Skip to main content
Log in

Metric Growth Dynamics in Liouville Quantum Gravity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the metric growth in Liouville quantum gravity (LQG) for \(\gamma \in (0,2)\). We show that a process associated with the trace of the free field on the boundary of a filled LQG ball is stationary, for every \(\gamma \in (0,2)\). The infinitesimal version of this stationarity combined with an explicit expression of the generator of the evolution of the trace field \((h_t)\) provides a formal invariance equation that a measure on trace fields must satisfy. When considering a modified process corresponding to an evolution of LQG surfaces, we prove that the invariance equation is satisfied by an explicit \(\sigma \)-finite measure on trace fields. This explicit measure on trace fields only corresponds to the pure gravity case. On the way to prove this invariance, we retrieve the specificity of both \(\gamma = \sqrt{8/3}\) and of the LQG dimension \(d_{\gamma } = 4\). In this case, we derive an explicit expression of the (nonsymmetric) Dirichlet form associated with the process \((h_t)\) and construct dynamics associated with its symmetric part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Albeverio, S., Röckner, M.: Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms. Probab. Theory Related Fields 89(3), 347–386 (1991)

  2. Ang, M.: Comparison of discrete and continuum Liouville first passage percolation. Electron. Commun. Probab., 24:Paper No. 64, 12 (2019)

  3. Ang, M., Falconet, H., Sun, X.: Volume of metric balls in Liouville quantum gravity. Electron. J. Probab., 25:Paper No. 160, 1–50 (2020)

  4. Angel, O.: Growth and percolation on the uniform infinite planar triangulation. Geom. Funct. Anal. 13(5), 935–974 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Angel, O., Curien, N.: Percolations on random maps I: Half-plane models. Ann. Inst. Henri Poincaré Probab. Stat. 51(2), 405–431 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Angel, O., Kolesnik, B., Miermont, G.: Stability of geodesics in the Brownian map. Ann. Probab. 45(5), 3451–3479 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Angel, O., Schramm, O.: Uniform infinite planar triangulations. Commun. Math. Phys. 241(2–3), 191–213 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Aru, J., Huang, Y., Sun, X.: Two perspectives of the 2D unit area quantum sphere and their equivalence. Commum. Math. Phys. 356(1), 261–283 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Astala, K., Jones, P., Kupiainen, A., Saksman, E.: Random conformal weldings. Acta Math. 207(2), 203–254 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Berestycki, N.: An elementary approach to Gaussian multiplicative chaos. Electron. Commun. Probab., 22:Paper No. 27, 12 (2017)

  11. Berestycki, N., Sheffield, S., Sun, X.: Equivalence of Liouville measure and Gaussian free field. arXiv:1410.5407 (2014)

  12. Binder, I., Rojas, C., Yampolsky, M.: Carathéodory convergence and harmonic measure. Potential Anal. 51(4), 499–509 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Bourgade, P., Falconet, H.: Liouville quantum gravity from random matrix dynamics. arXiv e-prints, page arXiv:2206.03029 (2022)

  14. Corwin, I.: The Kardar–Parisi–Zhang equation and universality class. Random Matrices Theory Appl. 1(1), 1130001, 76 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Curien, N.: A glimpse of the conformal structure of random planar maps. Commum. Math. Phys. 333(3), 1417–1463 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Curien, N., Le Gall, J.-F.: First-passage percolation and local modifications of distances in random triangulations. Ann. Sci. Éc. Norm. Supér. (4) 52(3), 631–701 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Da Prato, G.: An Introduction to Infinite-Dimensional Analysis. Universitext. Springer-Verlag, Berlin, (2006). Revised and extended from the 2001 original by Da Prato

  18. Da Prato, G., Tubaro, L.: Wick Powers in Stochastic PDEs: An Introduction. Technical Report UTM 711, University of Trento (2007)

  19. David, F., Kupiainen, A., Rhodes, R., Vargas, V.: Liouville quantum gravity on the Riemann sphere. Commun. Math. Phys. 342(3), 869–907 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Ding, J., Dubédat, J., Dunlap, A., Falconet, H.: Tightness of Liouville first passage percolation for \(\gamma \in (0,2)\). Publ. Math. Inst. Hautes Études Sci. 132, 353–403 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Ding, J., Gwynne, E.: The fractal dimension of Liouville quantum gravity: universality, monotonicity, and bounds. Commun. Math. Phys. 374(3), 1877–1934 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Ding, J., Zeitouni, O., Zhang, F.: Heat kernel for Liouville Brownian motion and Liouville graph distance. Commun. Math. Phys. 371(2), 561–618 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Dubédat, J.: SLE and the free field: partition functions and couplings. J. Am. Math. Soc. 22(4), 995–1054 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Dubédat, J., Shen, H.: Stochastic Ricci flow on compact surfaces. to appear in International Mathematics Research Notices, 04 (2021)

