Skip to main content
Log in

Deformed Calogero–Moser Operators and Ideals of Rational Cherednik Algebras

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce a class of hyperplane arrangements \(\mathcal {A}\) in \({\mathbb {C}}^n\) that generalise the locus configurations of Chalykh, Feigin and Veselov. To such an arrangement we associate a second order partial differential operator of Calogero–Moser type and prove that this operator is completely integrable (in the sense that its centraliser in \(\mathcal {D}({\mathbb {C}}^n\!\setminus \!\mathcal {A})\) contains a maximal commutative subalgebra of Krull dimension n). Our approach is based on the study of shift operators and associated ideals in spherical Cherednik algebras that may be of independent interest. Examples include all known completely integrable deformations of Calogero–Moser operators with rational potentials. In addition, we construct new families of examples, including a BC-type generalisation of the deformed Calogero-Moser operators recently found by Gaiotto and Rapčák. We describe these examples in a unified representation-theoretic framework of rational Cherednik algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The operators (1.4) arise in the context of so-called \(\Omega \)-deformation of supersymmetric gauge theories (see, e.g., [N, NW]). The parameters \( \epsilon _1, \epsilon _2, \epsilon _3\) correspond to the ‘\(\Omega \)-deformed’ \(\mathbb {C}^3\) (denoted \( \mathbb {C}_{\epsilon _1} \times \mathbb {C}_{\epsilon _2} \times \mathbb {C}_{\epsilon _3} \) in [GR]), with relation \( \epsilon _1 + \epsilon _2 + \epsilon _3 = 0 \) reflecting the Calabi-Yau condition (see loc. cit., Sect. 1.4).

  2. For technical reasons, it will be more convenient for us to work with a twisted (fractional) ideal which is obtained by replacing \(Q_{\textrm{reg}} = \mathcal {O}(X_{\textrm{reg}}) \) in the above construction by a rank one torsion-free \( \mathcal {O}(X_{\textrm{reg}}) \)-module \( U_{\mathcal {A}} \) (see Sect. 5.1).

  3. Just as the function \( \deg _{L_0} \) on B, its extension to A depends on the ad-nilpotent element \(L_0\). To distinguish between these two degree functions we suppress the dependence of ‘\( \deg \)’ on \( L_0\) in our notation.

  4. Recall, for a (left and/or right) Noetherian domain B, the set \( S = B \! \setminus \!\{0\} \) of all nonzero elements of B satisfies a (left and/or right) Ore condition (Goldie’s Theorem), and the quotient skew-field \( \textbf{Q}(B) \) is obtained in this case by Ore localisation \(B[S^{-1}]\).

  5. The polynomial (5.1) should not be confused with the discriminant of the Coxeter group W, i.e. \(\, \prod _{\alpha \in R_+}(\alpha , x) \,\), which is also denoted frequently by \(\delta \) in the literature.

  6. We should also mention the recent papers [BCES, ER, BZ], where the rings of quasi-invariants are shown to be Cohen-Macaulay in some non-Coxeter cases.

  7. If \( \dim (V) = 1 \), every fat ideal is very fat, and moreover, every very fat one is automatically projective. Unfortunately, this is not in general true when \( \dim (V) > 1 \): there exist fat ideals which are not very fat, and not every very fat ideal is projective (see [BCM]).

References

  1. Adler, M., Moser, J.: On a class of polynomials connected with the Korteweg-de Vries equation. Commun. Math. Phys. 61, 1–30 (1978)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Airault, H., McKean, H.P., Moser, J.: Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem. Commun. Pure Appl. Math. 30, 95–148 (1977)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Baranovsky, V., Ginzburg, V., Kuznetsov, A.: Wilson’s Grassmannian and a noncommutative quadric. IMRN 2003(21), 1155–1197 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Bass, H.: Finitistic dimension and a homological generalization of semi-primary rings. Trans. Am. Math. Soc. 95, 466–488 (1960)

    MathSciNet  MATH  Google Scholar 

  5. Berest, Yu.: Huygens’ principle and the bispectral problem. CRM Proc. Lect. Not. 14, 11–30 (1998)

    MathSciNet  MATH  Google Scholar 

  6. Berest, Yu., Chalykh, O.: Quasi-invariants of complex reflection groups. Compos. Math. 147(3), 965–1002 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Berest, Yu., Chalykh, O., Muller, G.: Reflexive ideals and factorization in the rings of differential operators. In preparation

  8. Berest, Yu., Etingof, P., Ginzburg, V.: Cherednik algebras and differential operators on quasi-invariants. Duke Math. J. 118(2), 279–337 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Berest, Yu., Kasman, A.: \({\cal{D} }\)-modules and Darboux transformations. Lett. Math. Phys. 43, 279–294 (1998)

