2\sqrt{2}x}+2e^{4\sqrt{2}x}}{(1+e^{2\sqrt{2}x})^{\frac{5}{2}}}\,dx, \end{aligned}$$

by the change of variable \(y(x)=(1+e^{2\sqrt{2}x}),\) we obtain

$$\begin{aligned}{} & {} \int _{{\mathbb {R}}}\big (8(H_{0,1}(x))^{3}-6(H_{0,1}(x))^{5}\big )e^{-\sqrt{2}x}\,dx\\{} & {} \quad =\frac{1}{2\sqrt{2}}\int _{1}^{\infty }\frac{8}{y^{\frac{5}{2}}}+\frac{2(y-1)}{y^{\frac{5}{2}}}\,dy\\{} & {} \quad =\frac{1}{2\sqrt{2}}\int _{1}^{\infty }\frac{6}{y^{\frac{5}{2}}}+\frac{2}{y^{\frac{3}{2}}}\,dy, =\frac{1}{2\sqrt{2}}(-4y^{-\frac{3}{2}}-4y^{-\frac{1}{2}})\Big \vert _1^\infty =2\sqrt{2}. \end{aligned}$$

\(\square \)

Appendix B Proof of Theorem 3

Proof of Theorem 3

We use the notations of Theorems 2 and 4. Clearly, if the result of Theorem 3 is false, then by contradiction for any \(N\gg 1\) the inequality

$$\begin{aligned} \left\Vert \overrightarrow{g(t)}\right\Vert \le \frac{\epsilon }{N} \end{aligned}$$
(B35)

could be possible for all \(0\le t\le N\frac{\ln {\frac{1}{\epsilon }}}{\epsilon ^{\frac{1}{2}}}=T\) if \(\epsilon \ll 1\) enough.

From Modulation Lemma, we can denote the solution \(\phi (t,x)\) as

$$\begin{aligned} \phi (t,x)=H^{x_{1}(t)}_{-1,0}(x)+H^{x_{2}(t)}_{0,1}(x)+g(t,x), \end{aligned}$$

such that

$$\begin{aligned} \langle g(t,x),\,\partial _{x}H^{x_{1}(t)}_{-1,0}(x)\rangle _{L^{2}}=0,\,\langle g(t,x),\,\partial _{x}H^{x_{2}(t)}_{0,1}(x)\rangle _{L^{2}}=0. \end{aligned}$$

Also, for all \(t\ge 0,\) we have that g(tx) has a unique representation as

$$\begin{aligned} g(t,x)=P_{1}(t)\partial ^{2}_{x}H^{x_{1}(t)}_{-1,0}(x)+P_{2}(t)\partial ^{2}_{x}H^{x_{2}(t)}_{0,1}(x)+r(t,x), \end{aligned}$$
(B36)

such that r(t) satisfies the following new orthogonality conditions

$$\begin{aligned} \left\langle r(t),\,\partial ^{2}_{x}H^{x_{1}(t)}_{-1,0}\right\rangle _{L^{2}}=0,\, \left\langle r(t),\,\partial ^{2}_{x}H^{x_{2}(t)}_{0,1}\right\rangle _{L^{2}}=0. \end{aligned}$$
(B37)

In conclusion, we deduce that

$$\begin{aligned} \left\Vert g(t)\right\Vert _{L^{2}}^{2}=\left\Vert \partial ^{2}_{x} H_{0,1}\right\Vert _{L^{2}}^{2}(P_{1}^{2}+P_{2}^{2})+\left\Vert r(t)\right\Vert _{L^{2}}^{2}+2P_{1} P_{2}\left\langle \partial ^{2}_{x} H^{z(t)}_{0,1},\,\partial ^{2}_{x} H_{-1,0}\right\rangle _{L^{2}}. \nonumber \\ \end{aligned}$$
(B38)