  25. Duplantier, B., Rhodes, R., Sheffield, S., Vargas, V.: Critical Gaussian multiplicative chaos: convergence of the derivative martingale. Ann. Probab. 42(5), 1769–1808 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Duplantier, B., Sheffield, S.: Liouville quantum gravity and KPZ. Invent. Math. 185(2), 333–393 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes, Volume 19 of De Gruyter Studies in Mathematics, extended Walter de Gruyter & Co., Berlin (2011)

    Google Scholar 

  28. Garban, C.: Dynamical Liouville. J. Funct. Anal. 278(6), 108351 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Garnett, J.B.: Bounded Analytic Functions, Volume 96 of Pure and Applied Mathematics. Academic Press Inc. [Harcourt Brace Jovanovich, Publishers], New York-London (1981)

    Google Scholar 

  30. Gonçalves, P., Jara, M.: Nonlinear fluctuations of weakly asymmetric interacting particle systems. Arch. Ration. Mech. Anal. 212(2), 597–644 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Gubinelli, M., Jara, M.: Regularization by noise and stochastic Burgers equations. Stoch. Partial Differ. Equ. Anal. Comput. 1(2), 325–350 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Gubinelli, M., Perkowski, N.: The infinitesimal generator of the stochastic Burgers equation. Probab. Theory Related Fields 178(3–4), 1067–1124 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Guillarmou, C., Kupiainen, A., Rhodes, R., Vargas, V.: Conformal bootstrap in Liouville Theory. arXiv e-prints, page arXiv:2005.11530 (2020)

  34. Guillarmou, C., Rhodes, R., Vargas, V.: Polyakov’s formulation of \(2d\) bosonic string theory. Publ. Math. Inst. Hautes Études Sci. 130, 111–185 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Gwynne, E.: The dimension of the boundary of a Liouville quantum gravity metric ball. Commun. Math. Phys. 378(1), 625–689 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Gwynne, E.: Geodesic networks in Liouville quantum gravity surfaces. Probab. Math. Phys. 2(3), 643–684 (2021)

    MathSciNet  MATH  Google Scholar 

  37. Gwynne, E., Holden, N., Sun, X.: Mating of trees for random planar maps and Liouville quantum gravity: a survey. arXiv:1910.04713 (2019)

  38. Gwynne, E., Miller, J.: Confluence of geodesics in Liouville quantum gravity for \(\gamma \in (0,2)\). Ann. Probab. 48(4), 1861–1901 (2020)

    MathSciNet  MATH  Google Scholar 

  39. Gwynne, E., Miller, J.: Convergence of the self-avoiding walk on random quadrangulations to \({\rm SLE}_{8/3}\) on \(\sqrt{8/3}\)-Liouville quantum gravity. Ann. Sci. Éc. Norm. Supér. (4) 54(2), 305–405 (2021)

    MathSciNet  MATH  Google Scholar 

  40. Gwynne, E., Miller, J.: Existence and uniqueness of the Liouville quantum gravity metric for \(\gamma \in (0,2)\). Invent. Math. 223(1), 213–333 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Gwynne, E., Pfeffer, J., Sheffield, S.: Geodesics and metric ball boundaries in Liouville quantum gravity. arXiv e-prints, page arXiv:2010.07889 (2020)

  42. Hadamard, J.: Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques encastrées. Mémoires presentés par divers savants à l’Académie des Sciences, pp. 1–128 (1908)

  43. Hairer, M.: Advanced stochastic analysis, introduction to malliavin calculus. Lecture notes available on the webpage of the author (2021)

  44. Hedenmalm, H., Nieminen, P.J.: The Gaussian free field and Hadamard’s variational formula. Probab. Theory Related Fields 159(1–2), 61–73 (2014)

    MathSciNet  MATH  Google Scholar 

  45. Hoshino, M., Kawabi, H., Kusuoka, S.: Stochastic quantization associated with the \(\exp (\Phi )_2\)-quantum field model driven by space-time white noise on the torus in the full \(L^1\)-regime. arXiv:2007.08171 (2020)

  46. Hoshino, M., Kawabi, H., Kusuoka, S.: Stochastic quantization associated with the \(\exp (\Phi )_2\)-quantum field model driven by space-time white noise on the torus. J. Evol. Equ. 21(1), 339–375 (2021)

    MathSciNet  MATH  Google Scholar 

  47. Huang, Y., Rhodes, R., Vargas, V.: Liouville quantum gravity on the unit disk. Ann. Inst. Henri Poincaré Probab. Stat. 54(3), 1694–1730 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Izyurov, K., Kytölä, K.: Hadamard’s formula and couplings of SLEs with free field. Probab. Theory Related Fields 155(1–2), 35–69 (2013)

