Skip to main content
Log in

Linear Inviscid Damping and Enhanced Dissipation for Monotone Shear Flows

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we study the linearized Navier–Stokes system around monotone shear flows in a finite channel with non-slip boundary condition. We prove that if the flow is linearly stable for the Euler equations, then it is also linearly stable for the Navier–Stokes equations at high Reynolds number. More importantly, we establish the inviscid damping and enhanced dissipation estimates for the linearized Navier–Stokes system, which may be crucial for nonlinear stability. One of the key ingredients is the resolvent estimates of the linearized operator. For this, we develop the compactness method and establish some sharper estimates for the boundary layer corrector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Almog, Y., Helffer, B.: On the stability of laminar flows between plates. Arch. Ration. Mech. Anal. 241, 1281–1401 (2021)

    MathSciNet  MATH  Google Scholar 

  2. Beck, M., Wayne, C.E.: Metastability and rapid convergence to quasi-stationary bar states for the two-dimensional Navier-Stokes equations. Proc. R. Soc. Edinburgh Sect. A 143, 905–927 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Bedrossian, J., Coti Zelati, M.: Enhanced dissipation, hypoellipticity, and anomalous small noise inviscid limits in shear flows. Arch. Ration. Mech. Anal. 224, 1161–1204 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Bedrossian, J., Coti Zelati, M., Vicol, V.: Vortex axisymmetrization, inviscid damping, and vorticity depletion in the linearized 2D Euler equations. Ann. PDE 5, 192 (2019). (Art. 4)

    MathSciNet  MATH  Google Scholar 

  5. Bedrossian, J., Germain, P., Masmoudi, N.: Dynamics near the subcritical transition of the 3D Couette flow I: Below threshold case. Mem. Am. Math. Soc. 266(1294), (2020)

  6. Bedrossian, J., Germain, P., Masmoudi, N.: Dynamics near the subcritical transition of the 3D Couette flow II: above threshold case, arXiv:1506.03721

  7. Bedrossian, J., Germain, P., Masmoudi, N.: On the stability threshold for the 3D Couette flow in Sobolev regularity. Ann. Math. 185, 541–608 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Bedrossian, J., Germain, P., Masmoudi, N.: Stability of the Couette flow at high Reynolds number in 2D and 3D. Bull. Am. Math. Soc. (N.S.) 56, 373–414 (2019)

    MATH  Google Scholar 

  9. Bedrossian, J., He, S.: Inviscid damping and enhanced dissipation of the boundary layer for 2D Navier-Stokes linearized around Couette flow in a channel. Comm. Math. Phys. 379, 177–226 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Bedrossian, J., Masmoudi, N.: Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations. Publ. Math. Inst. Hautes Études Sci. 122, 195–300 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Bedrossian, J., Wang, F., Vicol, V.: The Sobolev stability threshold for 2D shear flows near Couette. J. Nonlinear Sci. 28, 2051–2075 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Coti Zelati, M., Elgindi, Tarek M., Widmayer, K.: Enhanced dissipation in the Navier–Stokes equations near the Poiseuille flow. Comm. Math. Phys. 378, 987–1010 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Chen, Q., Wei, D., Zhang, Z.: Linear stability of pipe Poiseuille flow at high Reynolds number. Comm. Pure Appl. Math. (2022). https://doi.org/10.1002/cpa.22054

    Article  Google Scholar 

  14. Chen, Q., Wei, D., Zhang, Z.: Transition threshold for the 3D Couette flow in a finite channel. Mem. Am. Math. Soc. arXiv:2006.00721, (in press)

  15. Chen, Q., Li, T., Wei, D., Zhang, Z.: Transition threshold for the 2-D Couette flow in a finite channel. Arch. Ration. Mech. Anal. 238, 125–183 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Chen, Q., Wu, D., Zhang, Z.: On the \(L^\infty \) stability of Prandtl expansions in Gevrey class. Sci. China. Math. (2021). https://doi.org/10.1007/s11425-021-1896-5

    Article  Google Scholar 

  17. Chen, Q., Wu, D., Zhang, Z.: On the stability of shear flows of Prandtl type for the steady Navier-Stokes equations. Sci. China Math. (2022). https://doi.org/10.1007/s11425-021-1953-2

    Article  Google Scholar 

  18. Constantin, P., Kiselev, A., Ryzhik, L., Zlatos, A.: Diffusion and mixing in fluid flow. Ann. Math. 168, 643–674 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Coti Zelati, M., Delgadino, M.G., Elgindi, T.M.: On the relation between enhanced dissipation timescales and mixing rates. Comm. Pure Appl. Math. 73, 1205–1244 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Ding, S., Zlin, Z.: Enhanced dissipation and transition threshold for the 2-D plane Poiseuille flow via resolvent estimate. J. Differ. Equ. 332, 404–439 (2022)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Gerard-Varet, D., Maekawa, Y.: Sobolev stability of Prandtl expansions for the steady Navier-Stokes equations. Arch. Ration. Mech. Anal. 233, 1319–1382 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Gerard-Varet, D., Maekawa, Y., Masmoudi, N.: Gevrey stability of Prandtl expansions for 2-dimensional Navier-Stokes flows. Duke Math. J. 167, 2531–2631 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Drazin, P., Reid, W.: Hydrodynamic Stability, Cambridge Monographs Mech. Appl. Math. Cambridge University Press, New York (1981)

