Skip to main content
Log in

Global Unique Solutions for the Inhomogeneous Navier-Stokes equations with only Bounded Density, in Critical Regularity Spaces

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We here aim at proving the global existence and uniqueness of solutions to the inhomogeneous incompressible Navier-Stokes system in the case where the initial density \(\rho _0\) is discontinuous and the initial velocity \(u_0\) has critical regularity. Assuming that \(\rho _0\) is close to a positive constant, we obtain global existence and uniqueness in the two-dimensional case whenever the initial velocity \(u_0\) belongs to the critical homogeneous Besov space \(\dot{B}^{-1+2/p}_{p,1}({\mathbb {R}}^{2})\) \((1<p<2)\) and, in the three-dimensional case, if \(u_0\) is small in \(\dot{B}^{-1+3/p}_{p,1}({\mathbb {R}}^{3})\ (1<p<3)\). Next, still in a critical functional framework, we establish a uniqueness statement that is valid in the case of large variations of density with, possibly, vacuum. Interestingly, our result implies that the Fujita-Kato type solutions constructed by Zhang (Adv Math 363:107007, 2020) are unique. Our work relies on interpolation results, time weighted estimates and maximal regularity estimates in Lorentz spaces (with respect to the time variable) for the evolutionary Stokes system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The Littlewood-Paley decomposition that is required for proving (A.8) may be adapted to the periodic setting, see e.g. [24].

  2. Only weak continuity holds if \(r=\infty .\)

References

  1. Kažihov, A.V.: Solvability of the initial-boundary value problem for the equations of the motion of an inhomogeneous viscous incompressible fluid. Dokl. Akad. Nauk SSSR 216, 1008–1010 (1974). (in Russian)

    ADS  MathSciNet  Google Scholar 

  2. Simon, J.: Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure. SIAM J. Math. Anal. 21, 1093–1117 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Lions, P.-L.: Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models. Oxford Lecture Series in Mathematics and its Applications, vol. 3. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  5. Ladyzenskaja, O.A., Solonnikov, V.A.: Unique solvability of an initial and boundary value problem for viscous incompressible inhomogeneous fluids. J. Sov. Math. 9(5), 697–749 (1978)

    Article  Google Scholar 

  6. Danchin, R.: The inhomogeneous incompressible Navier-Stokes equations with discontinuous density: three different approaches. In: Analysis of PDE-Morningside Lecture Notes, vol. 6, pp. 31–90 (2022)

  7. Cho, Y., Kim, H.: Unique solvability for the density-dependent Navier-Stokes equations. Nonlinear Anal. 59(4), 465–489 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fujita, H., Kato, T.: On the Navier-Stokes initial value problem I. Arch. Ration. Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  9. Danchin, R.: Density-dependent incompressible viscous fluids in critical spaces. Proc. R. Soc. Edinb. Sect. A 133(6), 1311–1334 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Abidi, H.: Équation de Navier-Stokes avec densité et viscosité variables dans l’espace critique. Rev. Mat. Iberoam. 23(2), 537–586 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Abidi, H., Paicu, M.: Existence globale pour un fluide inhomogène. Ann. Inst. Fourier 57(3), 883–917 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, J., Paicu, M., Zhang, P.: Global well-posedness to incompressible inhomogeneous fluid system with bounded density and non-Lipschitz velocity. Arch. Ration. Mech. Anal. 209, 631–682 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Danchin, R.: Local and global well-posedness results for flows of inhomogeneous viscous fluids. Adv. Differ. Equ. 9(3–4), 353–386 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Abidi, H., Gui, G.: Global Well-posedness for the 2-D inhomogeneous incompressible Navier-Stokes System with large initial data in critical Spaces. Arch. Rat. Mech. Anal. 242, 1533–1570 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Xu, H.: Maximal \(L_1\) regularity for solutions to inhomogeneous incompressible Navier-Stokes equations. J. Differ. Equ. 335, 1–42 (2022)