    MathSciNet  MATH  Google Scholar 

  49. Kahane, J.-P.: Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9(2), 105–150 (1985)

    MathSciNet  MATH  Google Scholar 

  50. Kenyon, R.: Dominos and the Gaussian free field. Ann. Probab. 29(3), 1128–1137 (2001)

    MathSciNet  MATH  Google Scholar 

  51. Kupiainen, A., Rhodes, R., Vargas, V.: Integrability of Liouville theory: proof of the DOZZ formula. Ann. Math. (2) 191(1), 81–166 (2020)

    MathSciNet  MATH  Google Scholar 

  52. Le Gall, J.-F.: The topological structure of scaling limits of large planar maps. Invent. Math. 169(3), 621–670 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  53. Le Gall, J.-F.: Uniqueness and universality of the Brownian map. Ann. Probab. 41(4), 2880–2960 (2013)

    MathSciNet  MATH  Google Scholar 

  54. Le Gall, J.-F.: Brownian Motion, Martingales, and Stochastic Calculus, Volume 274 of Graduate Texts in Mathematics. Springer, Cham (2016)

    Google Scholar 

  55. Le Gall, J.-F.: Brownian geometry. Jpn. J. Math. 14(2), 135–174 (2019)

    MathSciNet  MATH  Google Scholar 

  56. Le Gall, J.-F.: Geodesic stars in random geometry. arXiv e-prints, page arXiv:2102.00489 (2021)

  57. Le Gall, J.-F.: The volume measure of the Brownian sphere is a Hausdorff measure. arXiv e-prints, page arXiv:2105.05615 (2021)

  58. Ma, Z.M., Röckner, M.: Introduction to the Theory of (nonsymmetric) Dirichlet Forms. Universitext. Springer-Verlag, Berlin (1992)

    MATH  Google Scholar 

  59. Miermont, G.: The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math. 210(2), 319–401 (2013)

    MathSciNet  MATH  Google Scholar 

  60. Miller, J.: Liouville quantum gravity as a metric space and a scaling limit. In: Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. IV. Invited lectures, pp. 2945–2971. World Scientific Publishing, Hackensack, NJ (2018)

  61. Miller, J., Qian, W.: Geodesics in the Brownian map: Strong confluence and geometric structure. arXiv e-prints, page arXiv:2008.02242 (2020)

  62. Miller, J., Sheffield, S.: Imaginary geometry I: interacting SLEs. Probab. Theory Related Fields 164(3–4), 553–705 (2016)

    MathSciNet  MATH  Google Scholar 

  63. Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding. Ann. Probab. 49, 2732–2829 (2021)

    MathSciNet  MATH  Google Scholar 

  64. Miller, J., Sheffield, S.: Quantum Loewner evolution. Duke Math. J. 165(17), 3241–3378 (2016)

    MathSciNet  MATH  Google Scholar 

  65. Miller, J., Sheffield, S.: Liouville quantum gravity spheres as matings of finite-diameter trees. Ann. Inst. Henri Poincaré Probab. Stat. 55(3), 1712–1750 (2019)

    MathSciNet  MATH  Google Scholar 

  66. Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map I: the \({\rm QLE}(8/3,0)\) metric. Invent. Math. 219(1), 75–152 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  67. Miller, J., Sheffield, S.: An axiomatic characterization of the Brownian map. J. Éc. Polytech. Math. 8, 609–731 (2021)

    MathSciNet  MATH  Google Scholar 

  68. Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map III: the conformal structure is determined. Probab. Theory Related Fields 179(3–4), 1183–1211 (2021)

    MathSciNet  MATH  Google Scholar 

  69. Naddaf, A., Spencer, T.: On homogenization and scaling limit of some gradient perturbations of a massless free field. Commun. Math. Phys. 183(1), 55–84 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  70. Polyakov, A.M.: Quantum geometry of bosonic strings. Phys. Lett. B 103(3), 207–210 (1981)

    ADS  MathSciNet  Google Scholar 

  71. Roth, O., Schippers, E.: The Loewner and Hadamard variations. Illinois J. Math. 52(4), 1399–1415 (2008)

    MathSciNet  MATH  Google Scholar 

  72. Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118, 221–288 (2000)

    MathSciNet  MATH  Google Scholar 

  73. Schramm, O., Sheffield, S.: Contour lines of the two-dimensional discrete Gaussian free field. Acta Math. 202(1), 21–137 (2009)

    MathSciNet  MATH  Google Scholar 

  74. Shamov, A.: On Gaussian multiplicative chaos. J. Funct. Anal. 270(9), 3224–3261 (2016)

    MathSciNet  MATH  Google Scholar 

  75. Sheffield, S.: Gaussian free fields for mathematicians. Probab. Theory Related Fields 139(3–4), 521–541 (2007)

    MathSciNet  MATH  Google Scholar 

  76. Sheffield, S.: Conformal weldings of random surfaces: SLE and the quantum gravity zipper. Ann. Probab. 44(5), 3474–3545 (2016)