We recall from Theorem 11 that \(\frac{1}{\sqrt{2}}\ln {\frac{1}{\epsilon }}<z(t)\) for all \(t\ge 0.\) Since, from Lemma 6, we have that \(\left\langle \partial ^{2}_{x}H^{x_{1}(t)}_{-1,0}, \,\partial ^{2}_{x}H^{x_{2}(t)}_{0,1}\right\rangle _{L^{2}} \lesssim z(t) e^{-\sqrt{2}z(t)}\) and \(z(t)e^{-\sqrt{2}z(t)}\lesssim \epsilon \ln {\frac{1}{\epsilon }}\) if \(0<\epsilon \ll 1,\) we deduce from the Eq. (B38) that there is a uniform constant \(K>1\) such that for all \(t\ge 0\) we have the following estimate

$$\begin{aligned} \frac{\left\Vert g(t)\right\Vert _{L^{2}}}{K} \le \left|P_{1}(t)\right|+\left|P_{2}(t)\right|+\left\Vert r(t)\right\Vert _{L^{2}}\le K \left\Vert \overrightarrow{g(t)}\right\Vert . \end{aligned}$$
(B39)

From Theorem 11 and the orthogonality conditions (B37), we deduce that

$$\begin{aligned} \left\langle \partial _{t}r(t),\,\partial ^{2}_{x}H^{x_{2}(t)}_{0,1}\right\rangle _{L^{2}}=\,&\dot{x}_{2}(t)\left\langle r(t),\,\partial ^{3}_{x}H^{x_{2}(t)}_{0,1}\right\rangle _{L^{2}}=O\Big (\left\Vert r(t)\right\Vert _{L^{2}}\epsilon ^{\frac{1}{2}}\Big ),\\ \left\langle \partial _{t}r(t),\,\partial ^{2}_{x}H^{x_{1}(t)}_{{-}1,0}\right\rangle _{L^{2}}=\,&\dot{x}_{2}(t)\left\langle r(t),\,\partial ^{3}_{x}H^{x_{1}(t)}_{{-}1,0}\right\rangle _{L^{2}}=O\Big (\left\Vert r(t)\right\Vert _{L^{2}}\epsilon ^{\frac{1}{2}}\Big ). \end{aligned}$$

In conclusion, estimate (B39) and Lemma 6 imply that there is a \(K>1\) such that

$$\begin{aligned} \left|\dot{P}_{1}(t)\right|+\left|\dot{P}_{2}(t)\right|+\left\Vert \partial _{t}r(t)\right\Vert _{L^{2}}\le K\left\Vert \overrightarrow{g(t)}\right\Vert \end{aligned}$$
(B40)

for all \(t\ge 0.\) Finally, Minkowski inequality and estimate (B39) imply that there is a uniform constant \(K>1\) such that

$$\begin{aligned} \left\Vert \partial _{x}r(t,x)\right\Vert _{L^{2}}\le K\left\Vert \overrightarrow{g(t)}\right\Vert . \end{aligned}$$
(B41)

We recall from Theorem 12 the following estimate

$$\begin{aligned} \frac{\epsilon }{K} \le \left\Vert \overrightarrow{g(t)}\right\Vert ^{2}+\dot{x}_{1}(t)^{2}+\dot{x}_{2}(t)^{2}+ e^{-\sqrt{2}z(t)}\le K \epsilon \end{aligned}$$
(B42)

for some uniform constant \(K>1.\) Now, from hypothesis (B35), we obtain from Theorem 4 and Corollary 5 that there are constants \(M\in {\mathbb {N}}\) and \(C>0\) such that for all \(t\ge 0\) the following inequalities are true

$$\begin{aligned} \max _{j\in \{1,\,2\}}\left|x_{j}(t)-d_{j}(t)\right|&\le \epsilon \left( \ln {\frac{1}{\epsilon }}\right) ^{M+1}\exp \Big (\frac{10C\epsilon ^{\frac{1}{2}}t}{\ln {\frac{1}{\epsilon }}}\Big ), \end{aligned}$$
(B43)
$$\begin{aligned} \max _{j\in \{1,\,2\}}\left|\dot{x}_{j}(t)-\dot{d}_{j}(t)\right|&\le \epsilon ^{\frac{3}{2}}\left( \ln {\frac{1}{\epsilon }}\right) ^{M}\exp \Big (\frac{10C\epsilon ^{\frac{1}{2}}t}{\ln {\frac{1}{\epsilon }}}\Big ), \end{aligned}$$
(B44)
$$\begin{aligned} \max _{j\in \{1,\,2\}}\left|\ddot{x}_{j}(t)-\ddot{d}_{j}(t)\right|&\le \epsilon ^{\frac{3}{2}}\left( \ln {\frac{1}{\epsilon }}\right) \exp \Big (\frac{10C\epsilon ^{\frac{1}{2}}t}{\ln {(\frac{1}{\epsilon })}}\Big ), \end{aligned}$$
(B45)

for a uniform constant \(C>0.\)