    Article  ADS  Google Scholar 

  16. Paicu, M., Zhang, P., Zhang, Z.: Global unique solvability of inhomogeneous Navier-Stokes equations with bounded density. Commun. Partial Differ. Equ. 38, 1208–1234 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, D., Zhang, Z., Zhao, W.: Fujita-Kato theorem for the 3-D inhomogeneous Navier-Stokes equations. J. Differ. Equ. 261, 738–761 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Danchin, R., Mucha, P.B.: The incompressible Navier-Stokes equations in vacuum. Commun. Pure Appl. Math. 52, 1351–1385 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, P.: Global Fujita-Kato solution of 3-D inhomogeneous incompressible Navier-Stokes system. Adv. Math. 363, 107007 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Danchin, R., Mucha, P.B., Tolksdorf, P.: Lorentz spaces in action on pressureless systems arising from models of collective behavior. J. Evol. Equ. 21, 3103–3127 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, vol. 343. Springer-Verlag, Berlin (2011)

    Book  MATH  Google Scholar 

  22. Grafakos, L.: Classical and Modern Fourier Analysis. Prentice Hall, New Jersey (2006)

    MATH  Google Scholar 

  23. Danchin, R., Fanelli, F., Paicu, M.: A well-posedness result for viscous compressible fluids with only bounded density. Anal. PDEs 13, 275–316 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Danchin, R.: Fourier analysis methods for partial differential equations. https://perso.math.u-pem.fr/danchin.raphael/cours/courschine.pdf (2005)

  25. Triebel, H.: Interpolation theory, function spaces, differential operators. North-Holland Mathematical Library, vol. 18. North-Holland Publishing Co., Amsterdam-New York (1978)

    MATH  Google Scholar 

  26. Kozono, H., Shimizu, S.: Strong solutions of the Navier-Stokes equations based on the maximal Lorentz regularity theorem in Besov spaces. J. Funct. Anal. 276, 896–931 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Runst, T., Sickel, W.: Sobolev spaces of fractional order, Nemytskij operators, and non- linear partial differential equations. In: De Gruyter Series in Nonlinear Analysis and Applications, vol. 3 (1996)

  28. Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Scientifiques de l’École Normale Sup. 14(4), 209–246 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bergh, J., Löfstrom, J.: Interpolation Spaces, an Introduction. Springer-Verlag, Berlin (1976)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the anonymous referees for their careful reading and relevant suggestions. The first author is partially supported by the ANR project INFAMIE (ANR-15-CE40-0011). The second author has been partly funded by the Bézout Labex, funded by ANR, reference ANR-10-LABX-58.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaël Danchin.

Additional information

Communicated by Horng-Tzer Yau.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

For the reader’s convenience, we here list some results involving Besov spaces and Lorentz spaces, prove maximal regularity estimates in Lorentz spaces for (2.4), and product estimates that were needed in the last section.

The following properties of Lorentz spaces may be found in [22] (and [25, Th2:1.18.6] for the first item):

Proposition A.1

(Properties of Lorentz spaces). There holds:

  1. (1)

    Interpolation: For all \(1\le r,q\le \infty \) and \(\theta \in (0,1)\), we have

    $$\begin{aligned} \left( L_{p_{1}}({\mathbb {R}}_{+};L_{q}({\mathbb {R}}^{d}));L_{p_{2}}({\mathbb {R}}_{+};L_{q}({\mathbb {R}}^{d})) \right) _{\theta ,r}=L_{p,r}({\mathbb {R}}_{+};L_{q}({\mathbb {R}}^{d}))), \end{aligned}$$

    where \(1<p_{1}<p<p_{2}<\infty \) are such that \(\frac{1}{p}=\frac{(1-\theta )}{p_{1}}+\frac{\theta }{p_{2}}\cdot \)

  2. (2)

    Embedding: \(L_{p,r_{1}}\hookrightarrow L_{p,r_{2}} \ \text {if}\ r_{1}\le r_{2},\) and \(L_{p,p}=L_{p}.\)

  3. (3)

    Hölder inequality: for \(1<p,p_{1},p_{2}<\infty \) and \(1 \le r,r_{1},r_{2}\le \infty ,\) we have

    $$\begin{aligned} \Vert {fg}\Vert _{L_{p,r}}\lesssim \Vert {f}\Vert _{L_{p_{1},r_{1}}}\Vert {g}\Vert _{L_{p_{2},r_{2}}} \quad \hbox {if}\quad \frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}\quad \hbox {and}\quad \frac{1}{r} =\frac{1}{r_{1}}+\frac{1}{r_{2}}\cdot \end{aligned}$$

    This still holds for couples (1, 1) and \((\infty ,\infty )\) with the convention \(L_{1,1}=L_{1}\) and \(L_{\infty ,\infty }=L_{\infty }.\)

  4. (4)

    For any \(\alpha >0\) and nonnegative measurable function f,  we have \(\Vert {f^{\alpha }}\Vert _{L_{p,r}} =\Vert {f}\Vert ^{\alpha }_{L_{p\alpha ,r\alpha }}\).