    MathSciNet  MATH  Google Scholar 

  77. Sheffield, S.: What is a Random Surface? arXiv e-prints, page arXiv:2203.02470, (Mar. 2022)

  78. Silvestri, V.: Fluctuation results for Hastings–Levitov planar growth. Probab. Theory Relat. Fields 167(1–2), 417–460 (2017)

    MathSciNet  MATH  Google Scholar 

  79. Viklund, F., Wang, Y.: The Loewner–Kufarev Energy and Foliations by Weil–Petersson Quasicircles. arXiv e-prints, page arXiv:2012.05771, (2020)

  80. Werner, W., Powell, E.: Lecture notes on the Gaussian Free Field. arXiv e-prints, page arXiv:2004.04720, (2020)

Download references

Acknowledgements

We would like to thank the referee for their careful reading as well as for their helpful suggestions for improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Falconet.

Ethics declarations

Conflict of interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Communicated by J. Ding.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Gaussian identities

Gaussian integration by parts If \(X,X_1,\dots ,X_n,Y\) are variables in a centered Gaussian space, \(\psi \in C^\infty _c\), then by integration by parts,

$$\begin{aligned} {\mathbb {E}}(\psi '(X)) {{\,\textrm{Var}\,}}(X)={\mathbb {E}}(X\psi (X)), \quad {\mathbb {E}}(\psi '(X)) {{\,\textrm{Cov}\,}}(X,Y)={\mathbb {E}}(\psi (X)Y) \end{aligned}$$
(6.1)

and more generally

$$\begin{aligned} {\mathbb {E}}(\psi (X_1,\dots ,X_n)Y)=\sum _i{\mathbb {E}}(\psi _i(X_1,\dots ,X_n)) {{\,\textrm{Cov}\,}}(X_i,Y). \end{aligned}$$
(6.2)

Cameron–Martin formula Recall first that if (XY) is a Gaussian vector and Y is centered, then for a smooth function F with some mild growth condition, \({\mathbb {E}}(F(X) e^{Y-{\mathbb {E}}(Y^2)/2}) = {\mathbb {E}}(F(X+{{\,\textrm{Cov}\,}}(X,Y)))\). This is referred to as the Cameron–Martin formula and can be interpreted by a shift of the mean of the distribution of X when the reference measure is tilted by \(e^{Y-{\mathbb {E}}(Y^2)/2}\). We gather here some consequences of this identity.

Let (XYWZ) be a Gaussian vector with (XY) being centered. By applying the Cameron–Martin formula with shift Y, we have

$$\begin{aligned} {\mathbb {E}}( W e^{Y- {\mathbb {E}}(Y^2)/2 }) = {\mathbb {E}}(W Y). \end{aligned}$$
(6.3)

With the shift \(X+Y\), we have

$$\begin{aligned}{} & {} {\mathbb {E}}(W Z e^{X-{\mathbb {E}}(X^2)/2} e^{Y-{\mathbb {E}}(Y^2)/2}) \nonumber \\{} & {} \quad = \left( {\mathbb {E}}(WZ) + ({\mathbb {E}}(WX)+{\mathbb {E}}(WY))({\mathbb {E}}(ZX)+{\mathbb {E}}(ZY)) \right) e^{{\mathbb {E}}(XY)} \end{aligned}$$
(6.4)

and

$$\begin{aligned}{} & {} {\mathbb {E}}\left( \left( W -{\mathbb {E}}(W e^{X-{\mathbb {E}}(X^2)/2}) \right) \left( Z -{\mathbb {E}}(Z e^{Y-{\mathbb {E}}(Y^2)/2}) \right) e^{X-{\mathbb {E}}(X^2)/2} e^{Y-{\mathbb {E}}(Y^2)/2} \right) \nonumber \\{} & {} \quad = \left( {\mathbb {E}}(WY) {\mathbb {E}}(ZX) + {\mathbb {E}}(WZ) \right) e^{{\mathbb {E}}(X Y)}. \end{aligned}$$
(6.5)

Alternative proofs using the Cameron–Martin formula Several computations carried out could have been done using the Cameron–Martin formula (2.10). Since this way of computing is sometimes useful, but not in the spirit of most of the computations carried above, we present here some applications of this formula where we reinterpret some of our results.

Lemma 22

Consider a covariance kernel given on \(\mathbb {U}^2\) by \(G_{\partial }(w,z) = -2 \log |w-z|\) and a bulk test functional \(F = \varphi (\int h p_1 d\lambda , \dots , \int h p_n d\lambda )\). If \(f(h,w) := \widetilde{DF}(h,w)\) then \(f(h-\xi G_{\partial }(\cdot , w)) = \frac{1}{2\pi \xi } \partial _\theta F (h-\xi G_{\partial }(\cdot ,w))\).