    Google Scholar 

  24. Gallay, T.: Enhanced dissipation and axisymmetrization of two-dimensional viscous vortices. Arch. Ration. Mech. Anal. 230, 939–975 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Grenier, E., Guo, Y., Nguyen, T.: Spectral instability of characteristic boundary layer flows. Duke Math. J. 165, 3085–3146 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Grenier, E., Guo, Y., Nguyen, T.: Spectral instability of general symmetric shear flows in a two-dimensional channel. Adv. Math. 292, 52–110 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Grenier, E., Nguyen, T., Rousset, F., Soffer, A.: Linear inviscid damping and enhanced viscous dissipation of shear flows by using the conjugate operator method. J. Funct. Anal. 278, 108339 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Ibrahim, S., Maekawa, Y., Masmoudi, N.: On pseudospectral bound for non-selfadjoint operators and its application to stability of Kolmogorov flows. Ann. PDE 5(14), 84 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Ionescu, A., Jia, H.: Inviscid damping near the Couette flow in a channel. Comm. Math. Phys. 374, 2015–2096 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Ionescu, A., Jia, H.: Axi-symmetrization near point vortex solutions for the 2D Euler equation. Comm. Pure Appl. Math. 75, 818–891 (2022)

    MathSciNet  MATH  Google Scholar 

  31. Ionescu, A., Jia, H.: Nonlinear inviscid damping near monotonic shear flows, arXiv:2001.03087

  32. Li, T., Wei, D., Zhang, Z.: Pseudospectral bound and transition threshold for the 3D Kolmogorov flow. Comm. Pure Appl. Math. 73, 465–557 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Lin, Z., Xu, M.: Metastability of Kolmogorov flows and inviscid damping of shear flows. Arch. Ration. Mech. Anal. 231, 1811–1852 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Masmoudi, N., Zhao, Z.: Stability threshold of the 2D Couette flow in Sobolev spaces. Ann. Inst. H. Poincaré C Anal. Non Linéaire 39, 245–325 (2022)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Masmoudi, N., Zhao, Z.: Nonlinear inviscid damping for a class of monotone shear flows in finite channel. arXiv:2001.08564

  36. Orszag, S.A.: Accurate solution of the Orr-Sommerfeld stability equation. J. Fluid Mech. 50, 689–703 (1971)

    ADS  MATH  Google Scholar 

  37. Romanov, V.A.: Stability of plane-parallel Couette flow. Funkcional. Anal. i Priložen 7, 62–73 (1973)

    MathSciNet  MATH  Google Scholar 

  38. Schmid, P., Henningson, D.: Stability and Transition in Shear Flows, Applied Mathematical Sciences, vol. 142. Springer-Verlag, New York (2001)

    MATH  Google Scholar 

  39. Trefethen, L., Trefethen, A., Reddy, S., Driscoll, T.: Hydrodynamic stability without eigenvalues. Science 261, 578–584 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Wei, D.: Diffusion and mixing in fluid flow via the resolvent estimate. Sci. China Math. 64(3), 507–518 (2021)

    MathSciNet  MATH  Google Scholar 

  41. Wei, D., Zhang, Z.: Transition threshold for the 3D Couette flow in Sobolev space. Comm. Pure Appl. Math. 74, 2398–2479 (2021)

    MathSciNet  MATH  Google Scholar 

  42. Wei, D., Zhang, Z.: Enhanced dissipation for the Kolmogorov flow via the hypocoercivity method. Sci. China Math. 62, 1219–1232 (2019)

    MathSciNet  MATH  Google Scholar 

  43. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping for a class of monotone shear flow in Sobolev spaces. Comm. Pure Appl. Math. 71, 617–687 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping and vorticity depletion for shear flows. Ann. PDE 5(5), 3 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping and enhanced dissipation for the Kolmogorov flow. Adv. Math. 362, 106963 (2020)

    MathSciNet  MATH  Google Scholar 

  46. Wei, D., Zhang, Z., Zhu, H.: Linear inviscid damping for the \(\beta \)-plane equation. Comm. Math. Phys. 375, 127–174 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Yaglom, A.: Hydrodynamic Instability and Transition to Turbulence, Fluid Mech. Appl., vol. 100. Springer-Verlag, New York (2012)

    Google Scholar 

  48. Zillinger, C.: Linear inviscid damping for monotone shear flows. Trans. Am. Math. Soc. 369, 8799–8855 (2017)

    MathSciNet  MATH  Google Scholar 

  49. Zillinger, C.: Linear inviscid damping for monotone shear flows in a finite periodic channel, boundary effects, blow-up and critical Sobolev regularity. Arch. Ration. Mech. Anal. 221, 1449–1509 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Z. Zhang is partially supported by NSF of China under Grant 12171010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifei Zhang.

Additional information

Communicated by A. Ionescu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Lemma A.1

If \(G(y)\in H^{1}(\mathbb {R})\) with compact support, then it holds that

$$\begin{aligned}&\int _{0}^{+\infty }\left( \int _{-\infty }^{+\infty } G(y)\textrm{e}^{-\textrm{i}ty}\textrm{d}y \right) \textrm{d}t =\pi G(0) -p.v.\int _{-\infty }^{\infty }\frac{\textrm{i}G(y)}{y}\textrm{d}y. \end{aligned}$$

Proof

Observe that

$$\begin{aligned}&\int _{0}^{+\infty }\left( \int _{-\infty }^{+\infty } G(y)\textrm{e}^{-\textrm{i}ty}\textrm{d}y \right) \textrm{d}t\\&\quad =\int _{0}^{+\infty }\left( \int _{-\infty }^{+\infty } G(y) \bigg (\dfrac{\textrm{e}^{\textrm{i}ty}+\textrm{e}^{-\textrm{i}ty}}{2}- \dfrac{\textrm{e}^{\textrm{i}ty}-\textrm{e}^{-\textrm{i}ty}}{2} \bigg )\textrm{d}y \right) \textrm{d}t\\&\quad =\dfrac{1}{2}\int _{-\infty }^{+\infty }\left( \int _{-\infty }^{+\infty }G(y)\textrm{e}^{\textrm{i}ty}\textrm{d}y \right) \textrm{d}t -\dfrac{1}{2}\int _{0}^{+\infty }\left( \int _{-\infty }^{+\infty }(G(y)-G(-y))\textrm{e}^{\textrm{i}ty}\textrm{d}y \right) \textrm{d}t\\&\quad = I-II. \end{aligned}$$