    MathSciNet  MATH  Google Scholar 

  10. Berest, Yu., Lutsenko, I.: Huygens’ principle in Minkowski spaces and soliton solutions of the Korteweg-de Vries equation. Commun. Math. Phys. 190, 113–132 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Berest, Yu., Wilson, G.: Mad subalgebras of rings of differential operators on curves. Adv. Math. 212(1), 163–190 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Braverman, A., Etingof, P., Gaitsgory, D.: Quantum integrable systems and differential Galois theory. Transfor. Groups 2, 31–57 (1997)

    MathSciNet  MATH  Google Scholar 

  13. Brookner, A., Corwin, D., Etingof, P., Sam, S.: On Cohen-Macaulayness of \(S_n\)-invariant subspace arrangements. IMRN 2016(7), 2104–2106 (2016)

    MATH  Google Scholar 

  14. Burban, I., Zheglov, A.: Cohen-Macaulay modules over the algebra of planar quasi-invariants and Calogero-Moser systems. Proc. Lond. Math. Soc. 121(4), 1033–1082 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Chalykh, O.: Darboux transformations for multidimensional Schrödinger operators. Russ. Math. Surv. 53(2), 167–168 (1998)

    MathSciNet  MATH  Google Scholar 

  16. Chalykh, O.: Algebro-geometric Schrödinger operators in many dimensions. Philos. Trans. R. Soc. A 366, 947–971 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Chalykh, O., Etingof, P., Oblomkov, A.: Generalized Lamé operators. Commun. Math. Phys. 239, 115–153 (2003)

    ADS  MATH  Google Scholar 

  18. Chalykh, O.A., Feigin, M.V., Veselov, A.P.: New integrable generalizations of Calogero-Moser quantum problem. J. Math. Phys. 39(2), 695–703 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Chalykh, O.A., Feigin, M.V., Veselov, A.P.: Multidimensional Baker-Akhiezer functions and Huygens’ principle. Commun. Math. Phys. 206, 533–566 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Chalykh, O.A., Oblomkov, A.A.: Harmonic oscillator and Darboux transformations in many dimensions. Phys. Lett. A 267(4), 256–264 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Chalykh, O.A., Veselov, A.P.: Commutative rings of partial differential operators and Lie algebras. Commun. Math. Phys. 126, 597–611 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Chalykh, O.A., Veselov, A.P.: Locus configurations and \(\vee \)-systems. Phys. Lett. A 285(5–6), 339–349 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Crum, M.M.: Associated Sturm-Liouville systems. Quart. J. Math. 2(6), 21–126 (1955)

    MathSciNet  MATH  Google Scholar 

  24. Dixmier, J.: Sur les algèbres de Weyl. Bull. Soc. Math. France 96, 209–242 (1968)

    MathSciNet  MATH  Google Scholar 

  25. Duistermaat, J.J., Grünbaum, F.A.: Differential equations in the spectral parameter. Commun. Math. Phys. 103, 177–240 (1986)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Dunkl, C.F.: Differential-difference operators associated to reflection groups. Trans. Am. Math. Soc. 311(1), 167–183 (1989)

    MathSciNet  MATH  Google Scholar 

  27. Etingof, P., Ginzburg, V.: Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism. Invent. Math. 147, 243–348 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Etingof, P., Ginzburg, V.: On \(m\)-quasi-invariants of a Coxeter group. Mosc. Math. J. 2(3), 555–566 (2002)

    MathSciNet  MATH  Google Scholar 

  29. Etingof, P., Rains, E. (with an appendix by M. Feigin): On Cohen–Macaulayness of algebras generated by generalised power sums. Commun. Math. Phys. 347, 163–182 (2016)

  30. Feigin, M.: Generalized Calogero-Moser systems from rational Cherednik algebras. Selecta Math. 218(1), 253–281 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Feigin, M., Johnston, D.: A class of Baker-Akhiezer arrangements. Commun. Math. Phys. 328(3), 1117–1157 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Feigin, M.V., Veselov, A.P.: Quasi-invariants of Coxeter groups and \(m\)-harmonic polynomials. IMRN 2002(10), 2487–2511 (2002)

    MathSciNet  MATH  Google Scholar 

  33. Feigin, M.V., Veselov, A.P.: Quasi-invariants and quantum integrals of deformed Calogero-Moser systems. IMRN 2003(46), 2487–2511 (2003)

    MathSciNet  MATH  Google Scholar 

  34. Feigin, M., Vrabec, M.: Intertwining operator for \(AG_2\) Calogero-Moser-Sutherland system. J. Math. Phys. 60(7), 073503 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  35. García-Ferrero, M.A., Gómez-Ullate, D., Milson, R., Munday, J.: Exceptional Gegenbauer polynomials via isospectral deformations. Stud. Appl. Math. 149(2), 324–363 (2022)

