Skip to main content
Log in

Transfer Matrices of Rational Spin Chains via Novel BGG-Type Resolutions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We obtain BGG-type formulas for transfer matrices of irreducible finite-dimensional representations of the classical Lie algebras \({\mathfrak {g}}\), whose highest weight is a multiple of a fundamental one and which can be lifted to the representations over the Yangian \(Y({\mathfrak {g}})\). These transfer matrices are expressed in terms of transfer matrices of certain infinite-dimensional highest weight representations (such as parabolic Verma modules and their generalizations) in the auxiliary space. We further factorise the corresponding infinite-dimensional transfer matrices into the products of two Baxter Q-operators, arising from our previous study Frassek et al. (Adv. Math. 401:108283, 2022), Frassek and Tsymbaliuk (Commun. Math. Phys. 392:545–619, 2022) of the degenerate Lax matrices. Our approach is crucially based on the new BGG-type resolutions of the finite-dimensional \({\mathfrak {g}}\)-modules, which naturally arise geometrically as the restricted duals of the Cousin complexes of relative local cohomology groups of ample line bundles on the partial flag variety G/P stratified by \(B_{-}\)-orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The issues with \(\textrm{coker}\) not being left exact are carefully resolved by Kempf in the beginning of [Ke, §7].

  2. While the Cousin complexes were introduced by Grothendieck and were first applied in the above context in [Ke], we choose to follow the exposition of [MR] for its simplicity.

References

  1. Antonov, A., Feigin, B.: Quantum group representations and the Baxter equation. Phys. Lett. B 392(1–2), 115–122 (1997)

    ADS  MathSciNet  Google Scholar 

  2. Andersen, H., Lauritzen, N.: Twisted Verma modules. In: Studies in Memory of Issai Schur (Chevaleret/Rehovot, 2000), Progress in Mathematics, vol. 21, pp. 1–26. Birkhäuser, Boston (2003)

  3. Bezrukavnikov, R.: Canonical bases and representation categories. Lecture Notes https://math.mit.edu/~bezrukav/old/Course_RT.pdf

  4. Brylinski, J.: Differential operators on the flag varieties. In: Young tableaux and Schur Functors in Algebra and Geometry (Torun, 1980), Astérisque, vol. 87–88, pp. 43–60. Society Mathematics, Paris (1981)

  5. Bazhanov, V., Frassek, R., Lukowski, T., Meneghelli, C., Staudacher, M.: Baxter \(Q\)-operators and representations of Yangians. Nucl. Phys. B 850(1), 148–174 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Braverman, A., Finkelberg, M., Nakajima, H.: Coulomb branches of 3d \({\cal{N}}=4\) quiver gauge theories and slices in the affine Grassmannian (with appendices by A. Braverman, M. Finkelberg, J. Kamnitzer, R. Kodera, H. Nakajima, B. Webster, A. Weekes). Adv. Theor. Math. Phys. 23(1), 75–166 (2019)

  7. Bernstein, I., Gelfand, I., Gelfand, S.: Differential operators on the base affine space and a study of \(\mathfrak{g}\)-modules. In: Lie Groups and Their Representations (Proceedings of the Summer School, Bolyai Janos Mathematical Society, Budapest, 1971), pp. 21–64. Halsted, New York (1975)

  8. Boos, H., Göhmann, F., Klümper, A., Nirov, K., Razumov, A.: Exercises with the universal \(R\)-matrix. J. Phys. A: Math. Theor. 43(41), 415208 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Bazhanov, V., Hibberd, A., Khoroshkin, S.: Integrable structure of \({\cal{W} }_3\) conformal field theory, quantum Boussinesq theory and boundary affine Toda theory. Nucl. Phys. B 622(3), 475–547 (2002)

    ADS  MATH  Google Scholar 

  10. Brundan, J., Kleshchev, A.: Parabolic presentations of the Yangian \(Y(\mathfrak{gl} _n)\). Commun. Math. Phys. 254(1), 191–220 (2005)