By the Fourier inversion formula, we have \(I=\pi G(0)\). For the second term, we have

$$\begin{aligned}&II =\lim _{R\rightarrow +\infty }\dfrac{1}{2} \int _{-\infty }^{+\infty } \left( \int _{0}^{R}\textrm{e}^{\textrm{i}ty} \textrm{d}t\right) (G(y)-G(-y))\textrm{d}y, \end{aligned}$$

where

$$\begin{aligned}&\int _{0}^{R}\textrm{e}^{\textrm{i}ty} \textrm{d}t= \dfrac{\textrm{e}^{\textrm{i}tR}-1}{\textrm{i}y}. \end{aligned}$$

Then we infer that

$$\begin{aligned} II-p.v.\int _{-\infty }^{+\infty }\dfrac{\textrm{i}G(y)}{y}\textrm{d}y&= II-\int _{-\infty }^{+\infty } \dfrac{\textrm{i}(G(y)-G(-y))}{2y}\textrm{d}y\\&=\lim _{R\rightarrow +\infty }\int _{-\infty }^{+\infty }\textrm{e}^{\textrm{i}tR} \dfrac{G(y)-G(-y)}{2\textrm{i}y}\textrm{d}y=0, \end{aligned}$$

where in the last step we used the Riemann-Lebesgue lemma. \(\square \)

Lemma A.2

If \(F(y)\in L^2([0,1])\), \(v_L\in C^1([0,1])\), \( \textbf{Im}\ v_L\le 0,\) \( \textbf{Re}\ v_L'\ge c>0,\) \(s\in (0,1)\), then it holds that

$$\begin{aligned}&\int _{0}^{+\infty }\left| \int _{0}^{1} F(y)\textrm{e}^{-\textrm{i}tv_L(y)}\textrm{d}y \right| ^2t^{-s}\textrm{d}t \le C\int _{0}^{1}|F(y)|^2\textrm{d}y. \end{aligned}$$

Here C depends only on c and s.

Proof

We write

$$\begin{aligned}&\left| \int _{0}^{1} F(y)\textrm{e}^{-\textrm{i}tv_L(y)}\textrm{d}y \right| ^2=\int _{0}^{1}\int _{0}^{1} F(y)\overline{F(z)}\textrm{e}^{-\textrm{i}t(v_L(y)-\overline{v_L(z)})}\textrm{d}y\textrm{d}z. \end{aligned}$$

Then for fixed \( \epsilon >0\), we get by the Fubini theorem that

$$\begin{aligned}&\int _{0}^{+\infty }\left| \int _{0}^{1} F(y)\textrm{e}^{-\textrm{i}tv_L(y)}\textrm{d}y \right| ^2\textrm{e}^{-\epsilon t}t^{-s}\textrm{d}t\\&\quad =\int _{0}^{1}\int _{0}^{1} F(y)\overline{F(z)}\int _{0}^{+\infty }\textrm{e}^{-\textrm{i}t(v_L(y)-\overline{v_L(z)})-\epsilon t}t^{-s}\textrm{d}t\textrm{d}y\textrm{d}z. \end{aligned}$$

Here we used \(\textbf{Re}[-\textrm{i}(v_L(y)-\overline{v_L(z)})]=\textbf{Im}\ v_L(y)+\textbf{Im}\ v_L(z)\le 0. \) Note that

$$\begin{aligned} \int _{0}^{+\infty }\textrm{e}^{-\textrm{i}t(v_L(y)-\overline{v_L(z)})-\epsilon t}t^{-s}\textrm{d}t=\Gamma (1-s)\big [\textrm{i}(v_L(y)-\overline{v_L(z)})+\epsilon \big ]^{s-1}. \end{aligned}$$

Thus, we deduce that

$$\begin{aligned}&\int _{0}^{+\infty }\left| \int _{0}^{1} F(y)\textrm{e}^{-\textrm{i}tv_L(y)}\textrm{d}y \right| ^2\textrm{e}^{-\epsilon t}t^{-s}\textrm{d}t\\&\quad =\int _{0}^{1}\int _{0}^{1} F(y)\overline{F(z)}\Gamma (1-s)[\textrm{i}(v_L(y)-\overline{v_L(z)})+\epsilon ]^{s-1}\textrm{d}y\textrm{d}z\\&\quad \le \Gamma (1-s)\int _{0}^{1}\int _{0}^{1} |F(y)||{F(z)}||\textrm{i}(v_L(y)-\overline{v_L(z)})+\epsilon |^{s-1}\textrm{d}y\textrm{d}z\\&\quad \le \frac{\Gamma (1-s)}{2}\int _{0}^{1}\int _{0}^{1} (|F(y)|^2+|{F(z)}|^2)(c|y-z|)^{s-1}\textrm{d}y\textrm{d}z\\&\quad =\Gamma (1-s)\int _{0}^{1}|F(y)|^2\int _{0}^{1} (c|y-z|)^{s-1}\textrm{d}z\textrm{d}y\\&\quad =\Gamma (1-s)c^{s-1}\int _{0}^{1}|F(y)|^2\frac{y^s+(1-y)^s}{s}\textrm{d}y\\&\quad \le \frac{2\Gamma (1-s)c^{s-1}}{s}\int _{0}^{1}|F(y)|^2\textrm{d}y. \end{aligned}$$

