Skip to main content
Log in

The Super Frobenius–Schur Indicator and Finite Group Gauge Theories on Pin\(^-\) Surfaces

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is well-known that the value of the Frobenius–Schur indicator \(|G|^{-1} \sum _{g\in G} \chi (g^2)=\pm 1\) of a real irreducible representation of a finite group G determines which of the two types of real representations it belongs to, i.e. whether it is strictly real or quaternionic. We study the extension to the case when a homomorphism \(\varphi :G\rightarrow \mathbb {Z}/2\mathbb {Z}\) gives the group algebra \(\mathbb {C}[G]\) the structure of a superalgebra. Namely, we construct of a super version of the Frobenius–Schur indicator whose value for a real irreducible super representation is an eighth root of unity, distinguishing which of the eight types of irreducible real super representations described in Wall (in J Reine Angew Math 213:187–199, 1963/64. https://doi.org/10.1515/crll.1964.213.187) it belongs to. We also discuss its significance in the context of two-dimensional finite-group gauge theories on pin\(^-\) surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Various other generalizations of the Frobenius–Schur indicator were studied in the literature. Firstly, we can consider generalized Frobenius–Schur indicators for finite groups, see e.g. [BG04] and [GI18, Sect. 11]. Secondly, we can extend the concept of the Frobenius–Schur indicator to fusion categories, see e.g. [FS01, Sect. 3], which is further extended to fermionic fusion categories in e.g. [BWHV17, Sect. 3.3]. This last generalization should agree with ours when specialized to fermionic fusion categories arising from our superalgebra. It would be interesting to check this.

  2. The following three paragraphs were added in v2. The authors thank J. Murray for the information.

References

  1. Atiyah, M.F.: Riemann surfaces and spin structures. Annales Scientifiques de l’École Normale Supérieure 4, 47–62 (1971). https://doi.org/10.24033/asens.1205

    Article  MathSciNet  MATH  Google Scholar 

  2. Bump, D., Ginzburg, D.: Generalized Frobenius–Schur numbers. J. Algebra 278, 294–313 (2004). https://doi.org/10.1016/j.jalgebra.2004.02.012

    Article  MathSciNet  MATH  Google Scholar 

  3. Brumfiel, G., Morgan, J.: The Pontrjagin dual of 3-dimensional spin bordism. arXiv:1612.02860 [math.GT]

  4. Brumfiel, G., Morgan, J.: The Pontrjagin dual of 4-dimensional spin bordism. arXiv:1803.08147 [math.GT]

  5. Brumfiel, G., Morgan, J.: Quadratic functions of cocycles and pin structures. arXiv:1808.10484 [math.AT]

  6. Barrett, J.W., Tavares, S.O.G.: Two-dimensional state sum models and spin structures. Commun. Math. Phys. 336, 63–100 (2015). https://doi.org/10.1007/s00220-014-2246-z. arXiv:1312.7561 [math.QA]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bultinck, N., Williamson, D.J., Haegeman, J., Verstraete, F.: Fermionic projected entangled-pair states and topological phases. J. Phys. A: Math. Theor. 51, 025202 (2017). https://doi.org/10.1088/1751-8121/aa99cc. arXiv:1707.00470 [cond-mat.str-el]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Deligne, P.: Notes on Spinors, Quantum Fields and Strings: A Course for Mathematicians, vol. 1, 2 (Princeton, NJ, 1996/1997), pp. 99–135. American Mathematical Society, Providence, RI (1999)

    Google Scholar 

  9. Debray, A., Gunningham, S.: The Arf-Brown TQFT of pin\(^-\) surfaces. In: Topology and Quantum Theory in Interaction. Contemporary Mathematics, vol. 718, pp. 49–87. American Mathematical Society, Providence, RI (2018). https://doi.org/10.1090/conm/718/14478. arXiv:1803.11183 [math-ph]

  10. Dijkgraaf, R., Witten, E.: Topological gauge theories and group cohomology. Commun. Math. Phys. 129, 393 (1990). https://doi.org/10.1007/BF02096988

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Freed, D.S., Moore, G.W.: Setting the quantum integrand of M-theory. Commun. Math. Phys. 263, 89–132 (2006). https://doi.org/10.1007/s00220-005-1482-7. arXiv:hep-th/0409135

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Freed, D.S., Quinn, F.: Chern–Simons theory with finite gauge group. Commun. Math. Phys. 156, 435–472 (1993). https://doi.org/10.1007/BF02096860. arXiv:hep-th/9111004

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Freed, D.S.: Lectures on Field Theory and Topology. CBMS Regional Conference Series in Mathematics, vol. 133. American Mathematical Society, Providence, RI (2019)

    Google Scholar 

  14. Frobenius, G., Schur, I.: Über die reellen Darstellungen der endlichen Gruppen. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, pp. 186–208 (1906)

  15. Fuchs, J., Schweigert, C.: Category theory for conformal boundary conditions. In: Vertex Operator Algebras in Mathematics and Physics (Toronto, ON, 2000), Fields Institute Communications, vol. 39, pp. 25–70. American Mathematical Society, Providence, RI (2003). arXiv:math.CT/0106050

  16. Georgieva, P., Ionel, E.-N.: A Klein TQFT: the local Real Gromov-Witten theory of curves. arXiv:1812.02505 [math.SG]

  17. Gaiotto, D., Kapustin, A.: Spin TQFTs and fermionic phases of matter. Int. J. Mod. Phys. A 31, 1645044 (2016). https://doi.org/10.1142/S0217751X16450445. arXiv:1505.05856 [cond-mat.str-el]