  5. (5)

    For any \(k>0\), we have \(\Vert {x^{-k}1_{{\mathbb {R}}_+}}\Vert _{L_{1/k,\infty }}=1\).

Next, let us state a few classical properties of Besov spaces.

Proposition A.2

(Besov embedding). There holds:

  1. (1)

    For any (pq) in \([1,\infty ]^{2}\) such that \(p\le q,\) we have

    $$\begin{aligned} \dot{B}^{d/p-d/q}_{p,1}({\mathbb {R}}^{d})\hookrightarrow L_{q}({\mathbb {R}}^{d}). \end{aligned}$$
  2. (2)

    Let \(1\le p_{1}\le p_{2}\le \infty \) and \(1\le r_{1}\le r_{2}\le \infty .\) Then, for any real number s,

    $$\begin{aligned} \dot{B}^{s}_{p_{1},r_{1}}({\mathbb {R}}^{d})\hookrightarrow \dot{B}^{s-d(\frac{1}{p_{1}}-\frac{1}{p_{2}})}_{p_{2},r_{2}}({\mathbb {R}}^{d}). \end{aligned}$$

The interpolation theory in Besov spaces played an important role in our paper. Below are listed some results that we used (see details in [21, Prop. 2.22] or in [25, chapter 2.4.2]).

Proposition A.3

(Interpolation). A constant C exists that satisfies the following properties. If \(s_{1}\) and \(s_{2}\) are real numbers such that \(s_{1}<s_{2}\) and \(\theta \in ]0,1[,\) then we have, for any \((p,r)\in [1,\infty ]^{2}\) and any tempered distribution u satisfying (2.3),

$$\begin{aligned} \Vert {u}\Vert _{\dot{B}^{\theta s_{1}+(1-\theta )s_{2}}_{p,r}({\mathbb {R}}^{d})} \le \Vert {u}\Vert ^{\theta }_{\dot{B}^{s_{1}}_{p,r}}\Vert {u}\Vert ^{1-\theta }_{\dot{B}^{s_{2}}_{p,r} ({\mathbb {R}}^{d})} \end{aligned}$$

and, for some constant C depending only on \(\theta \) and \(s_2-s_1,\)

$$\begin{aligned} \Vert {u}\Vert _{\dot{B}^{\theta s_{1}+(1-\theta )s_{2}}_{p,1}({\mathbb {R}}^{d})} \le C\Vert {u}\Vert ^{\theta }_{\dot{B}^{s_{1}}_{p,\infty }({\mathbb {R}}^{d})} \Vert {u}\Vert ^{1-\theta }_{\dot{B}^{s_{2}}_{p,\infty }({\mathbb {R}}^{d})}. \end{aligned}$$

Furthermore, we have for all \(s\in (0,1)\) and \((p,q)\in [1,\infty ]^2:\)

$$\begin{aligned} \dot{B}^{s}_{p,q}({\mathbb {R}}^d)=\bigl (L_{p}({\mathbb {R}}^d);\dot{W}^{1}_{p}({\mathbb {R}}^d)\bigr )_{s,q}. \end{aligned}$$

The following proposition has been used several times.

Proposition A.4

Let \(1\le q<\infty \), \(1\le p<r\le \infty \) and \(\theta \in (0,1)\) such that

$$\begin{aligned} \frac{1}{r}+\frac{1}{d}-\frac{2\theta }{dq}=\frac{1}{p}\cdot \end{aligned}$$
(6.16)

Then, there exists C so that the following inequality holds true

$$\begin{aligned} \Vert {\nabla u}\Vert _{L_r({\mathbb {R}}^d)}\le C\Vert {\nabla ^2 u}\Vert ^{\theta }_{L_p({\mathbb {R}}^d)} \Vert {u}\Vert ^{1-\theta }_{\dot{B}^{2-2/q}_{p,\infty }({\mathbb {R}}^d)}\cdot \end{aligned}$$

Proof

Proposition A.3 tells us in particular that

$$\begin{aligned} \Vert u\Vert _{\dot{B}^{2-\frac{2\theta }{q}}_{p,1}}\lesssim \Vert u\Vert _{\dot{B}^2_{p,\infty }}^{1-\theta } \Vert u\Vert _{\dot{B}^{2-\frac{2}{q}}_{p,\infty }}^{\theta }. \end{aligned}$$