Here we used that(as \( \textbf{Re}\ v_L'\ge c>0\))

$$\begin{aligned} |\textrm{i}(v_L(y)-\overline{v_L(z)})+\epsilon |\ge&|\textbf{Im} [\textrm{i}(v_L(y)-\overline{v_L(z)})+\epsilon ]|=|\textbf{Re} (v_L(y)-\overline{v_L(z)})|\\=&\left| \int _z^y\textbf{Re} v_L'(t)\textrm{d}t\right| \ge c|y-z|. \end{aligned}$$

Now the result follows by letting \( \epsilon \rightarrow 0+\). \(\square \)

Appendix B: Airy Function

We assume \(\alpha >0\) in this section. Let Ai(y) by the Airy function, which is a nontrivial solution of \(f''-yf=0\). We denote

$$\begin{aligned} A_0(z)&=\int _{\textrm{e}^{\textrm{i}\frac{\pi }{6}}z}^{\infty }Ai(t)\textrm{d}t= \textrm{e}^{\textrm{i}\pi /6}\int _{z}^{\infty }Ai(\textrm{e}^{\textrm{i}\pi /6}t)\textrm{d}t.,\\ \omega (z,x)&=\frac{A_0(z+x)}{A_{0}(z)}=\exp \Big (\int _{0}^{x}\frac{A'_0(z+t)}{A_0(z+t)}dt\Big ). \end{aligned}$$

The following two lemmas come from [14].

Lemma B.1

There exist \(c>0\) and \(\delta _0>0\) such that for \({\textbf {Im}}(z)\le \delta _0\),

$$\begin{aligned}&\left| \frac{A_0'(z)}{A_0(z)}\right| \lesssim 1+|z|^{\frac{1}{2}}, \end{aligned}$$

and for \(\textbf{Im}z\le \delta _0\) and \(x\ge 0\),

$$\begin{aligned} |\omega (z,x)|\le e^{-c(|z|^\frac{1}{2}x+x^\frac{3}{2})}. \end{aligned}$$

Lemma B.2

There exist \(\delta _1>0\), \(k_0>1\) and \(c\in (0,1)\) such that if \(L\ge k_0\), \(\alpha \ge 1\), \(\textbf{Im}z\le \delta _1-\alpha ^2/L^2\), then

$$\begin{aligned}&\left| \sinh (\alpha )- \frac{\alpha }{L}\int _{0}^{L}\cosh \big (\alpha -\frac{\alpha t}{L}\big )\omega (z,t)\textrm{d}t\right| \ge c\sinh (\alpha )\\&\quad \ge 2\left| \sinh (\alpha )\omega (z,L)- \frac{\alpha }{L}\int _{0}^{L}\cosh (\frac{\alpha t}{L})\omega (z,t)\textrm{d}t\right| . \end{aligned}$$

We denote

$$\begin{aligned} L_0&=|\alpha u'(0)/\nu |^{\frac{1}{3}},\quad d_0=(u(0)-\lambda -\textrm{i}\nu \alpha )/(u'(0)),\\ L_1&=|\alpha u'(1)/\nu |^{\frac{1}{3}},\quad d_1=(u(1)-u'(1)-\lambda -\textrm{i}\nu \alpha )/(u'(1)),\\ W_{a,1}(y)&=Ai(\textrm{e}^{\textrm{i}\frac{\pi }{6}}L_0(y+d_0)),\quad W_{a,2}(y)=Ai(\textrm{e}^{\textrm{i}\frac{5\pi }{6}}L_1(y+d_1)). \end{aligned}$$

Let \(\Psi _{a,i}(i=1,2)\) solve

$$\begin{aligned} (\partial _y^2-\alpha ^2)\Psi _{a,i}=W_{a,i},\quad \Psi _{a,i}(0)=\Psi _{a,i}(1)=0. \end{aligned}$$

Lemma B.3

There exist \(c>0, C>0\) independent of \(L_0, d_0\) such that

$$\begin{aligned}&\dfrac{|W_{a,1}(y)|}{\big | A_0(L_0d_0)\big |} \le C(1+|L_0d_0|)^{\frac{1}{2}}\textrm{e}^{-{(c/2)}L_0y(1+|L_0d_0|)^{\frac{1}{2}}},\\&\quad \left\| \dfrac{yW_{a,1}(y)}{ A_0(L_0d_0)} \right\| _{L^2}+ \left\| \dfrac{(\partial _y,\alpha )\Psi _{a,1}(y)}{ A_0(L_0d_0)} \right\| _{L^2}\le CL_0^{-\frac{3}{2}}(1+|L_0d_0|)^{-\frac{1}{4}},\\&\quad \left\| \dfrac{y^2W_{a,1}(y)}{ A_0(L_0d_0)} \right\| _{L^2}\le CL_0^{-\frac{5}{2}}(1+|L_0d_0|)^{-\frac{3}{4}},\\&\quad \left\| \dfrac{\Psi _{a,1}(y)}{ A_0(L_0d_0)} \right\| _{L^2}\le CL_0^{-2}|\alpha |^{-\frac{1}{2}}(1+|L_0d_0|)^{-\frac{1}{2}}, \end{aligned}$$