    Article  ADS  MATH  Google Scholar 

  18. Guo, M., Ohmori, K., Putrov, P., Wan, Z., Wang, J.: Fermionic finite-group gauge theories and interacting symmetric/crystalline orders via cobordisms. Commun. Math. Phys. (2020). https://doi.org/10.1007/s00220-019-03671-6. arXiv:1812.11959 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  19. Gow, R.: Real-valued and \(2\)-rational group characters. J. Algebra 61, 388–413 (1979). https://doi.org/10.1016/0021-8693(79)90288-6

    Article  MathSciNet  MATH  Google Scholar 

  20. Gunningham, S.: Spin Hurwitz numbers and topological quantum field theory. Geom. Topol. 20, 1859–1907 (2016). https://doi.org/10.2140/gt.2016.20.1859. arXiv:1201.1273 [math.QA]

    Article  MathSciNet  MATH  Google Scholar 

  21. Johnson, D.: Spin structures and quadratic forms on surfaces. J. Lond. Math. Soc. 2, 365–373 (1980). https://doi.org/10.1112/jlms/s2-22.2.365

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Kawanaka, N., Matsuyama, H.: A twisted version of the Frobenius–Schur indicator and multiplicity-free permutation representations. Hokkaido Math. J. 19, 495–508 (1990). https://doi.org/10.14492/hokmj/1381517495

    Article  MathSciNet  MATH  Google Scholar 

  23. Kobayashi, R.: Pin TQFT and Grassmann integral. JHEP 12, 014 (2019). https://doi.org/10.1007/JHEP12(2019)014. arXiv:1905.05902 [cond-mat.str-el]

    Article  ADS  MathSciNet  Google Scholar 

  24. Kirby, R.C., Taylor, L.R.: Pin structures on low-dimensional manifolds. In: Geometry of Low-Dimensional Manifolds, vol. 2, London Mathematical Society Lecture Note Series, vol. 151, pp. 177–242 (1990)

  25. Kapustin, A., Thorngren, R., Turzillo, A., Wang, Z.: Fermionic symmetry protected topological phases and cobordisms. JHEP 12, 052 (2015). https://doi.org/10.1007/JHEP12(2015)052. arXiv:1406.7329 [cond-mat.str-el]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Mednyh, A.D.: Determination of the number of nonequivalent coverings over a compact Riemann surface. Dokl. Akad. Nauk SSSR 239, 269–271 (1978). English translation: Soviet Math. Doklady 19 (1978), 318–320

  27. Novak, S., Runkel, I.: State sum construction of two-dimensional topological quantum field theories on spin surfaces. J. Knot Theor. Ramif. 24, 1550028 (2015). https://doi.org/10.1142/S0218216515500285. arXiv:1402.2839 [math.QA]

    Article  MathSciNet  MATH  Google Scholar 

  28. Serre, J.-P.: Finite Groups: An Introduction. Surveys of Modern Mathematics, vol. 10. International Press, Somerville, MA (2016). (With assistance in translation provided by Garving K. Luli and Pin Yu)

  29. Snyder, N.: Mednykh’s formula via lattice topological quantum field theories. In: Proceedings of the Centre for Mathematics and its Applications. Proceedings of the 2014 Maui and 2015 Qinhuangdao Conferences in Honour of Vaughan F. R. Jones’ 60th birthday. Australian National University, vol. 46, pp. 389–398 (2017). arXiv:math.QA/0703073

  30. Turull, A.: The Schur index of projective characters of symmetric and alternating groups. Ann. Math. (2) 135, 91–124 (1992). https://doi.org/10.2307/2946564

    Article  MathSciNet  MATH  Google Scholar 

  31. Turaev, V.: Dijkgraaf–Witten invariants of surfaces and projective representations of groups. J. Geom. Phys. 57, 2419–2430 (2007). https://doi.org/10.1016/j.geomphys.2007.08.009. arXiv:0706.0160 [math.GT]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Turzillo, A.: Diagrammatic state sums for 2D pin-minus TQFTs. arXiv:1811.12654 [math.QA]

  33. Wall, C.T.C.: Graded Brauer groups. J. Reine Angew. Math. 213, 187–199 (1963/64). https://doi.org/10.1515/crll.1964.213.187

  34. Witten, E.: On quantum gauge theories in two-dimensions. Commun. Math. Phys. 141, 153–209 (1991). https://doi.org/10.1007/BF02100009

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Wang, J., Ohmori, K., Putrov, P., Zheng, Y., Wan, Z., Guo, M., Lin, H., Gao, P., Yau, S.-T.: Tunneling topological vacua via extended operators: (spin-)TQFT spectra and boundary deconfinement in various dimensions. PTEP 2018, 053A01 (2018). https://doi.org/10.1093/ptep/pty051. arXiv:1801.05416 [cond-mat.str-el]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Tachikawa.

Additional information

Communicated by Horng-Tze.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of Yuji Tachikawa is supported by in part supported by WPI Initiative, MEXT, Japan at IPMU, the University of Tokyo, and in part by JSPS KAKENHI Grant-in-Aid (Wakate-A), No. 17H04837 and JSPS KAKENHI Grant-in-Aid (Kiban-S), No. 16H06335. The authors thank Arun Debray for careful reading and instructive comments on an earlier draft of this paper. The authors also thank John Murray for helpful email exchanges after v1 appeared on the arXiv, informing them the relevance of [Gow79] to our work. The authors also thank Luuk Stehouwer for pointing out a few typos in Sect. 3 which persisted until v2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ichikawa, T., Tachikawa, Y. The Super Frobenius–Schur Indicator and Finite Group Gauge Theories on Pin\(^-\) Surfaces. Commun. Math. Phys. 400, 417–428 (2023). https://doi.org/10.1007/s00220-022-04601-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04601-9

Navigation