It is obvious that

$$\begin{aligned} \Vert u\Vert _{\dot{B}^2_{p,\infty }}\lesssim \Vert \nabla ^2 u\Vert _{L_p} \end{aligned}$$

and, according to Proposition A.2 and to the definition of \(\theta ,\) we have

$$\begin{aligned} \dot{B}^{2-\frac{2\theta }{q}}_{p,1}({\mathbb {R}}^d)\hookrightarrow \dot{B}^{2+\frac{d}{r}-\frac{d}{p}-\frac{2\theta }{q}}_{r,1}({\mathbb {R}}^d) =\dot{B}^1_{r,1}({\mathbb {R}}^d). \end{aligned}$$

As \(\dot{B}^1_{r,1}({\mathbb {R}}^d)\hookrightarrow \dot{W}^1_r({\mathbb {R}}^d),\) we get the desired inequality. \(\square \)

The following result that is an easy adaptation of [20, Prop. 2.1] played a key role in Sects. 3 and 4. Note that estimates in the same spirit but for source terms valued in Besov spaces have been proved by Kozono and Shimizu in [26].

Proposition A.5

Let \(1<p,q< \infty \) and \(1\le r\le \infty .\) Then, for any \(u_{0}\in \dot{B}^{2-2/q}_{p,r}({\mathbb {R}}^{d})\) with \(\textrm{div}\,u_0=0,\) and any \(f\in L_{q,r}(0,T;L_{p}({\mathbb {R}}^{d})),\) the Stokes system (2.4) has a unique solution \((u,\nabla P)\) with \(\nabla P\in L_{q,r}(0,T;L_p({\mathbb {R}}^d))\) andFootnote 2u in the space \(\dot{W}^{2,1}_{p,(q,r)}((0,T)\times {\mathbb {R}}^{d})\) defined by

$$\begin{aligned} \bigl \{u\in {\mathcal {C}}([0,T];\dot{B}^{2-2/q}_{p,r}( {\mathbb {R}}^{d})):u_{t}, \nabla ^{2}u\in L_{q,r}(0,T;L_{p}( {\mathbb {R}}^{d})) \bigr \}\cdot \end{aligned}$$

Furthermore, there exists a constant C independent of T such that

$$\begin{aligned}&\mu ^{1-1/q}\Vert {u}\Vert _{L_{\infty }(0,T;\dot{B}^{2-2/q}_{p,r}({\mathbb {R}}^{d}))} +\Vert {u_{t}, \mu \nabla ^{2}u,\nabla P}\Vert _{L_{q,r}(0,T;L_{p}({\mathbb {R}}^{d}))}\nonumber \\&\quad \le C\bigl (\mu ^{1-1/q}\Vert {u_{0}}\Vert _{\dot{B}^{2-2/q}_{p,r}({\mathbb {R}}^{d})} +\Vert {f}\Vert _{L_{q,r}(0,T;L_{p}({\mathbb {R}}^{d}))}\bigr )\cdot \end{aligned}$$
(A.1)

Let \(\widetilde{s}>q\) be such that

$$\begin{aligned} \frac{1}{q}-\frac{1}{\widetilde{s}}\le \frac{1}{2}\quad \hbox {and}\quad \frac{d}{2p}+\frac{1}{q} -\frac{1}{\widetilde{s}}>\frac{1}{2}, \end{aligned}$$

and define \(\widetilde{m}\ge p\) by the relation

$$\begin{aligned} \frac{d}{2\widetilde{m}}+\frac{1}{\widetilde{s}} =\frac{d}{2p}+\frac{1}{q}-\frac{1}{2}\cdot \end{aligned}$$

Then, the following inequality holds true:

$$\begin{aligned}&\mu ^{1+\frac{1}{\widetilde{s}}-\frac{1}{q}}\Vert {\nabla u}\Vert _{L_{\widetilde{s},r} (0,T;L_{\widetilde{m}}({\mathbb {R}}^{d}))}\nonumber \\&\quad \le C(\mu ^{1-1/q}\Vert {u}\Vert _{L_{\infty }(0,T;\dot{B}^{2-2/q}_{p,r}({\mathbb {R}}^{d}))} +\Vert {u_{t}, \mu \nabla ^{2}u}\Vert _{L_{q,r}(0,T;L_{p}({\mathbb {R}}^{d}))}). \end{aligned}$$
(A.2)