and

$$\begin{aligned}&\dfrac{|W_{a,2}(y)|}{\big | A_0(-L_1(\bar{d}_1+1)\big |} \le C(1+|L_1(d_1+1)|)^{\frac{1}{2}}\textrm{e}^{-(c/2)L_1y(1+|L_1(d_1+1)|)^{\frac{1}{2}}},\\&\quad \left\| \dfrac{(1-y)W_{a,2}(y)}{ A_0(-L_1(\bar{d}_1+1))} \right\| _{L^2}+ \left\| \dfrac{(\partial _y,\alpha )\Psi _{a,2}(y)}{ A_0(-L_1(\bar{d}_1+1))} \right\| _{L^2}\le CL_1^{-\frac{3}{2}}(1+|L_1(d_1+1)|)^{-\frac{1}{4}},\\&\quad \left\| \dfrac{(1-y)^2W_{a,2}(y)}{ A_0(-L_1(\bar{d}_1+1))} \right\| _{L^2}\le CL_1^{-\frac{5}{2}}(1+|L_1(d_1+1)|)^{-\frac{3}{4}},\\&\quad \left\| \dfrac{\Psi _{a,2}(y)}{ A_0(-L_1(\bar{d}_1+1))} \right\| _{L^2}\le CL_1^{-2}|\alpha |^{-\frac{1}{2}}(1+|L_1(d_1+1)|)^{-\frac{1}{2}}. \end{aligned}$$

Proof

By Lemma B.1, we have

$$\begin{aligned} \dfrac{|W_{a,1}(y)|}{|A_0(L_0d_0)|}&=\left| \dfrac{A'_0(L_0(d_0+y))}{A_0(L_0d_0)}\right| =\left| \dfrac{A_0'(L_0(d_0+y))}{A_0(L_0(d_0+y))}\right| \left| \dfrac{A_0(L_0(d_0+y))}{A_0(L_0d_0)}\right| \\&\le C\big (1+|L_0d_0|+L_0y\big )^{\frac{1}{2}}\textrm{e}^{-cL_0y(1+|L_0d_0|^{\frac{1}{2}})}\\&\le C(1+|L_0d_0|)^{\frac{1}{2}}\textrm{e}^{-{(c/2)}L_0y(1+|L_0d_0|)^{\frac{1}{2}}}, \end{aligned}$$

which gives

$$\begin{aligned} \left\| \dfrac{yW_{a,1}(y)}{ A_0(L_0d_0)} \right\| _{L^1}&\le CL_0^{-2}(1+|L_0d_0|)^{-\frac{1}{2}},\\ \left\| \dfrac{yW_{a,1}(y)}{ A_0(L_0d_0)} \right\| _{L^2}&\le CL_0^{-\frac{3}{2}}(1+|L_0d_0|)^{-\frac{1}{4}},\\ \left\| \dfrac{y^2W_{a,1}(y)}{ A_0(L_0d_0)} \right\| _{L^2}&\le CL_0^{-\frac{5}{2}}(1+|L_0d_0|)^{-\frac{3}{4}}. \end{aligned}$$

By the Hardy’s inequality, we get

$$\begin{aligned} \Vert (\partial _y,\alpha )\Psi _{a,1}\Vert _{L^2}^2&=\big |\langle yW_{a,1},\Psi _{a,1}/y \rangle \big |\le \big \Vert yW_{a,1}\big \Vert _{L^2}\big \Vert \Psi _{a,1}/y\big \Vert _{L^2}\\ {}&\le 2\big \Vert yW_{a,1}\big \Vert _{L^2}\Vert (\partial _y,\alpha )\Psi _{a,1}\Vert _{L^2}. \end{aligned}$$

Then \(\Vert (\partial _y,\alpha )\Psi _{a,1}\Vert _{L^2}\le 2\big \Vert yW_{a,1}\big \Vert _{L^2}\) and

$$\begin{aligned}&\left\| \dfrac{(\partial _y,\alpha )\Psi _{a,1}(y)}{A_0(L_0d_0)} \right\| _{L^2}+\left\| \dfrac{yW_{a,1}(y)}{ A_0(L_0d_0)} \right\| _{L^2}\le 3\left\| \dfrac{yW_{a,1}(y)}{ A_0(L_0d_0)} \right\| _{L^2}\le CL_0^{-\frac{3}{2}}(1+|L_0d_0|)^{-\frac{1}{4}}. \end{aligned}$$

Let \( \varphi _1\) solve \((\partial _y^2-\alpha ^2)\varphi _1=\Psi _{a,1},\ \varphi _1(0)=\varphi _1(1)=0\). Then we have

$$\begin{aligned} \Vert \Psi _{a,1}\Vert _{L^2}^2=\alpha ^4\Vert \varphi \Vert _{L^2}^2+2\alpha ^2\Vert \partial _y\varphi \Vert _{L^2}^2+\Vert \partial ^2_y\varphi \Vert _{L^2}^2. \end{aligned}$$

As \(\varphi _1(y)=\int _{0}^{y}\varphi _1'(z)dz \) for \(y\in [0,1] \), we conclude

$$\begin{aligned} \left\| {\varphi _1}/{y}\right\| _{L^\infty } \le&\Vert \partial _y\varphi _1\Vert _{L^\infty }\le C\Vert \partial _y\varphi _1\Vert _{L^2}^{\frac{1}{2}} \Vert \partial ^2_y\varphi _1\Vert _{L^2}^{\frac{1}{2}} \le C|\alpha |^{-\frac{1}{2}}\Vert \Psi _{a,1}\Vert _{L^2}, \end{aligned}$$

which gives

$$\begin{aligned} \Vert \Psi _{a,1}\Vert ^2_{L^2}&=\left| \big \langle \varphi _1,W_{a,1} \big \rangle \right| \le \left\| {\varphi _1}/y\right\| _{L^\infty }\Vert yW_{a,1}\Vert _{L^1}\\&\le C|\alpha |^{-\frac{1}{2}}\Vert \Psi _{a,1}\Vert _{L^2}\Vert yW_{a,1}\Vert _{L^1}. \end{aligned}$$