    ADS  MATH  Google Scholar 

  11. Bazhanov, V., Lukowski, T., Meneghelli, C., Staudacher, M.: A shortcut to the \(Q\)-operator. J. Stat. Mech. 1011, P11002 (2010)

    Google Scholar 

  12. Bazhanov, V., Lukyanov, S., Zamolodchikov, A.: Integrable structure of conformal field theory. III. The Yang–Baxter relation. Commun. Math. Phys. 200(2), 297–324 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Bazhanov, V., Tsuboi, Z.: Baxter’s \(Q\)-operators for supersymmetric spin chains. Nucl. Phys. B 805(3), 451–516 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Costello, K., Gaiotto, D., Yagi, J.: \(Q\)-operators are ’t Hooft lines. arXiv:2103.01835

  15. Drinfeld, V.: Hopf algebras and the quantum Yang–Baxter equation. Dokl. Akad. Nauk SSSR 283(5), 1060–1064 (1985). (Russian)

    MathSciNet  Google Scholar 

  16. Dorey, P., Dunning, C., Tateo, R.: The ODE/IM correspondence. J. Phys. A 40(40), R205 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Derkachov, S., Manashov, A.: \(R\)-matrix and Baxter \(Q\)-operators for the noncompact \(SL(N,\mathbb{C} )\) invariant spin chain. SIGMA 2, 084 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Derkachov, S., Manashov, A.: Factorization of \(R\)-matrix and Baxter Q-operators for generic \(\mathfrak{sl} (N)\) spin chains. J. Phys. A 42(7), 075204 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Derkachov, S., Manashov, A.: Noncompact \(\mathfrak{sl} (N)\) spin chains: BGG-resolution, \(Q\)-operators and alternating sum representation for finite-dimensional transfer matrices. Lett. Math. Phys. 97(2), 185–202 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Ekhammar, S., Shu, H., Volin, D.: Extended systems of Baxter Q-functions and fused flags I: simply-laced case. arXiv:2008.10597

  21. Faddeev, L.: How the algebraic Bethe ansatz works for integrable models. In: Symétries quantiques (Les Houches, 1995), pp. 149–219. North-Holland, Amsterdam (1998)

  22. Frassek, R.: Oscillator realisations associated to the \(D\)-type Yangian: towards the operatorial \(Q\)-system of orthogonal spin chains. Nucl. Phys. B 956, 115063 (2020)

    MathSciNet  MATH  Google Scholar 

  23. Ferrando, G., Frassek, R., Kazakov, V.: \(QQ\)-system and Weyl-type transfer matrices in integrable \(\text{ SO }(2r)\) spin chains. JHEP 2021(2), 1–47 (2021)

    Google Scholar 

  24. Frassek, R., Lukowski, T., Meneghelli, C., Staudacher, M.: Baxter operators and Hamiltonians for “nearly all’’ integrable closed \(\mathfrak{gl} (n)\) spin chains. Nucl. Phys. B 874(2), 620–646 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Frassek, R., Pestun, V.: A Family of \(GL_r\) Multiplicative Higgs Bundles on Rational Base. SIGMA 15, 031 (2019)

    MATH  Google Scholar 

  26. Frassek, R., Pestun, V., Tsymbaliuk, A.: Lax matrices from antidominantly shifted Yangians and quantum affine algebras: A-type. Adv. Math. 401, 108283 (2022)

    MathSciNet  MATH  Google Scholar 

  27. Frassek, R., Tsymbaliuk, A.: Rational Lax matrices from antidominantly shifted extended Yangians: BCD types. Commun. Math. Phys. 392, 545–619 (2022)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Gelfand, I., Naimark, M.: Unitary representations of the classical groups. In: Trudy Matematicheskogo Instituta imeni VA Steklova, vol. 36. Izdat. Nauk SSSR, Moscow-Leningrad (1950)