From the partial differential equation (1) satisfied by \(\phi (t,x)\) and the representation (B36) of g(tx), we deduce in the distributional sense that for any \(h(x)\in H^{1}({\mathbb {R}})\) that

$$\begin{aligned}{} & {} \left\langle h(x),\,({\ddot{P}}_{1}(t)+\dot{x}_{1}(t)^{2})\partial ^{2}_{x}H^{x_{1}(t)}_{-1,0}+ ({\ddot{P}}_{2}(t)+\dot{x}_{2}(t)^{2})\partial ^{2}_{x}H^{x_{2}(t)}_{0,1}\right\rangle _{L^{2}}\nonumber \\{} & {} \quad ={-}\left\langle h(x), P_{1}(t)\Big [\Big (-\partial ^{2}_{x}+{\ddot{U}}(H^{x_{1}(t)}_{-1,0})\Big )\partial ^{2}_{x}H^{x_{1}(t)}_{-1,0}\Big ]\right\rangle _{L^{2}}\nonumber \\{} & {} \qquad {-}\,\left\langle h(x),P_{2}(t)\Big [\Big (-\partial ^{2}_{x}+\ddot{U}(H^{x_{2}(t)}_{0,1})\Big )\partial ^{2}_{x}H^{x_{2}(t)}_{0,1}\Big ]\right\rangle _{L^{2}}\nonumber \\{} & {} \qquad {-}\,\left\langle h(x),\Big [\partial ^{2}_{t}r(t) -\partial ^{2}_{x}r(t)+{\ddot{U}}(H^{x_{2}(t)}_{0,1}+H^{x_{1}(t)}_{-1,0})r(t)\Big ]\right\rangle _{L^{2}}\nonumber \\{} & {} \qquad {-}\,\left\langle h(x),\,\left[ \dot{U}(H^{x_{2}(t)}_{0,1}+H^{x_{1}(t)}_{-1,0})+\dot{U}(H_{0,1}^{x_{2}(t)})-\dot{U}(H_{-1,0}^{x_{1}(t)})\right] \right\rangle _{L^{2}}\nonumber \\{} & {} \qquad {+}\,\left\langle h(x),\,\ddot{x}_{1}(t)\partial _{x}H^{x_{1}(t)}_{-1,0}(x)+\ddot{x}_{2}(t)\partial _{x}H^{x_{2}(t)}_{0,1}(x)\right\rangle _{L^{2}} \nonumber \\{} & {} \qquad {-}\,\left\langle h(x),\, P_{1}(t)\Big [\Big ({\ddot{U}}(H^{x_{2}(t)}_{0,1}+H^{x_{1}(t)}_{-1,0})-{\ddot{U}}(H^{x_{1}(t)}_{-1,0})\Big )\partial ^{2}_{x}H^{x_{1}(t)}_{-1,0}\Big ]\right\rangle _{L^{2}}\nonumber \\{} & {} \qquad {-}\,\left\langle h(x), P_{2}(t)\Big [\Big ({\ddot{U}}(H^{x_{2}(t)}_{0,1}+H^{x_{1}(t)}_{-1,0})-{\ddot{U}}(H^{x_{2}(t)}_{0,1})\Big )\partial ^{2}_{x}H^{x_{2}(t)}_{0,1}\Big ]\right\rangle _{L^{2}}\nonumber \\{} & {} \qquad {+}\,O\left( \left\Vert h\right\Vert _{L^{2}}\left[ \left\Vert g(t)\right\Vert _{H^{1}}^{2}+\max _{j\in \{1,\,2\}}\left|\ddot{x}_{j}(t)\right|\right] \right) \nonumber \\{} & {} \qquad {+}\,O\left( \left\Vert h\right\Vert _{L^{2}}\left[ \max _{j\in \{1,\,2\}}\left|\dot{P}_{j}(t)\dot{x}_{j}(t)\right|+\max _{j \in \{1,\,2\}} \left|P_{j}(t)\right|e^{-\sqrt{2}z(t)}\right] \right) \nonumber \\{} & {} \qquad {+}\,O\left( \left|P_{j}(t)\ddot{x}_{j}(t)\right|+\left|P_{j}(t)\dot{x}_{j}(t)^{2}\right|\right) . \end{aligned}$$
(B46)