Then \(\Vert \Psi _{a,1}\Vert _{L^2}\le C|\alpha |^{-\frac{1}{2}}\Vert yW_{a,1}\Vert _{L^1}\) and

$$\begin{aligned}&\left\| \dfrac{\Psi _{a,1}(y)}{A_0(L_0d_0)} \right\| _{L^2}\le C|\alpha |^{-\frac{1}{2}}\left\| \dfrac{yW_{a,1}(y)}{ A_0(L_0d_0)} \right\| _{L^1}\le CL_0^{-2}|\alpha |^{-\frac{1}{2}}(1+|L_0d_0|)^{-\frac{1}{2}}. \end{aligned}$$

The proof for \(W_{a,2}\) and \(\Psi _{a,2}\) is similar. \(\square \)

Lemma B.4

Let \(\psi \) solve \((\partial _y^2-\alpha ^2)\psi =w,\ \psi |_{y=0,1}=0\). Then it holds that

$$\begin{aligned}&\left[ \tanh (\alpha y)+\tanh \big (\alpha (1-y)\big )\right] \partial _y\psi (y)\\ {}&\quad = \int _{0}^{y}w(z)\dfrac{\sinh (\alpha z)}{\cosh (\alpha y)}\textrm{d}z-\int _{y}^{1}w(z)\dfrac{\sinh \big (\alpha (1-z)\big )}{\cosh \big (\alpha (1-y)\big )}\textrm{d}z. \end{aligned}$$

In particular, we have

$$\begin{aligned}&\partial _y\psi (0)=-\int _{0}^{1}w(z) \dfrac{\sinh \big (\alpha (1-z)\big )}{\sinh (\alpha )}\textrm{d}z,\quad \partial _y\psi (1)=\int _{0}^{1}w(z)\dfrac{\sinh (\alpha z)}{\sinh (\alpha )}\textrm{d}z. \end{aligned}$$

Proof

We get by integration by parts that

$$\begin{aligned}&\int _{0}^{y}w(z)\sinh \big (\alpha z\big )\textrm{d}z=\int _{0}^{y} \big [(\partial _z^2-\alpha ^2)\psi (z)\big ]\sinh \big (\alpha z\big )\textrm{d}z\\&\quad = \int _{0}^{y}\psi (z)\big [(\partial _z^2-\alpha ^2)\sinh \big (\alpha z\big )\big ]\textrm{d}z +(\partial _z\psi )\sinh \big (\alpha z\big )\big |^{z=y}_{z=0}-\psi \big (\partial _z\sinh \big (\alpha z\big )\big )\big |^{z=y}_{z=0}\\&\quad =\partial _y\psi (y) \sinh (\alpha y)-\alpha \psi (y)\cosh (\alpha y), \end{aligned}$$

and

$$\begin{aligned}&\int _{y}^{1}w(z)\sinh \big (\alpha (1-z)\big )\textrm{d}z= \int _{y}^{1}\big [(\partial _z^2-\alpha ^2)\psi (z)\big ] \sinh \big (\alpha (1-z)\big )\textrm{d}z\\&\quad =\int _{y}^{1}\psi (z)\big [(\partial _z^2-\alpha ^2)\sinh \big (\alpha (1-z)\big )\big ] +(\partial _z\psi )\sinh \big (\alpha (1-z)\big )\big |^{z=1}_{z=y} \\&\qquad -\psi \big (\partial _z\sinh \big (\alpha (1-z)\big )\big )\big |^{z=1}_{z=y}\\&\quad =-\partial _y\psi (y)\sinh \big (\alpha (1-y)\big )- \alpha \psi (y)\cosh \big (\alpha (1-y)\big ). \end{aligned}$$

Then we conclude that

$$\begin{aligned}&\left[ \tanh (\alpha y)+\tanh \big (\alpha (1-y)\big )\right] \partial _y\psi (y) = \int _{0}^{y}w(z)\dfrac{\sinh (\alpha z)}{\cosh (\alpha y)}\textrm{d}z-\int _{y}^{1}w(z)\dfrac{\sinh \big (\alpha (1-z)\big )}{\cosh \big (\alpha (1-y)\big )}\textrm{d}z \end{aligned}$$

Taking \(y=0\) or \(y-1\), we get

$$\begin{aligned}&\partial _y\psi (0)=-\int _{0}^{1}w(z) \dfrac{\sinh \big (\alpha (1-z)\big )}{\sinh (\alpha )}\textrm{d}z,\qquad \partial _y\psi (1)=\int _{0}^{1}w(z)\dfrac{\sinh (\alpha z)}{\sinh (\alpha )}\textrm{d}z. \end{aligned}$$

\(\square \)

Appendix C: Elliptic Estimates

Lemma C.1

Let \(\psi \) solve \((\partial _y^2-\alpha ^2)\psi =w,\ \psi |_{y=0,1}=0\) and \(|\alpha |\ge 1\). There exists a decomposition \(\psi =\psi _1+\psi _2\) so that

$$\begin{aligned}&\Vert (\partial _y,\alpha )\psi _1\Vert _{L^2}\le C|\alpha |\Vert \psi \Vert _{L^2},\quad \Vert \psi _2\Vert _{L^2}\le C\Vert y^2w\Vert _{L^2}. \end{aligned}$$

