Skip to main content
Log in

Sharp Pointwise Weyl Laws for Schrödinger Operators with Singular Potentials on Flat Tori

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Weyl law of the Laplacian on the flat torus \({\mathbb {T}}^n\) is concerning the number of eigenvalues \(\le \lambda ^2\), which is equivalent to counting the lattice points inside the ball of radius \(\lambda \) in \({\mathbb {R}}^n\). The leading term in the Weyl law is \(c_n\lambda ^n\), while the sharp error term \(O(\lambda ^{n-2})\) is only known in dimension \(n\ge 5\). Determining the sharp error term in lower dimensions is a famous open problem (e.g. Gauss circle problem). In this paper, we show that under a type of singular perturbations one can obtain the pointwise Weyl law with a sharp error term in any dimensions. This result establishes the sharpness of the general theorems for the Schrödinger operators \(H_V=-\Delta _{g}+V\) in the previous work (Huang and Zhang (Adv Math, arXiv:2103.05531)) of the authors, and extends the 3-dimensional results of Frank and Sabin (Sharp Weyl laws with singular potentials. arXiv:2007.04284) to any dimensions by using a different approach. Our approach is a combination of Fourier analysis techniques on the flat torus, Li–Yau’s heat kernel estimates, Blair–Sire–Sogge’s eigenfunction estimates, and Duhamel’s principle for the wave equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arendt, W., Nittka, R., Peter, W., Steiner, F.: Weyl’s Law: Spectral Properties of the Laplacian in Mathematics and Physics. Mathematical Analysis of Evolution, Information, and Complexity, pp. 1–71. Wiley, New York (2009)

    MATH  Google Scholar 

  2. Avakumović, V.G.: Über die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten. Math. Z. 65, 327–344 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bérard, P.H.: On the wave equation on a compact Riemannian manifold without conjugate points. Math. Z. 155(3), 249–276 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blair, M., Huang, X., Sire, Y., Sogge, C.D.: Uniform Sobolev estimates on compact manifolds involving singular potentials. Rev. Mat. Iberoam., to appear

  5. Blair, M., Sire, Y., Sogge, C.D.: Quasimode, eigenfunction and spectral projection bounds for Schrödinger operators on manifolds with critically singular potentials. J. Geom. Anal., to appear

  6. Bourgain, J., Rudnick, Z.: Restriction of toral eigenfunctions to hypersurfaces and nodal sets. Geom. Funct. Anal. 22, 878 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourgain, J., Rudnick, Z.: Nodal intersections and \(L^p\) restriction theorems on the torus. Isr. J. Math. 207, 479 (2015)

    Article  MATH  Google Scholar 

  8. Canzani, Y., Galkowski, J.: Weyl remainders: an application of geodesic beams. arXiv:2010.03969

  9. Carleman, T.: Propriétés asymptotiques des fonctions fondamentales des membranes vibrantes. C. R. Congr. Math. Scand., 14–18 (1934)

  10. Duistermaat, J.J., Guillemin, V.W.: The spectrum of positive elliptic operators and periodic bicharacteristics. Invent. Math. 29(1), 39–79 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Frank, R.L., Sabin, J.: Sharp Weyl laws with singular potentials. arXiv:2007.04284

  12. Freeden, W.: Metaharmonic Lattice Point Theory. CRC Press, Boca Raton (2011)

    Book  MATH  Google Scholar 

  13. Heath-Brown, D.: Lattice points in the sphere (1999)

  14. Hlawka, E.: Über Integrale auf konvexen Kórpern. I. Monatsh. Math. 54, 1–36 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hörmander, L.: The Analysis of Linear Partial Differential Operators III. Pseudodifferential Operators. Springer, Berlin (1985)

    MATH  Google Scholar 

  16. Hörmander, L.: The spectral function of an elliptic operator. Acta Math. 121, 193–218 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang, X., Sire, Y., Wang, X., Zhang, C.: Sharp Lp estimates and size of nodal sets for generalized Steklov eigenfunctions. arXiv:2301.00095

  18. Huang, X., Sire, Y., Zhang, C.: Spectral cluster estimates for Schrödinger operators of relativistic type. J. Math. Pures Appl., to appear

  19. Huang, X., Sogge, C.D.: Weyl formulae for Schrödinger operators with critically singular potentials. Commun. Partial Differ. Equ., to appear

  20. Huang, X., Sogge, C.D.: Quasimode and Strichartz estimates for time-dependent Schrödinger equations with singular potentials. Math. Res. Lett., to appear