Finally, if \(2/q+d/p>2,\) then for all \(s\in (q,\infty )\) and \(m\in (p,\infty )\) such that

$$\begin{aligned} \frac{d}{2m}+\frac{1}{s}=\frac{d}{2p}+\frac{1}{q}-1, \end{aligned}$$

it holds that

$$\begin{aligned}&\mu ^{1+\frac{1}{s}-\frac{1}{q}}\Vert {u}\Vert _{L_{s,r}(0,T;L_{m}({\mathbb {R}}^{d}))}\nonumber \\&\quad \le C\bigl (\mu ^{1-1/q}\Vert {u}\Vert _{L_{\infty }(0,T;\dot{B}^{2-2/q}_{p,r}({\mathbb {R}}^{d}))} +\Vert {u_{t}, \mu \nabla ^{2}u}\Vert _{L_{q,r}(0,T;L_{p}({\mathbb {R}}^{d}))}\bigr )\cdot \end{aligned}$$
(A.3)

Proof

Let \({\mathbb {P}}\) and \({\mathbb {Q}}\) be the Helmholtz projectors defined in (3.27). As \(u={\mathbb {P}}u,\) we have

$$\begin{aligned} u_t-\mu \Delta u={\mathbb {P}}f,\qquad u|_{t=0}= u_0. \end{aligned}$$

Applying [20, Prop 2.1] and using that \({\mathbb {P}}\) is continuous on \(L_{q,r}(0,T;L_{p}( {\mathbb {R}}^{d}))\) gives (A.2) and (A.4) for u. Since \(\nabla P={\mathbb {Q}}f,\) and \({\mathbb {Q}}\) is also continuous on \(L_{q,r}(0,T;L_{p}( {\mathbb {R}}^{d}))\), \(\nabla P\) satisfies (A.2) too.

In order to prove (A.3), take \(q_0\) and \(q_1\) such that \(1<q_{0}<q<q_{1}<\infty \) and \(2/q=1/q_{0}+1/q_{1}.\) From the mixed derivative theorem we have for all \(\gamma \in (0,1)\) and \(i=0,1,\)

$$\begin{aligned} \dot{W}^{2,1}_{p,q_{i}}((0,T)\times {\mathbb {R}}^{d}) := \dot{W}^{2,1}_{p,(q_{i},q_{i})}((0,T)\times {\mathbb {R}}^{d}) \hookrightarrow \dot{W}^{\gamma }_{q_{i}}(0,T;\dot{W}^{2-2\gamma }_{p}({\mathbb {R}}^{d})). \end{aligned}$$

Let \(\gamma :=1/q-1/\widetilde{s}\) (so that \(d/\widetilde{m}=d/p+2\gamma -1\)). As \(\gamma \in (0,\frac{1}{2}]\) and \(1-2\gamma <d/p,\) one can use the Sobolev embedding

$$\begin{aligned} \dot{W}^{\gamma }_{q_{i}}(0,T;\dot{W}^{2-2\gamma }_{p}({\mathbb {R}}^{d})) \hookrightarrow L_{\widetilde{s}_{i}}(0,T;\dot{W}^{1}_{\widetilde{m}}({\mathbb {R}}^{d})) \quad \hbox {with}\quad \frac{1}{\widetilde{s}_{i}}=\frac{1}{q_{i}}-\gamma . \end{aligned}$$
(A.4)

In the proof of [20, Prop. 2.1], it is pointed out that

$$\begin{aligned} \dot{W}^{2,1}_{p,(q,r)}((0,T)\times {\mathbb {R}}^{d})=\bigl (\dot{W}^{2,1}_{p,q_0} ((0,T)\times {\mathbb {R}}^{d});\dot{W}^{2,1}_{p,q_1}((0,T)\times {\mathbb {R}}^{d})\bigr )_{\frac{1}{2},r}. \end{aligned}$$

Consequently, the embeddings (A.5) with \(i=0\) and \(i=1\) imply that

$$\begin{aligned} \dot{W}^{2,1}_{p,(q,r)}((0,T)\times {\mathbb {R}}^{d})\hookrightarrow \bigl ( L_{\widetilde{s}_{0}}(0,T;\dot{W}^{1}_{\widetilde{m}} ({\mathbb {R}}^{d})); L_{\widetilde{s}_{1}}(0,T;\dot{W}^{1}_{\widetilde{m}} ({\mathbb {R}}^{d}))\bigr )_{\frac{1}{2},r}. \end{aligned}$$
(A.5)