Remark C.1

We can also decompose \(\psi \) as \(\psi =\widetilde{\psi }_1+\widetilde{\psi }_2\) with

$$\begin{aligned} \Vert (\partial _y,\alpha )\widetilde{\psi }_1\Vert _{L^2}\le C|\alpha |\Vert \psi \Vert _{L^2},\quad \Vert \widetilde{\psi }_2\Vert _{L^2}\le C\Vert (1-y)^2w\Vert _{L^2}. \end{aligned}$$

Proof

We introduce \(\gamma _0(y)=\dfrac{\sinh (\alpha (1- y))}{\sinh \alpha }\) and let \( a=\langle \psi ,\gamma _0\rangle /\langle \gamma _0,\gamma _0\rangle \), \( \psi _1=a\gamma _0\), \( \psi _2=\psi -a\gamma _0\). Then we have

$$\begin{aligned} \psi =\psi _1+\psi _2,\quad \langle \psi _2,\gamma _0\rangle =0,\quad \langle \psi _2,\psi _1\rangle =0,\quad \Vert \psi \Vert _{L^2}^2=\Vert \psi _1\Vert _{L^2}^2+\Vert \psi _2\Vert _{L^2}^2. \end{aligned}$$

As \( \Vert (\partial _y,\alpha )\gamma _0\Vert _{L^2}\le C|\alpha |^{\frac{1}{2}}\), \( C^{-1}|\alpha |^{-\frac{1}{2}}\le \Vert \gamma _0\Vert _{L^2}\le C|\alpha |^{-\frac{1}{2}}\), we get

$$\begin{aligned} \Vert (\partial _y,\alpha )\psi _1\Vert _{L^2}\le C|\alpha |^{\frac{1}{2}}|a|\le C|\alpha |\Vert \psi _1\Vert _{L^2}\le C|\alpha |\Vert \psi \Vert _{L^2}. \end{aligned}$$

Let \(\varphi \) solve \((\partial _y^2-\alpha ^2)\varphi =\psi _2,\ \varphi |_{y=0,1}=0\). Then \(\partial _y\varphi (0)=-\langle \psi _2,\gamma _0\rangle =0\) and

$$\begin{aligned} \Vert \psi _2\Vert _{L^2}^2=\Vert \partial _y^2\varphi \Vert _{L^2}^2+2\alpha ^2\Vert \partial _y\varphi \Vert _{L^2}^2+\alpha ^4\Vert \varphi \Vert _{L^2}^2. \end{aligned}$$

By the Hardy’s inequality and \( \varphi (0)=\partial _y\varphi (0)=0\), we have

$$\begin{aligned} \Vert \varphi /y^2\Vert _{L^2}\le C\Vert \partial _y\varphi /y\Vert _{L^2}\le C\Vert \partial _y^2\varphi \Vert _{L^2}\le C\Vert \psi _2\Vert _{L^2}. \end{aligned}$$

As \((\partial _y^2-\alpha ^2)\gamma _0=0,\) \( \gamma _0(1)=0,\) \( \psi _2=\psi -a\gamma _0\), \(\psi (1)=0 \), we have

$$\begin{aligned} (\partial _y^2-\alpha ^2)\psi _2=(\partial _y^2-\alpha ^2)\psi =w, \quad \psi _2(1)=0. \end{aligned}$$

Thus, due to \( \varphi (0)=\partial _y\varphi (0)=\varphi (1)=\psi _2(1)=0\), we get

$$\begin{aligned} \Vert \psi _2\Vert _{L^2}^2&=\langle (\partial _y^2-\alpha ^2)\varphi ,\psi _2\rangle =\langle \varphi ,(\partial _y^2-\alpha ^2)\psi _2\rangle =\langle \varphi ,w\rangle \\ {}&\le \Vert \varphi /y^2\Vert _{L^2}\Vert y^2w\Vert _{L^2}\le C\Vert \psi _2\Vert _{L^2}\Vert y^2w\Vert _{L^2}, \end{aligned}$$

which gives \(\Vert \psi _2\Vert _{L^2}\le C\Vert y^2w\Vert _{L^2}\). \(\square \)

Lemma C.2

If \( \psi _1,\psi _2\in H^2(0,1)\cap H_0^1(0,1)\), \(g\in H^2([0,1])\) satisfies \( (\partial ^2_y-\alpha ^2)\psi _1=g(\partial ^2_y-\alpha ^2)\psi _2\) and \(\alpha \ge 1\), then we have

$$\begin{aligned}&\alpha ^{\frac{1}{2}}\Vert (\partial _y,\alpha )\psi _1\Vert _{L^2}+|\partial _y\psi _1(0)|+|\partial _y\psi _1(1)|\\&\quad \le C\Vert g\Vert _{C^1}\big (\alpha ^{\frac{1}{2}}\Vert (\partial _y,\alpha )\psi _2\Vert _{L^2}+|\partial _y\psi _2(0)|+|\partial _y\psi _2(1)|\big ), \\&\qquad \Vert (\partial _y,\alpha )(\psi _1-g\psi _2)\Vert _{L^2}\le C\Vert \partial _yg\Vert _{H^1}\Vert \psi _2\Vert _{L^2}. \end{aligned}$$

Proof

We get by integration by parts that

$$\begin{aligned} \partial _y\psi _1(0)&=-\int _{0}^{1}\big ((\partial _y^2-\alpha ^2)\psi _1\big )(y)\dfrac{\sinh (\alpha (1-y))}{ \sinh (\alpha )}\textrm{d}y\\&=-\int _{0}^{1}g(y)\big ((\partial _y^2-\alpha ^2){\psi _2}\big )(y)\dfrac{\sinh (\alpha (1-y))}{ \sinh (\alpha )}\textrm{d}y\\&=g(0)\partial _y\psi _2(0)+\int _{0}^{1}\partial _y{\psi _2}\partial _y\bigg (g(y)\dfrac{\sinh (\alpha (1-y))}{ \sinh (\alpha )}\bigg )\textrm{d}y\\&\quad +\alpha ^2\int _{0}^{1}{\psi _2}(y)g(y)\dfrac{\sinh (\alpha (1-y))}{ \sinh (\alpha )}\textrm{d}y. \end{aligned}$$