    MathSciNet  Google Scholar 

  36. Gaiotto, D., Rapčák, M.: Miura operators, degenerate fields and the M2–M5 intersection. J. High Energy Phys. 2022, 86 (2022)

    MathSciNet  MATH  Google Scholar 

  37. Heckman, G.J.: A remark on Dunkl operators. In: Harmonic Analysis on Reductive Groups, 181–193. Progress in Mathematics 101, Birkhauser (1991)

  38. Heckman, G.J.: An elementary approach to the hypergeometric shift operators of Opdam. Invent. Math. 103, 341–350 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Marquette, I., Post, S., Ritter, L.: A family of fourth-order superintegrable systems with rational potentials related to Painlevé VI. J. Phys. A: Math. Theor. 55, 155201 (2022)

    ADS  MATH  Google Scholar 

  40. McConnell, J.C., Robson, J.C.: Noncommutative Noetherian Rings, Graduate Studies in Mathematics 30. American Mathematical Society, Providence, RI (2001)

    Google Scholar 

  41. Mironov, A.E.: Self-adjoint commuting ordinary differential operators. Invent. Math. 197(2), 417–431 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Mironov, A.E., Zheglov, A.B.: Commuting ordinary differential operators with polynomial coefficients and automorphisms of the first Weyl algebra. IMRN 2016(10), 2974–2993 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Nekrasov, N.A.: Seiberg-Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7(5), 831–864 (2003)

    MathSciNet  MATH  Google Scholar 

  44. Nekrasov, N., Witten, E.: The Omega deformation, branes, integrability and Liouville theory. J. High Energy Phys. 2010, 92 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Olshanetsky, M.A., Perelomov, A.M.: Quantum integrable systems related to Lie algebras. Phys. Rep. 94(6), 313–404 (1983)

    ADS  MathSciNet  Google Scholar 

  46. Opdam, E.M.: Root systems and hypergeometric functions IV. Compos. Math. 67(2), 191–209 (1988)

    MathSciNet  MATH  Google Scholar 

  47. Polychronakos, A.P.: Exchange operator formalism for integrable systems of particles. Phys. Rev. Lett. 69, 703–705 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  48. Post, S., Tsujimoto, S., Vinet, L.: Families of superintegrable Hamiltonians constructed from exceptional polynomials. J. Phys. A.: Math. Theor. 45, 405202 (2012)

    MathSciNet  MATH  Google Scholar 

  49. Smith, S.P., Stafford, J.T.: Differential operators on an affine curve. Proc. Lond. Math. Soc. 3(56), 229–259 (1988)

    MathSciNet  MATH  Google Scholar 

  50. Sergeev, A.N., Veselov, A.P.: Deformed quantum Calogero-Moser problems and Lie superalgebras. Commun. Math. Phys. 245(2), 249–278 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  51. Sergeev, A.N., Veselov, A.P.: Dunkl operators at infinity and Calogero-Moser systems. IMRN 2015(21), 10959–10986 (2015)

    MathSciNet  MATH  Google Scholar 

  52. Taniguchi, K.: On the symmetry of commuting differential operators with singularities along hyperplanes. IMRN 2004(36), 1845–1867 (2004)

    MathSciNet  MATH  Google Scholar 

  53. Taniguchi, K.: Deformation of two body quantum Calogero–Moser–Sutherland models. Preprint (2006), available at: arXiv:math-ph/0607053

  54. Veselov, A.P., Styrkas, K.L., Chalykh, O.A.: Algebraical integrability for Schrödinger equation and finite reflection groups. Theor. Math. Phys. 94, 253–275 (1993)

    MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to P. Etingof, M. Feigin, A. Sergeev and A. Veselov for many questions and stimulating discussions. We also want to thank Pavel Etingof for drawing our attention to new examples of deformed Calogero-Moser operators that appeared in [GR] and Davide Gaiotto for interesting correspondence clarifying to us the origin of these examples. We are especially grateful to Misha Feigin who read the first version of this paper and pointed out several inaccuracies and misprints. The work of the first author is partially supported by NSF grant DMS 1702372 and the 2019 Simons Fellowship. The work of the second author was partially supported by EPSRC under grant EP/K004999/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Berest.

Additional information

Communicated by J. Gier.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berest, Y., Chalykh, O. Deformed Calogero–Moser Operators and Ideals of Rational Cherednik Algebras. Commun. Math. Phys. 400, 133–178 (2023). https://doi.org/10.1007/s00220-022-04595-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04595-4

Navigation