  29. Gaudin, M., Pasquier, V.: The periodic Toda chain and a matrix generalization of the Bessel function recursion relations. J. Phys. A 25(20), 5243–5252 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Grothendieck, A., Raynaud, M.: Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2). In: Advanced Studies in Pure Mathematics, vol. 2. North-Holland Publishing Company (1968) arXiv:math/0511279

  31. Guay, N., Regelskis, V., Wendlandt, C.: Equivalences between three presentations of orthogonal and symplectic Yangians. Lett. Math. Phys. 109(2), 327–379 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Griffiths, P., Schmid, W.: Locally homogeneous complex manifolds. Acta Math. 123, 253–302 (1969)

    MathSciNet  MATH  Google Scholar 

  33. Izergin, A., Korepin, V.: The most general \(L\) operator for the \(R\)-matrix of the \(XXX\) model. Lett. Math. Phys. 8(2), 259–265 (1984)

    ADS  MathSciNet  Google Scholar 

  34. Jantzen, J.: Moduln mit einem höchsten Gewicht (German) [Modules with a highest weight] Lecture Notes in Mathematics, vol. 750. Springer, Berlin (1979)

  35. Jing, N., Liu, M., Molev, A.: Isomorphism between the \(R\)-matrix and Drinfeld presentations of Yangian in types \(B\), \(C\) and \(D\). Commun. Math. Phys. 361(3), 827–872 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Kempf, G.: The Grothendieck–Cousin complex of an induced representation. Adv. Math. 29(3), 310–396 (1978)

    MathSciNet  MATH  Google Scholar 

  37. Korff, C.: A \(Q\)-operator for the twisted \(XXX\) model. J. Phys. A: Math. Gen. 39(13), 3203–3219 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Kostant, B.: Lie algebra cohomology and the generalized Borel–Weil theorem. Ann. Math. 74(2), 329–387 (1961)

    MathSciNet  MATH  Google Scholar 

  39. Kumar, S.: Kac–Moody groups, their flag varieties and representation theory. In: Progress in Mathematics, vol. 204. Birkhäuser Boston Inc., Boston (2002)

  40. Karakhanyan, D., Kirschner, R.: Representations of orthogonal and symplectic Yangians. Nucl. Phys. B 967, 115402 (2021)

    MathSciNet  MATH  Google Scholar 

  41. Kazakov, V., Leurent, S., Tsuboi, Z.: Baxter’s Q-operators and operatorial Backlund flow for quantum (super)-spin chains. Commun. Math. Phys. 311, 787–814 (2012)

    ADS  MATH  Google Scholar 

  42. Kuniba, A., Nakanishi, T., Suzuki, J.: Functional relations in solvable lattice models I: Functional relations and representation theory. Int. J. Mod. Phys. A 9(30), 5215–5266 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Kirillov, A., Reshetikhin, N.: Formulas for the multiplicities of the occurrence of irreducible components in the tensor product of representations of simple Lie algebras, translation in. J. Math. Sci. 80(3), 1768–1772 (1996)

    MathSciNet  Google Scholar 

  44. Kuznetsov, V., Salerno, M., Sklyanin, E.: Quantum Bäcklund transformation for the integrable DST model. J. Phys. A: Math. Theor. 33(1), 171–189 (2000)

    ADS  MATH  Google Scholar 

  45. Khoroshkin, S., Tsuboi, Z.: The universal \(R\)-matrix and factorization of the \(L\)-operators related to the Baxter \(Q\)-operators. J. Phys. A: Math. Theor. 47(9), 192003 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Lepowsky, J.: A generalization of the Bernstein–Gelfand–Gelfand resolution. J. Algebra 49(2), 496–511 (1977)

    MathSciNet  MATH  Google Scholar 

  47. Murray, M., Rice, J.: A geometric realisation of the Lepowsky Bernstein Gelfand Gelfand resolution. Proc. Am. Math. Soc. 114(2), 553–559 (1992)