Then we have

$$\begin{aligned} |\partial _y\psi _1(0)|\le&|g(0)||\partial _y\psi _2(0)|+\Vert g\Vert _{C^1}\Vert \partial _y{\psi _2}\Vert _{L^2}\left\| \dfrac{\sinh (\alpha (1-y))}{ \sinh (\alpha )}\right\| _{H^1}\\&\quad +|\alpha |\Vert g\Vert _{L^\infty }\Vert \alpha \psi _2\Vert _{L^2}\left\| \dfrac{\sinh (\alpha (1-y))}{ \sinh (\alpha )}\right\| _{L^2}\\&\le C\Vert g\Vert _{C^1}\big (\alpha ^{\frac{1}{2}}\Vert (\partial _y,\alpha )\psi _2\Vert _{L^2}+|\partial _y\psi _2(0)|\big ). \end{aligned}$$

Here we used the fact that

$$\begin{aligned} \Big \Vert \dfrac{\sinh (\alpha (1-y))}{ \sinh (\alpha )}\Big \Vert _{H^1}\le C\alpha ^{\frac{1}{2}},\quad \Big \Vert \dfrac{\sinh (\alpha (1-y))}{ \sinh (\alpha )}\Big \Vert _{L^2}\le C\alpha ^{-\frac{1}{2}}. \end{aligned}$$

Similarly, we have

$$\begin{aligned} |\partial _y\psi _1(1)|\le&C\Vert g\Vert _{C^1}\big (\alpha ^{\frac{1}{2}}\Vert (\partial _y,\alpha )\psi _2\Vert _{L^2}+|\partial _y\psi _2(1)|\big ). \end{aligned}$$

By integration by parts again, we get

$$\begin{aligned} \Vert (\partial _y,\alpha )\psi _1\Vert ^2_{L^2}&=\langle -(\partial _y^2-\alpha ^2)\psi _1,\psi _1\rangle = \langle -g(\partial _y^2-\alpha ^2)\psi _2,\psi _1\rangle \\&=\langle \partial _y\psi _2,\partial _y(\bar{g}\psi _1)\rangle +\alpha ^2\langle \psi _2,{\overline{g}}\psi _1\rangle \\&\le \Vert \partial _y\psi _2\Vert _{L^2}\Vert g\Vert _{C^1}\Vert \psi _1\Vert _{H^1}+\Vert g\Vert _{L^\infty }\Vert \alpha \psi _2\Vert _{L^2}\Vert \alpha \psi _1\Vert _{L^2}\\&\le C\Vert g\Vert _{C^1}\Vert (\partial _y,\alpha )\psi _2\Vert _{L^2}\Vert (\partial _y,\alpha )\psi _1\Vert _{L^2}, \end{aligned}$$

which gives

$$\begin{aligned} \Vert (\partial _y,\alpha )\psi _1\Vert _{L^2}\le C\Vert g\Vert _{C^1}\Vert (\partial _y,\alpha )\psi _2\Vert _{L^2}. \end{aligned}$$

Thanks to \((\partial _y^2-\alpha ^2)(g\psi _2-\psi _1)=(\partial _y^2g)\psi _2+2(\partial _yg)\partial _y\psi _2\), we get

$$\begin{aligned}&\Vert (\partial _y,\alpha )(g\psi _2-\psi _1)\Vert _{L^2}^2=-\langle (\partial _y^2-\alpha ^2)(g\psi _2-\psi _1),g\psi _2-\psi _1\rangle \\&\quad ={-}\langle (\partial _y^2g)\psi _2,g\psi _2-\psi _1\rangle {-}2\langle (\partial _yg)\partial _y\psi _2,g\psi _2-\psi _1\rangle \\&\quad \le \Vert \partial _y^2g\Vert _{L^2}\Vert \psi _2\Vert _{L^2}\Vert g\psi _2-\psi _1\Vert _{L^\infty } {+}2\langle \psi _2,\partial _y\big (\partial _y\bar{g}(g\psi _2-\psi _1)\big )\rangle \\&\quad \le \Vert \partial _y^2g\Vert _{L^2}\Vert \psi _2\Vert _{L^2}\Vert g\psi _2-\psi _1\Vert _{H^1} +2\Vert \psi _2\Vert _{L^2}\Vert (\partial _y\bar{g})(g\psi _2-\psi _1)\Vert _{H^1}\\&\quad \le C\Vert \partial _yg\Vert _{H^1}\Vert \psi _2\Vert _{L^2}\Vert (g\psi _2-\psi _1)\Vert _{H^1}\le C\Vert \partial _yg\Vert _{H^1}\Vert \psi _2\Vert _{L^2}\Vert (\partial _y,\alpha )(g\psi _2-\psi _1)\Vert _{L^2}. \end{aligned}$$

This shows that \(\Vert (\partial _y,\alpha )(g\psi _2-\psi _1)\Vert _{L^2}\le C\Vert \partial _yg\Vert _{H^1}\Vert \psi _2\Vert _{L^2}\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Wei, D. & Zhang, Z. Linear Inviscid Damping and Enhanced Dissipation for Monotone Shear Flows. Commun. Math. Phys. 400, 215–276 (2023). https://doi.org/10.1007/s00220-022-04597-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04597-2

Navigation