Proof

First, note that \(\widetilde{\partial _n H p} = \partial _\theta p\): if \(p = \sum \alpha _k e_k\), then \(\widetilde{\partial _n H p} = - \sum \alpha _k \lambda _k \widetilde{e}_k = \sum \alpha _k \partial _\theta e_k = \partial _\theta p\). When \(f(h,x) = \sum _i \partial _i \varphi ( \int h p_1 d\lambda , \dots , \int h p_n d\lambda ) {\tilde{p}}_i(x)\), introduce \(P_i\) s.t. \(\partial _n H P_i(x) = p_i(x)\) so that

$$\begin{aligned} \int G_{\partial }(\cdot , x) p_i(\cdot ) d\lambda = \int G_{\partial }(\cdot , x) \partial _n H P_i(\cdot ) d\lambda = \int \partial _n H G_{\partial }(\cdot , x) P_i(\cdot ) d\lambda = -2\pi P_i(x), \end{aligned}$$

where we used \(\partial _n H G_{\partial }(\cdot ,x) = - 2\pi \delta _x(\cdot )\) to obtain the last equality. So, in this case, using \({\tilde{p}}_i(x) = \widetilde{\partial _n H P_i}(x) = \partial _\theta P_i(x) \) we have

$$\begin{aligned} f(h-\xi G_{\partial }(\cdot ,x),x)&= \sum _i \partial _i \varphi ( \int h p_1 d\lambda + 2\pi \xi P_1(x), \dots , \int h p_n d\lambda + 2\pi \xi P_n(x)) {\tilde{p}}_i(x) \\&= \frac{1}{2\pi \xi } \partial _\theta \varphi ( \int h p_1 d\lambda + 2\pi \xi P_1(x), \dots , \int h p_n d\lambda + 2\pi \xi P_n(x)) \end{aligned}$$

and this completes the proof. \(\square \)

Discussion on Lemma 13. We introduce and have

$$\begin{aligned} \mathcal {E}_c(F,G) := \int \langle {\widetilde{DF}} , {\widetilde{DG}} \rangle _{L^2(\mu )} d\rho = \int F (- \mathcal {L}_c G ) d \rho \end{aligned}$$
(6.6)

where

$$\begin{aligned} \mathcal {L}_c G = \sum _{i,j} \partial _{i,j} \psi \int {\tilde{q}}_i {\tilde{q}}_j d\mu - \frac{1}{2\pi \xi } \int \partial _n H DG d\mu . \end{aligned}$$

Then, Lemma 13 is equivalent to \(\int \mathcal {L}_c F d\rho = 0\) which comes from (6.6) since then \(\mathcal {L}_c^* = \mathcal {L}_c\) so \(\int \mathcal {L}_c F d\rho = \int F \mathcal {L}^*1 d\rho = 0\). (6.6) is indeed a corollary of the Cameron–Martin formula and Lemma 22:

$$\begin{aligned} \int \langle {\widetilde{DF}} , {\widetilde{DG}} \rangle _{L^2(\mu )} d\rho= & {} \frac{1}{(2\pi \xi )^2} \int \langle \partial _\theta F_x, \partial _\theta G_x \rangle _{L^2(\lambda )} d\rho \\= & {} - \int \frac{1}{(2\pi \xi )^2} \langle F_x, \partial _\theta ^2 G_x \rangle _{L^2(\lambda )} d\rho \end{aligned}$$

and

$$\begin{aligned}{} & {} \partial _\theta G_x = 2\pi \xi \sum _i (\partial _i \psi )_x {\tilde{q}}_i(x), \\{} & {} \partial _\theta ^2 G_x = (2\pi \xi )^2 \sum _{i,j} (\partial _{i,j} \psi )_x {\tilde{q}}_i(x) {\tilde{q}}_j(x) + 2\pi \xi \sum _i (\partial _i \psi )_x \partial _\theta {\tilde{q}}_i(x) \end{aligned}$$

so, with \(\partial _\theta {\tilde{q}}_i = - \partial _n H q_i\),

$$\begin{aligned} \int \langle {\widetilde{DF}} , {\widetilde{DG}} \rangle _{L^2(\mu )} d\rho = - \int F \left[ \sum _{i,j} \partial _{i,j} \psi \int {\tilde{q}}_i {\tilde{q}}_j d\mu - \frac{1}{2\pi \xi } \int \partial _n H DG d\mu \right] d\rho . \end{aligned}$$