From Lemma 20 and estimates (B43) and (B45), we obtain from (B46) that

$$\begin{aligned}{} & {} \left\langle h(x),\,({\ddot{P}}_{1}(t)+\dot{x}_{1}(t)^{2})\partial ^{2}_{x}H^{x_{1}(t)}_{-1,0}+ ({\ddot{P}}_{2}(t)+\dot{x}_{2}(t)^{2})\partial ^{2}_{x}H^{x_{2}(t)}_{0,1}\right\rangle _{L^{2}}\nonumber \\{} & {} \quad ={-}\left\langle h(x), P_{1}(t)\Big [\Big (-\partial ^{2}_{x}+\ddot{U}(H^{x_{1}(t)}_{-1,0})\Big )\partial ^{2}_{x}H^{x_{1}(t)}_{-1,0}\Big ]\right\rangle _{L^{2}}\nonumber \\{} & {} \qquad {-}\,\left\langle h(x),P_{2}(t)\Big [\Big (-\partial ^{2}_{x}+\ddot{U}(H^{x_{2}(t)}_{0,1})\Big )\partial ^{2}_{x}H^{x_{2}(t)}_{0,1}\Big ]\right\rangle _{L^{2}}\nonumber \\{} & {} \qquad {-}\,\left\langle h(x),\Big [\partial ^{2}_{t}r(t) -\partial ^{2}_{x}r(t)+{\ddot{U}}(H^{x_{2}(t)}_{0,1}+H^{x_{1}(t)}_{-1,0})r(t)\Big ]\right\rangle _{L^{2}}\nonumber \\{} & {} \qquad {+}\,O\left( \left\Vert h\right\Vert _{L^{2}}\left[ \max _{j\in \{1,\,2\}}\left|\ddot{x}_{j}(t)-\ddot{d}_{j}(t)\right|+e^{-\sqrt{2}d(t)}\right] \right) \nonumber \\{} & {} \qquad {+}\,O\left( \left\Vert h\right\Vert _{L^{2}}\left[ \left|z(t)-d(t)\right|e^{-\sqrt{2}z(t)}+e^{-2\sqrt{2}z(t)}\right] \right) \nonumber \\{} & {} \qquad {+}\,O\left( \left\Vert h\right\Vert _{L^{2}}\left[ \left\Vert g(t)\right\Vert _{H^{1}}^{2}+\max _{j\in \{1,\,2\}}\left|\ddot{x}_{j}(t)\right|\right] \right) \nonumber \\{} & {} \qquad {+}\,O\left( \left\Vert h\right\Vert _{L^{2}}\left[ \max _{j\in \{1,\,2\}}\left|\dot{P}_{j}(t)\dot{x}_{j}(t)\right|+\max _{j \in \{1,\,2\}} \left|P_{j}(t)\right|e^{-\sqrt{2}z(t)}+\left|P_{j}(t)\ddot{x}_{j}(t)\right|\right] \right) \nonumber \\{} & {} \qquad {+}\,O\left( \left\Vert h\right\Vert _{L^{2}}\left|P_{j}(t)\dot{x}_{j}(t)^{2}\right|\right) . \end{aligned}$$
(B47)

From the condition (B37), we deduce that

$$\begin{aligned} \left\langle \partial ^{2}_{t}r(t),\,\partial ^{2}_{x}H^{x_{2}(t)}_{0,1}\right\rangle _{L^{2}}&=\frac{d}{dt}\left[ \dot{x}_{2}(t)\left\langle r(t),\,\partial ^{3}_{x}H^{x_{2}(t)}_{0,1} \right\rangle \right] +\dot{x}_{2}(t)\left\langle \partial _{t}r(t),\,\partial ^{3}_{x}H^{x_{2}(t)}_{0,1} \right\rangle _{L^{2}},\\ \left\langle \partial ^{2}_{t}r(t),\,\partial ^{2}_{x}H^{x_{1}(t)}_{-1,0}\right\rangle _{L^{2}}&=\frac{d}{dt}\left[ \dot{x}_{1}(t)\left\langle r(t),\,\partial ^{3}_{x}H^{x_{1}(t)}_{-1,0} \right\rangle _{L^{2}}\right] +\dot{x}_{1}(t)\left\langle \partial _{t}r(t),\,\partial ^{3}_{x}H^{x_{1}(t)}_{-1,0} \right\rangle _{L^{2}}, \end{aligned}$$

