Skip to main content
Log in

A Two Term Kuznecov Sum Formula

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Kuznecov sum formula, proved by Zelditch in the Riemannian setting (Zelditch in Comm Part Differ Equ 17(1–2):221–260, 1992), is an asymptotic sum formula

$$\begin{aligned} N(\lambda ):= \sum _{\lambda _j \le \lambda } \left| \int _H e_j \, dV_H \right| ^2 = C_{H,M} \lambda ^{{\text {codim}}H} + O(\lambda ^{{\text {codim}}H - 1}) \end{aligned}$$

where \(e_j\) constitute a Hilbert basis of Laplace–Beltrami eigenfunctions on a Riemannian manifold M with \(\Delta _g e_j = -\lambda _j^2 e_j\), and H is an embedded submanifold. Assuming that the looping time set is countable, we show for some suitable definition of ‘\(\sim \)’,

$$\begin{aligned} N(\lambda ) \sim C_{H,M} \lambda ^{{\text {codim}}H} + Q(\lambda ) \lambda ^{{\text {codim}}H - 1} + o(\lambda ^{{\text {codim}}H - 1}) \end{aligned}$$

where Q is a bounded oscillating term and is expressed in terms of the geodesics which depart and arrive H in the normal directions. Our result generalizes a theorem of Safarov on the pointwise Weyl law (Safarov in Funktsional Anal i Prilozhen 22(3):53–65, 1988) in this case. In Canzani et al. (Commun Math Phys 360(2):619–637, 2018) and Canzani and Galkowski (Duke Math J 168(16):2991–3055, 2019) establish (as a corollary to a stronger result involving defect measures) that if the set of recurrent directions of geodesics normal to H has measure zero, then we obtain improved bounds on the individual terms in the sum—the period integrals. We are able to give a dynamical condition such that Q is uniformly continuous and ‘\(\sim \)’ can be replaced with ‘\(=\)’. This implies improved bounds on period integrals, and this condition holds if the recurrent directions have measure zero. Moreover, our result implies improved bounds for period integrals if there is no \(L^1\) measure on \(SN^*H\) that is invariant under the first return map. This generalizes a theorem of Sogge–Zelditch (Revista Matemática Iberoamericana 32(3):971–994, 2016) and Galkowski (Ann Inst Fourier Grenoble 69(4):1757–1798, 2019).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bruggeman, R.W.: Fourier coefficients of cusp forms. Invent. Math. 45(1), 1–18 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Canzani, Y., Galkowski, J.: On the growth of eigenfunction averages: microlocalization and geometry. Duke Math. 168(16), 2991–3055 (2019). (11)

  3. Canzani, Y., Galkowski, J.: Weyl remainders: an application of geodesic beams. Preprint (2020)

  4. Canzani, Y., Galkowski, J.: Eigenfunction concentration via geodesic beams. J. für die reine und angewandte Mathematik (Crelles J.) 2021(775), 197–257 (2021)

  5. Canzani, Y., Galkowski, J.: Improvements for eigenfunction averages: an application of geodesic beams. J. Differ. Geom. 6, 66 (2021)

    MATH  Google Scholar 

  6. Canzani, Y., Galkowski, J., Toth, J.A.: Averages of eigenfunctions over hypersurfaces. Commun. Math. Phys. 360(2), 619–637 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Chen, X., Sogge, C.D.: On integrals of eigenfunctions over geodesics. Proc. Am. Math. Soc. 143(1), 151–161 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duistermaat, J.J., Guillemin, V.W.: The spectrum of positive elliptic operators and periodic bicharacteristics. Invent. Math. 29(1), 39–79 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Duistermaat, J.J.: Fourier Integral Operators. Birkhäuser, Boston (1996)

    MATH  Google Scholar 

  10. Galkowski, J.: Defect measures of eigenfunctions with maximal \(L^\infty \) growth. Ann. Inst. Fourier 69(4), 1757–1798 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Good, A.: Local Analysis of Selberg’s Trace Formula. Lecture Notes in Mathematics, vol. 1040. Springer, Berlin (1983)

  12. Hejhal, D.A.: Sur certaines séries de Dirichlet associées aux géodésiques fermées d’une surface de Riemann compacte. C. R. Acad. Sci. Paris Sér. I Math. 294(8), 273–276 (1982)

  13. Hörmander, L.: Fourier integral operators. I. Acta Math. 127, 79–183 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hörmander, L.: The Analysis of Linear Partial Differential Operators, 2nd edn. I. Springer (1990)