Discussion on Lemma 21. For \(F = F(h)\), we write \(F_x\) for \(F(h-\xi G_{\partial }(\cdot ,x))\). Assume \((p_1, \dots , p_n)\) is orthonormal in \(L^2(\lambda )\). Then, for \(F = \varphi (\int _{\mathbb {U}} h p_1 d\lambda , \dots , \int _{\mathbb {U}} h p_n d\lambda )\), \(G = \psi (\int _{\mathbb {U}} h q_1 d\lambda , \dots , \int _{\mathbb {U}} h q_m d\lambda )\)

$$\begin{aligned}&\int \langle DF, DG \rangle _{L^2(\mu )} d\rho \\&\quad = \iint _{\mathbb {U}} (DF)_x (DG)_x d\lambda d\rho = \sum _{i,j} \iint _{\mathbb {U}} (\partial _i \varphi )_x (\partial _j \psi )_x p_i(x) q_j(x) d\lambda d\rho \\&\quad = \sum _{i,j} \iint _{\mathbb {U}} D_{p_i} \varphi _x (\partial _j \psi )_x p_i(x) q_j(x) d\lambda d\rho \\&\quad = \sum _{i,j} \iint _{\mathbb {U}} \varphi _x \left[ - D_{p_i}(\partial _j \psi )_x - \frac{1}{2\pi } (\partial _j \psi )_x \int _{\mathbb {U}} ( \partial _n H h + \xi ) p_i d \lambda \right] p_i(x) q_j(x) d\lambda d\rho \\&\quad = \iint _{\mathbb {U}} \varphi _x \left[ - \sum _{j,j'} (\partial _{j,j'} \psi )_x \Pi _P(q_{j'})(x) q_j(x)\right. \\&\qquad \left. - \frac{\xi }{2\pi } \Pi _P(1)(x) (DG)_x - \frac{1}{2\pi } \Pi _P(\partial _n H h)(x) (DG)_x \right] d\lambda d\rho \end{aligned}$$

where the first equality uses the Cameron–Martin formula, the third one the fact that P is orthonormal and the fourth one an integration by parts.

1.2 Inverse mapping

We consider for \(\xi \in (0,1)\) the GMC \(e^{\xi h}\) on \(\mathbb {U}\). This gives a coupling \((h, e^{\xi h})\) where \(e^{\xi h}\) is measurable with respect to h. We want show the existence of a measurable map \(I_{\xi }\) such that \(\rho \)-a.e., \(h = I_{\xi }(e^{\xi h})\). The proof in [11] can be adapted for the log-correlated Gaussian field h on \(\mathbb {U}\), in particular by relying on the detailed study of the field h and its chaos measures in [9]. We just sketch the main arguments below. First, set

$$\begin{aligned} B_{\varepsilon }(x) := \{ e^{i y} : y \in (x-\varepsilon ,x+\varepsilon ) \} \qquad \text {and} \qquad e^{\xi h^{\varepsilon }(e^{ix})}:= \mu _{\xi }(B_\varepsilon (x)) \end{aligned}$$
(6.7)

so \(h^{\varepsilon }(x) = \xi ^{-1} \log \mu _{\xi }(B_\varepsilon (x))\). Then, the following convergence occurs in \(L^2\)

$$\begin{aligned} \int h p d\lambda = \lim _{\varepsilon \rightarrow 0} \int (h^{\varepsilon }(w) - {\mathbb {E}}h^{\varepsilon }(w) ) p(w) d\lambda \end{aligned}$$

To justify it, consider an approximation \(h_{\varepsilon }(x)\) at space-scale (e.g., \(h_{\varepsilon } := \langle h, \rho _{\varepsilon }^x \rangle \) for a mollification to be specified) and set \(f_{\varepsilon }(x) := h^{\varepsilon }(x)-h_{\varepsilon }(x)\). For the convergence to occur, it is sufficient to have the following pointwise estimates: there exists \(\alpha > 0\) and \(0< \kappa < 1\) such that, uniformly in \(\varepsilon \in (0,1/4)\),

$$\begin{aligned}&{{\,\textrm{Var}\,}}f_{\varepsilon }(x) \le C \log \varepsilon ^{-1} \end{aligned}$$
(6.8)
$$\begin{aligned}&| {{\,\textrm{Cov}\,}}f_{\varepsilon }(x), f_{\varepsilon }(y) | \le C \varepsilon ^{\alpha } \qquad \text {for } |x-y| > \varepsilon ^{\kappa } \end{aligned}$$
(6.9)

Indeed, by splitting \(\mathbb {U}^2\) in points \(\{|w-z| < \varepsilon ^{\kappa } \}\) and its complement, using the variance bound in the former case and the covariance one in the latter case, we get \({{\,\textrm{Var}\,}}\int p(e^{ix}) f_{\varepsilon }(x) dx \le C( \varepsilon ^{\kappa } \log \varepsilon ^{-1} + \varepsilon ^{\alpha } )\). The desired convergence follows then from the one of \(\int _{\mathbb {U}} h_\varepsilon p d\lambda \).