which imply with Theorem 11 the existence of a uniform constant \(C>0\) such that

$$\begin{aligned} \left|\left\langle \partial ^{2}_{t}r(t),\,\partial ^{2}_{x}H^{x_{2}(t)}_{0,1}\right\rangle _{L^{2}}\right|\le C\epsilon ^{\frac{1}{2}}\left\Vert \overrightarrow{r(t)}\right\Vert ,\, \left|\left\langle \partial ^{2}_{t}r(t),\,\partial ^{2}_{x}H^{x_{1}(t)}_{-1,0}\right\rangle _{L^{2}}\right|\le C\epsilon ^{\frac{1}{2}}\left\Vert \overrightarrow{r(t)}\right\Vert . \nonumber \\ \end{aligned}$$
(B48)

From (B39), (B40) and (B41), we obtain that \(\left\Vert \overrightarrow{r(t)}\right\Vert \lesssim \left\Vert \overrightarrow{g(t)}\right\Vert .\)

In conclusion, after we apply the partial differential equation (B47) in the distributional sense to \(\partial ^{2}_{x}H^{x_{2}(t)}_{0,1},\,\partial ^{2}_{x}H^{x_{1}(t)}_{-1,0},\) the estimates (B39), (B40), (B41), (B43), (B45) and (B48) imply that there is a uniform constant \(K_{1}>0\) such that if \(\epsilon \ll 1\) enough, then for \(j \in \{1,\,2\}\) we have that for \(0\le t\le \frac{N\ln {\frac{1}{\epsilon }}}{\epsilon ^{\frac{1}{2}}}\)

$$\begin{aligned} \left|{\ddot{P}}_{j}(t)+\dot{x}_{j}(t)^{2}\right|\le K_{1}\left( e^{-\sqrt{2}d(t)}+\epsilon ^{\frac{3}{2}}\left( \ln {\frac{1}{\epsilon }}\right) ^{M+1}\exp \Big (\frac{10C\epsilon ^{\frac{1}{2}}t}{\ln {\frac{1}{\epsilon }}}\Big )+\frac{\epsilon }{N} \right) , \end{aligned}$$

from which we deduce for all \(0\le t\le N\frac{\ln {\frac{1}{\epsilon }}}{\epsilon ^{\frac{1}{2}}}\) that

$$\begin{aligned} \left|\sum _{j=1}^{2}{\ddot{P}}_{j}(t)+\dot{x}_{j}(t)^{2}\right|\le 2K_{1}\left( e^{-\sqrt{2}d(t)}+\epsilon ^{\frac{3}{2}}\left( \ln {\frac{1}{\epsilon }}\right) ^{M+1}\exp \Big (\frac{10C\epsilon ^{\frac{1}{2}}t}{\ln {\frac{1}{\epsilon }}}\Big )+\frac{\epsilon }{N}\right) . \nonumber \\ \end{aligned}$$
(B49)

Since \( \left|\sum _{j=1}^{2}{\ddot{P}}_{j}(t)\right|\ge -\left|\sum _{j=1}^{2}{\ddot{P}}_{j}(t)+\dot{x}_{j}(t)^{2}\right|+\sum _{j=1}^{2} \dot{x}_{j}(t)^{2},\) we deduce from the estimates (B49) and (B42) that

$$\begin{aligned} \left|\sum _{j=1}^{2}{\ddot{P}}_{j}(t)\right|\ge & {} \frac{\epsilon }{K}-\Big [e^{-\sqrt{2}z(t)}+\left\Vert \overrightarrow{g(t)}\right\Vert ^{2}\Big ]\nonumber \\{} & {} {-}\,2K_{1}\Big [e^{-\sqrt{2}d(t)}+\epsilon ^{\frac{3}{2}}\left( \ln {\frac{1}{\epsilon }}\right) ^{M+1}\exp \Big (\frac{10C\epsilon ^{\frac{1}{2}}t}{\ln {\frac{1}{\epsilon }}}\Big )\Big ]-\frac{2K_{1}\epsilon }{N}.\nonumber \\ \end{aligned}$$
(B50)