  21. Huang, X., Sogge, C.D.: Uniform Sobolev estimates in \({\mathbb{R}}^n\) involving singular potentials. J. Geom. Anal., to appear

  22. Huang, X., Zhang, C.: Pointwise Weyl Laws for Schrodinger operators with singular potentials. Adv. Math., to appear, arXiv:2103.05531

  23. Huang, X., Zhang, C.: Restriction of toral eigenfunctions to totally geodesic submanifolds. Anal. PDE 14(3), 861–880 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Huxley, M.N.: Exponential sums and lattice points iii. Proc. Lond. Math. Soc. 87(3), 591–609 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Iosevich, A., Wyman, E.: Weyl law improvement for products of spheres. Anal. Math. 47, 593–612 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ivic, A., Krätzel, E., Kühleitner, M., Nowak, W.: Lattice points in large regions and related arithmetic functions: Recent developments in a very classic topic. arXiv:math/0410522

  27. Kato, Tosio: Perturbation Theory for Linear Operators. Grundlehren der Mathematischen Wissenschaften, Band, vol. 132, 2nd edn. Springer, Berlin (1976)

    Google Scholar 

  28. Krätzel, E.: Analytische Funktionen in der Zahlentheorie, vol. 139. Springer, Berlin (2013)

    MATH  Google Scholar 

  29. Landau, E.: Vorlesungen über zahlentheorie. Band 3, 324 (1927)

    Google Scholar 

  30. Levitan, B.M.: On the asymptotic behavior of the spectral function of a self-adjoint differential equation of the second order. Izv. Akad. Nauk SSSR. Ser. Mat. 16, 325–352 (1952)

    MathSciNet  MATH  Google Scholar 

  31. Levitan, B.M.: On the asymptotic behavior of a spectral function and on expansions in eigenfunctions of a self-adjoint differential equation of the second order II. Izv. Akad. Nauk SSSR. Ser. Mat. 19, 33–58 (1955)

    MathSciNet  Google Scholar 

  32. Li, P., Yau, S.-T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156(3–4), 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  33. Seeley, R.: A sharp asymptotic estimate for the eigenvalues of the Laplacian in a domain of R3. Adv. Math. 102(3), 244–264 (1978)

    Article  MATH  Google Scholar 

  34. Seeley, R.: An estimate near the boundary for the spectral function of the Laplace operator. Am. J. Math. 102(5), 869–902 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  35. Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. (N.S.) 7(3), 447–526 (1982)

    Article  MATH  Google Scholar 

  36. Sobolev, A.V.: Discrete spectrum asymptotics for the Schrödinger operator with a singular potential and a magnetic field. Rev. Math. Phys. 8, 861–903 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sogge, C.D.: Concerning the Lp norm of spectral clusters for second-order elliptic operators on compact manifolds. J. Funct. Anal. 77(1), 123–138 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sogge, C.D.: Fourier Integrals in Classical Analysis. Cambridge Tracts in Mathematics, vol. 210, 2nd edn. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  39. Sogge, C.D.: Hangzhou Lectures on Eigenfunctions of the Laplacian. Annals of Mathematics Studies, vol. 188. Princeton University Press, Princeton (2014)

    Book  MATH  Google Scholar 

  40. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Osciollatory Integrals. Princeton University Press, Princeton (1993)

    Google Scholar 

  41. Sturm, K.-T.: Schrödinger semigroups on manifolds. J. Funct. Anal. 118(2), 309–350 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  42. Volovoy, A.V.: Improved two-term asymptotics for the eigenvalue distribution function of an elliptic operator on a compact manifold. Commun. Partial Differ. Equ. 15(11), 1509–1563 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  43. Walfisz, A.: Gitterpunkte in mehrdimensionalen kugeln. Instytut Matematyczny Polskiej Akademi Nauk, Warsaw (1957)

    MATH  Google Scholar 

  44. Weyl, H.: Über die asymptotische Verteilung der Eigenwerte. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. 1911, 110–117 (1911)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Allan Greenleaf, Christopher Sogge, Yannick Sire, Rupert L. Frank and Julien Sabin for their suggestions and comments. The authors also thank the anonymous referees for very thorough and tremendously helpful reports. The authors are both partially supported by the AMS-Simons Travel Grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqi Huang.

Additional information

Communicated by S. Dyatlov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Zhang, C. Sharp Pointwise Weyl Laws for Schrödinger Operators with Singular Potentials on Flat Tori. Commun. Math. Phys. 401, 1063–1125 (2023). https://doi.org/10.1007/s00220-023-04665-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04665-1

Navigation