We start with (6.8). Consider the GMC \(\eta = e^{\xi \psi }\) associated with the field \(\psi \) with covariance \({\mathbb {E}}(\psi (x) \psi (y)) = - \log (|x-y| \wedge 1)\) on \(\mathbb {R}\). When fixing an interval I of length \(< \pi \), by Lemma 3.6 and equation (53) of [9], there exists a coupling of \(\mu \) and \(\eta \) with a random variable X having Gaussian tails such that for any interval \(B\subset I\), \(e^{-X} \eta (B) \le \mu (B) \le \eta (B) e^X\). In particular, \({{\,\textrm{Var}\,}}\log \mu (B_{\varepsilon }(x)) \le 2 {\mathbb {E}}(X^2) + 2 {{\,\textrm{Var}\,}}\log \eta (B_{\varepsilon }(x))\) . The pointwise variance estimate (6.8) follows from the exact scaling relation (54) in [9] and from the upper bound on the pointwise variance of the mollification of a log-correlated field (which can be found in [10]) for \({{\,\textrm{Var}\,}}h_{\varepsilon }(x)\).

We sketch here the main ideas to get the covariance bound (6.9). Use a white-noise representation of the field to split it into two parts, a fine field whose restriction on \(B_{\varepsilon }(x)\) and \(B_{\varepsilon }(y)\) are independent and a coarse field, which is independent. This is useful to obtain the exact decorrelation of measure on these sets. In [9], the field h is represented with a white-noise on \(\mathbb {U} \times \mathbb {R}^+\) (up to an independent additive constant) where the y-axis represents the spatial scale, so a natural way to consider a coarse field and a fine field is to split horizontally the domain of the white-noise (\(\{ y < \varepsilon ^{\kappa } \}\) and its complement). Doing so, we write \(h = h_{(0,\varepsilon ^{\kappa })} + h_{(\varepsilon ^{\kappa },\infty )}\). Then, note that the oscillation of the coarse field on a microscopic ball is of order \({{\,\textrm{osc}\,}}_{B_{\varepsilon }(x)} h_{(\varepsilon ^{\kappa },\infty )} = O(\varepsilon ^{1-\kappa })\) so that

$$\begin{aligned} \mu _h (B_{\varepsilon }(x)) = \mu _{h_{(0,\varepsilon ^{\kappa })}}(B_{\varepsilon }(x)) e^{\xi h_{(\varepsilon ^{\kappa },\infty )}(x)} e^{O(\varepsilon ^{1-\kappa })} \end{aligned}$$

and

$$\begin{aligned} \xi ^{-1} \log \mu _h (B_{\varepsilon }(x)) - h_{\varepsilon }(x)&= \xi ^{-1} \log \mu _{h_{(0,\varepsilon ^{\kappa })}} (B_{\varepsilon }(x)) + h_{(\varepsilon ^{\kappa },\infty )}(x) - h_{\varepsilon }(x) + O(\varepsilon ^{1-\kappa }) \\&= \left( \xi ^{-1} \log \mu _{h_{(0,\varepsilon ^{\kappa })}} (B_{\varepsilon }(x)) - h_{(\varepsilon ,\varepsilon ^{\kappa })}(x) \right) \\&\quad + \left( h_{(\varepsilon ,\infty )}(x) - h_{\varepsilon }(x) \right) + O(\varepsilon ^{1-\kappa }) \\&= M_x + F_x + R_x \end{aligned}$$

so that when \(|x-y| > \varepsilon ^{\kappa }\), \(M_x\) and \(M_y\) are independent. We need pointwise variance upper bounds for \(M_x\) and \(F_x\). For \(M_x\) this uses the same ideas as for the bound (6.8). For \(F_x\), note that we have the decomposition in independent terms \(h_{\varepsilon }(x) - h_{(\varepsilon ,\infty )}(x) = \langle h_{(0,\varepsilon )}, \rho _{\varepsilon }^x \rangle + \langle h_{(\varepsilon ,\infty )}, \rho _{\varepsilon }^x - \delta _x \rangle \). Now, with \(\rho _{\varepsilon }^x(y) := \frac{1}{\pi } \sum _{k = 1}^{\varepsilon ^{-1}} \cos (k(x-y))\), \(h_{(0,\varepsilon )}\) is essentially orthogonal in \(L^2\) to \(\rho _{\varepsilon }^x(y)\) and \(\delta _x(y)-\rho _{\varepsilon }^x(y) = \frac{1}{\pi } \sum _{k > \varepsilon ^{-1}} \cos (k(x-y))\) to \(h_{(\varepsilon ,\infty )}\) and one can get a polynomial upper bound on the variance.