    MathSciNet  MATH  Google Scholar 

  48. Razumov, A.: Quantum groups and functional relations for arbitrary rank. Nucl. Phys. B 971, 115517 (2021)

    MathSciNet  MATH  Google Scholar 

  49. Reshetikhin, N.: Integrable models of quantum one-dimensional magnets with \(O(n)\) and \(Sp(2k)\) symmetries. Teoret. Mat. Fiz. 63(3), 347–366 (1985). (Russian)

    MathSciNet  Google Scholar 

  50. Rossi, M., Weston, R.: A generalized \(Q\)-operator for \(U_q(\widehat{\mathfrak{sl} _2})\) vertex models. J. Phys. A: Math. Theor. 35(47), 10015–10032 (2002)

    ADS  MATH  Google Scholar 

  51. Shapovalov, N.: A certain bilinear form on the universal enveloping algebra of a complex semisimple Lie algebra. Funkcional. Anal. Appl. 6(4), 65–70 (1972)

    MathSciNet  Google Scholar 

  52. Shankar, R., Witten, E.: The \(S\)-matrix of the kinks of the \(({\bar{\psi }}\psi )^2\) model. Nucl. Phys. B 141, 349–363 (1978)

    ADS  Google Scholar 

  53. Tsuboi, Z.: Solutions of the T-system and Baxter equations for supersymmetric spin chains. Nucl. Phys. B 826, 399–455 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  54. Tsuboi, Z.: Wronskian solutions of the T, Q and Y-systems related to infinite dimensional unitarizable modules of the general linear superalgebra gl(M|N). Nucl. Phys. B 870, 92–137 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  55. Tsuboi, Z.: A note on \(q\)-oscillator realizations of \(U_{q}(\mathfrak{gl} (M|N))\) for Baxter \(Q\)-operators. Nucl. Phys. B 947, 114747 (2019)

    MATH  Google Scholar 

  56. Tsuboi, Z.: Boson-Fermion correspondence, QQ-relations and Wronskian solutions of the T-system. Nucl. Phys. B 972, 115563 (2021)

    MathSciNet  MATH  Google Scholar 

  57. Zamolodchikov, A., Zamolodchikov, A.: Factorized \(S\)-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models. Ann. Phys. 120(2), 253–291 (1979)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

R.F. and A.T. are indebted to Vasily Pestun for the inspiring discussions and the collaboration on [FPT], thus bringing them together close to the subject of the present note. R.F. is grateful to Gwenaël Ferrando and Volodya Kazakov for fruitful discussions. I.K. and A.T. are extremely grateful to Boris Feigin and Michael Finkelberg for the enlightening discussions of the BGG-type resolutions. A.T. is deeply grateful to Kevin Costello for a correspondence on the inspiring physics paper [CGY]; to David Hernandez for a correspondence on q-characters; to Sachin Gautam for a discussion of the Yangian’s universal R-matrices; to IHES (Bures-sur-Yvette) for the hospitality and great working conditions in July 2021 when the first stages of the present work took place. We are grateful to Zengo Tsuboi and the anonymous referee for useful suggestions and comments. R.F. received funding of the German research foundation (Deutsche Forschungsgemeinschaft DFG) Research Fellowships Programme 416527151 and support of the GNFM - INdAM. A.T. would like to gratefully acknowledge the support from NSF Grant DMS-2037602. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (QUASIFT grant agreement 677368).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Tsymbaliuk.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

I. Karpov: On leave from National Research University Higher School of Economics, Department of Mathematics

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frassek, R., Karpov, I. & Tsymbaliuk, A. Transfer Matrices of Rational Spin Chains via Novel BGG-Type Resolutions. Commun. Math. Phys. 400, 1–82 (2023). https://doi.org/10.1007/s00220-022-04620-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04620-6

Navigation