We recall that from the statement of Theorem 4 that \(e^{-\sqrt{2}d(t)}=\frac{v^{2}}{8}{{\,\textrm{sech}\,}}{(\sqrt{2}vt+c)}^{2},\) with \(v=\Big (\frac{\dot{z}(0)^{2}}{4}+8 e^{-\sqrt{2}z(0)}\Big )^{\frac{1}{2}},\) which implies that \(v\lesssim \epsilon ^{\frac{1}{2}}.\) Since we have verified in Theorem 11 that \(e^{-\sqrt{2}z(t)}\lesssim \epsilon ,\) the mean value theorem implies that \(\left|e^{-\sqrt{2}z(t)}-e^{-\sqrt{2}d(t)}\right|=O(\epsilon \left|z(t)-d(t)\right|),\) from which we deduce from (B43) that

$$\begin{aligned} \left|e^{-\sqrt{2}z(t)}-e^{-\sqrt{2}d(t)}\right|=O\left( \epsilon ^{2}\left( \ln {\frac{1}{\epsilon }}\right) ^{M+1}\exp \Big (\frac{10C\epsilon ^{\frac{1}{2}}t}{\ln {\frac{1}{\epsilon }}}\Big )\right) . \end{aligned}$$

In conclusion, if \(\epsilon \ll 1\) enough, we obtain for \(0\le t \le \frac{N\ln {(\frac{1}{\epsilon })}}{\epsilon ^{\frac{1}{2}}}\) from (B50) that

$$\begin{aligned} \left|\sum _{j=1}^{2}{\ddot{P}}_{j}(t)\right|\ge & {} \frac{\epsilon }{K}-\Big [e^{-\sqrt{2}d(t)}+\left\Vert \overrightarrow{g(t)}\right\Vert ^{2}\Big ]\nonumber \\{} & {} {-}\,4K_{1}\Big [e^{-\sqrt{2}d(t)}+\epsilon ^{\frac{3}{2}}\left( \ln {\frac{1}{\epsilon }}\right) ^{M+1}\exp \Big (\frac{10C\epsilon ^{\frac{1}{2}}t}{\ln {\frac{1}{\epsilon }}}\Big )\Big ]-\frac{2K_{1}\epsilon }{N}.\nonumber \\ \end{aligned}$$
(B51)

The conclusion of the demonstration will follow from studying separate cases in the choice of \(v>0,\,c.\) We also observe that \(K,\, K_{1}\) are uniform constants and the value of \(N \in {\mathbb {N}}_{>0}\) can be chosen at the beginning of the proof to be as much large as we need.

Case 1. (\(v^{2}\le \frac{8\epsilon }{(1+4K_{1})2K}.\)) From inequality (B51), we deduce that

$$\begin{aligned} \left|\sum _{j=1}^{2}{\ddot{P}}_{j}(t)\right|\ge \frac{\epsilon }{2K}-\left\Vert \overrightarrow{g(t)}\right\Vert ^{2}-4K_{1}\Big (\epsilon ^{\frac{3}{2}}\left( \ln {\frac{1}{\epsilon }}\right) ^{M+1}\exp \Big (\frac{10C\epsilon ^{\frac{1}{2}}t}{\ln {\frac{1}{\epsilon }}}\Big )\Big )-\frac{2K_{1}\epsilon }{N}, \end{aligned}$$

then, from (B35) we deduce for \(0\le t \le \frac{\ln {\frac{1}{\epsilon }}}{\epsilon ^{\frac{1}{2}}}\) that if \(\epsilon \) is small enough and \(N>10K K_{1},\) then \(\left|\sum _{j=1}^{2}{\ddot{P}}_{j}(t)\right|\ge \frac{\epsilon }{4K},\) and so,

$$\begin{aligned} \left|\sum _{j=1}^{2}\dot{P}_{j}(t)\right|\ge \frac{\epsilon t}{4K}-\left|\sum _{j=1}^{2}\dot{P}_{j}(0)\right|, \end{aligned}$$

which contradicts the fact that (B40) and (B35) should be true for \(\epsilon \ll 1.\)