  15. Hörmander, L.: The Analysis of Linear Partial Differential Operators IV. Springer, Berlin (1994)

    Google Scholar 

  16. Ivriĭ, V.J.: The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds with boundary. Funktsional. Anal. i Prilozhen 14(2), 25–34 (1980)

    Article  MathSciNet  Google Scholar 

  17. Nikolai Vasil’evitch Kuznetsov: Petersson’s conjecture for cusp forms of weight zero and linnik’s conjecture. sums of kloosterman sums. Matematicheskii Sbornik 153(3), 334–383 (1980)

  18. Reznikov, A.: A uniform bound for geodesic periods of eigenfunctions on hyperbolic surfaces. Forum Math. 27(3), 1569–1590 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Safarov, Y.G.: Asymptotics of a spectral function of a positive elliptic operator without a nontrapping condition. Funktsional. Anal. i Prilozhen 22(3), 53–65 (1988). (96)

  20. Sogge, C.D.: Hangzhou Lectures on Eigenfunctions of the Laplacian. Annals of Mathematics Studies, vol. 188. Princeton University Press, Princeton (2014)

  21. Sogge, C.D., Toth, J.A., Zelditch, S.: About the blowup of quasimodes on Riemannian manifolds. J. Geom. Anal. 21(1), 150–173 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Safarov, Y., Vassiliev, D.: The Asymptotic Distribution of Eigenvalues of Partial Differential Operators, vol. 155. American Mathematical Society (1996)

  23. Sogge, C.D., Xi, Y., Zhang, C.: Geodesic period integrals of eigenfunctions on Riemannian surfaces and the Gauss-Bonnet theorem. Camb. J. Math. 5(1), 123–151 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sogge, C.D., Zelditch, S.: Focal points and sup-norms of eigenfunctions. Revista Matemática Iberoamericana 32(3), 971–994 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sogge, C.D., Zelditch, S.: Focal points and sup-norms of eigenfunctions II: the two-dimensional case. Revista matemática iberoamericana 32(3), 995–999 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wyman, E., Xi, Y., Zelditch, S.: Fourier coefficients of restrictions of eigenfunctions. arXiv preprint arXiv:2011.11571 (2020)

  27. Wyman, E., Xi, Y., Zelditch, S.: Geodesic bi-angles and Fourier coefficients of restrictions of eigenfunctions. Pure Appl. Anal. 6, 66 (2021)

    Google Scholar 

  28. Wyman, E.: Integrals of eigenfunctions over curves in surfaces of nonpositive curvature. preprint (2017)

  29. Wyman, E.L.: Period integrals in nonpositively curved manifolds (to appear) (2018)

  30. Wyman, E.L.: Explicit bounds on integrals of eigenfunctions over curves in surfaces of nonpositive curvature. J. Geom. Anal. 6, 66 (2019)

    Google Scholar 

  31. Wyman, E.L.: Looping directions and integrals of eigenfunctions over submanifolds. J. Geom. Anal. 29(2), 1302–1319 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wyman, E.L.: Triangles and triple products of Laplace eigenfunctions. J. Funct. Anal. 282(8), 109404 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zelditch, S.: Kuznecov sum formulae and Szegő limit formulae on manifolds. Comm. Partial Differential Equations 17(1–2), 221–260 (1992)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Both authors are grateful to Steve Zelditch for suggesting the problem and for providing his invaluable input on an early draft of the paper. Steve Zelditch also communicated to the authors that he initiated a project in studying the two-term asymptotics for several other cases, including ladder sums for Fourier coefficients of restricted eigenfunctions as in [WXZ20, WXZ21], and the asymptotics for \(L^2\) restrictions of eigenfunctions. The authors want to thank an anonymous referee for many helpful historical comments.

Funding

Xi was supported by the National Key R &D Program of China, No: 2022YFA1007200, NSF China Grant No. 12171424, and the Fundamental Research Funds for the Central Universities 2021QNA3001. Wyman was partially supported by NSF Grant DMS-2204397 the AMS-Simons Travel Grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmett L. Wyman.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Communicated by S. Dyatlov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wyman, E., Xi, Y. A Two Term Kuznecov Sum Formula. Commun. Math. Phys. 401, 1127–1162 (2023). https://doi.org/10.1007/s00220-023-04667-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04667-z

Navigation