1.3 Comparison with the QLE generator

The article [64] develops a formal SPDE satisfied by the QLE process, using the Brownian motions driving the SLEs. We introduce the notation used by the authors and translate their results in our notation to compare the generator. They work with a boundary probability measure \(\nu _t\) instead of \(\mu _t\) (a general Borel measure without mass constraint) and with a normalization of harmonic functions such that \(h_t(0) = 0\). They argue that the dynamics of the harmonic functions \((h_t)\) are formally given by

$$\begin{aligned} {\dot{h}}_t(z) = \int _{\mathbb {U}} \left( D_t(z,u) + \mathcal {P}^{\star }(z,u) W(t,u) \right) d\nu _t(u) \end{aligned}$$
(6.10)

where

$$\begin{aligned} D_t(z,u)&= - \nabla h_t(z) \cdot \Phi (u,z) + \frac{1}{\sqrt{\kappa }} \mathcal {P}^{\star }(z,u) + Q (\partial _{\theta } \overline{\mathcal {P}})(z,u) \\&= - \nabla h_t(z) \cdot \Phi (u,z) + \xi \mathcal {P}^{\star }(z,u) + ( 2\xi + \frac{1}{2\xi }) (\partial _{\theta } \overline{\mathcal {P}})(z,u) \end{aligned}$$

where \(\Phi (u,z) = -z \frac{z+u}{z-u}\), for \(a,b \in \mathbb {C} = \mathbb {R}^2\), \(a \cdot b = \Re ({\bar{a}} b),\) so \(\nabla h_t(z) \cdot \Phi (u,z) = 2 \overline{\partial _{z} h_t} \cdot \Phi (u,z) = 2 \Re ( \Phi (u,z) \partial _z h_t )\) and

$$\begin{aligned} D_t(z,u) = - 2 \Re ( \Phi (u,z) \partial _z h_t ) + \xi \mathcal {P}^{\star }(z,u) + ( 2\xi + \frac{1}{2\xi }) (\partial _{\theta } \overline{\mathcal {P}})(z,u) \end{aligned}$$
(6.11)

Above \(\mathcal {P}\) is \(2\pi \) times the Poisson kernel on \(\mathbb {D}\), i.e. \(\mathcal {P}(z,w) = 2\pi H(z,w) = \Re \left( \frac{w+z}{w-z} \right) \), \(\overline{\mathcal {P}}\) is \(2\pi \) the conjugate Poisson kernel on \(\mathbb {D}\), i.e. \(\overline{\mathcal {P}}(z,w) = \Im \left( \frac{w+z}{w-z} \right) \) so \(\partial _{\theta } \overline{\mathcal {P}}(z,w) = \Re \left( \frac{-2zw}{(w-z)^2} \right) \) and \(\mathcal {P}^{\star } = \mathcal {P}-1\) so \(\mathcal {P}^{\star }(0,w) = 0\) for all \(w \in \mathbb {U}\). Finally, W is a space-time white noise on \(\mathbb {U} \times [0,\infty )\). Furthermore, above we already specified \(\xi = \frac{1}{\sqrt{\kappa }} = \frac{1}{\sqrt{6}}\) and \(Q = (2\xi )^{-1}+2\xi = \frac{5}{\sqrt{6}}\).

We look at \(d \int h_t f d\lambda \) for \(f \in C_c^{\infty }(\mathbb {D})\). By Fubini, the part without white-noise contains three terms: for the first one, we integrate it over \(d\nu \),

$$\begin{aligned} (i)= & {} - 2 \iint \Re ( \Phi (u,z) \partial _z h_t ) f(z) dz \nu (du)\\= & {} - 2 \iint h_t(z) \Re ( \partial _z \left( \Phi (u,z) f(z) \right) dz \nu (du) \\= & {} \int h_t(z) (D_{\nu }f)(z) dz \end{aligned}$$

using Fubini and recalling the expression (3.16) of \(D_\nu f\) for the last equality.

using (4.13) for the last equality.

The part with white-noise becomes

For \(F(h) = \int h f d\lambda = \int H h f d\lambda = \int h f^* d\lambda _{\partial }\), \(DF = f^*\),

where

Now, we compute \(\mathcal {L}F\) for \(F = \varphi (\int h f_1 d\lambda , \dots , \int h f_n d\lambda )\). It is an application of Itô’s formula. The quadratic variation is given by

so, writing \(p_i = f_i^*\),

$$\begin{aligned} \mathcal {L}F(h) = \sum _{i} b(p_i) \partial _i \varphi + \frac{1}{2} \sum _{i,j} \sigma (p_i, p_j) \partial _{i,j} \varphi \end{aligned}$$

where

and .

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubédat, J., Falconet, H. Metric Growth Dynamics in Liouville Quantum Gravity. Commun. Math. Phys. 400, 1317–1383 (2023). https://doi.org/10.1007/s00220-022-04625-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04625-1

Navigation