Case 2. (\(v^{2}\ge \frac{8\epsilon }{ (1+4K_{1}) 2K},\,\left|c\right|>2\ln {(\frac{1}{\epsilon })}.\)) It is not difficult to verify that for \(0\le t\le \min ( \frac{\left|c\right|}{2\sqrt{2}v},N\frac{\ln {\frac{1}{\epsilon }}}{\epsilon ^{\frac{1}{2}}}),\) we have that \(e^{-\sqrt{2}d(t)}\le \frac{v^{2}}{8}{{\,\textrm{sech}\,}}{(\frac{c}{2})}^{2}\lesssim \epsilon ^{3}.\) Therefore, if \(N>10 K K_{1}\) and \(\epsilon >0\) is small enough, estimate (B51) would imply that \(\left|\sum _{j=1}^{2}\ddot{P}_{j}(t)\right|\ge \frac{\epsilon }{4K}\) is true in this time interval. Also, since now \(v\cong \epsilon ^{\frac{1}{2}},\) we have that

$$\begin{aligned} \frac{\ln {\frac{1}{\epsilon }}}{\epsilon ^{\frac{1}{2}}} \lesssim \frac{\left|c\right|}{2\sqrt{2}v}, \end{aligned}$$

so we obtain a contradiction by a similar argument to the Case 1.

Case 3. (\(v^{2}\ge \frac{8\epsilon }{ (1+4K_{1}) 2K}\) and \(\left|c\right|\le 2\ln {\frac{1}{\epsilon }}.\)) For \( N\gg 1\) and \(t_{0}=\frac{ (1+4K_{1})^{\frac{1}{2}} K^{\frac{1}{2}} \sqrt{2} \ln {\frac{1}{\epsilon }}}{\epsilon ^{\frac{1}{2}}},\) we have during the time interval \( \left\{ t_{0}\le t \le 2\frac{(1+4K_{1})^{\frac{1}{2}} K^{\frac{1}{2}} \sqrt{2} \ln {\frac{1}{\epsilon }}}{\epsilon ^{\frac{1}{2}}}\right\} \) that \(e^{-\sqrt{2}d(t)}\le \frac{v^{2}}{8}{{\,\textrm{sech}\,}}{\Big (2\ln {\frac{1}{\epsilon }}\Big )}^{2}\lesssim \epsilon ^{5}\) and \(\frac{\epsilon }{N}<\frac{\epsilon }{20K}.\) In conclusion, estimate (B50) implies that \(\left|\sum _{j=1}^{2}{\ddot{P}}_{j}(t)\right|\ge \frac{\epsilon }{4K}\) is true in this time interval. From the Fundamental Calculus Theorem, we have that

$$\begin{aligned} \left|\sum _{j=1}^{2}\dot{P}_{j}(t)\right|\ge \frac{\epsilon (t-t_{0})}{4K}-\left|\sum _{j=1}^{2}\dot{P}_{j}(t_{0})\right|. \end{aligned}$$

In conclusion, hypothesis (B35) and estimate (B40) imply for \(T=2\frac{(1+2K_{1})^{\frac{1}{2}} K^{\frac{1}{2}} \sqrt{2} \ln {\frac{1}{\epsilon }}}{\epsilon ^{\frac{1}{2}}}\) and \(N\gg 1\) that

$$\begin{aligned} \left|\sum _{j=1}^{2}\dot{P}_{j}(T)\right|\ge \frac{\epsilon ^{\frac{1}{2}} (1+2K_{1})^{\frac{1}{2}} \sqrt{2} \ln {\frac{1}{\epsilon }} }{8K^{\frac{1}{2}}}, \end{aligned}$$

which contradicts the fact that (B35) and (B40) should be true, which finishes our proof. \(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moutinho, A. Dynamics of Two Interacting Kinks for the \(\phi ^{6}\) Model. Commun. Math. Phys. 401, 1163–1235 (2023). https://doi.org/10.1007/s00220-023-04668-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04668-y

Navigation