Note that our definition of \(\gamma \), \(\widetilde{s}_0\), \(\widetilde{s}_1\), \(q_0\) and \(q_1\) ensures that

$$\begin{aligned} \frac{1}{2}\left( \frac{1}{\widetilde{s}_{0}}+\frac{1}{\widetilde{s}_{1}}\right) =\frac{1}{2}\left( \frac{1}{q_{0}}+\frac{1}{q_{1}}\right) -\gamma =\frac{1}{\widetilde{s}}\cdot \end{aligned}$$

Hence the real interpolation space in the right of (A.6) is nothing but \(L_{q,r}(0,T;\dot{W}^1_{\widetilde{m}}({\mathbb {R}}^{d})),\) which completes the proof. \(\square \)

The usual product is continuous in many Besov spaces (see e.g. [9, 10, 27]). We here present a result that played a key role in the proof of uniqueness in dimension two. In order to prove it, we need to introduce the following so-called Bony decomposition (see [28]):

$$\begin{aligned} uv= T_u v+ T_v u+ R(u,v) \end{aligned}$$

with

$$\begin{aligned} T_u v\triangleq \sum _{j\ge 1} S_{j-1}u \Delta _j v \quad \hbox {and}\quad R(u,v)\triangleq \sum _{j\ge -1}\sum _{\left| {k-j}\right| \le 1} \Delta _j u \Delta _k v. \end{aligned}$$

Above, we used the notation \(\Delta _j:=\dot{\Delta }_j\) for \(j\ge 0\), \(\Delta _{-1}:=\dot{S}_0\), \(\Delta _j=0\) if \(j\le -2\) and \(S_j:=\sum _{j'\le j-1} \Delta _j.\)

Operators T and R are called paraproduct and remainder, respectively. Their general properties of continuity may be found in [21, 25, 29]. The last inequality is new to the best of our knowledge.

Proposition A.6

Let \(2\le p\le \infty \) and \(1\le r_1,r_2\le \infty \) satisfy \(\frac{1}{r_1}+\frac{1}{r_2}=1.\) Then, the following inequality holds true:

$$\begin{aligned} \Vert R(u,v)\Vert _{B^{-\frac{d}{p}}_{p,\infty }({\mathbb {R}}^d)} \lesssim \Vert u\Vert _{B^{\frac{d}{p}}_{p,r_1}({\mathbb {R}}^d)} \Vert v\Vert _{B^{-\frac{d}{p}}_{p,r_2}({\mathbb {R}}^d)}. \end{aligned}$$
(A.6)

In \({\mathbb {R}}^2\), it holds that

$$\begin{aligned} \Vert uv\Vert _{H^{-1}({\mathbb {R}}^2)}\lesssim \textrm{log}\,^{\frac{1}{2}} \Bigl (1+\frac{\Vert v\Vert _{L_2({\mathbb {R}}^2)}}{\Vert v\Vert _{H^{-1}({\mathbb {R}}^2)}}\Bigr ) \Vert u\Vert _{H^1({\mathbb {R}}^2)\cap L_\infty ({\mathbb {R}}^2)}\Vert v\Vert _{H^{-1}({\mathbb {R}}^2)}. \end{aligned}$$
(A.7)

Proof

To prove the first statement, we use that, by definition of the homogeneous remainder operator

$$\begin{aligned} R(u,v)=\sum _{j\ge -1}\widetilde{\Delta }_{j} u\Delta _j v\quad \hbox {with}\quad \widetilde{\Delta }_{j}\triangleq \Delta _{j-1}+\Delta _{j} +\Delta _{j+1}. \end{aligned}$$

Hence, owing to the support properties of the dyadic partition of unity, there exists an integer \(N_0\) such that

$$\begin{aligned} \Delta _k R(u,v)=\sum _{j\ge k-N_0} \Delta _k (\widetilde{\Delta }_j u \Delta _j v) =\sum _{\nu \le N_0} \dot{\Delta }_k(\widetilde{\Delta }_{k-\nu } u\Delta _{k-\nu } v) \cdot \end{aligned}$$
(A.8)

As \(2\le p\le \infty ,\) thanks to Bernstein’s inequality, we have

$$\begin{aligned} \Vert \Delta _k R(u,v)\Vert _{L_p({\mathbb {R}}^d)}\le 2^{k\frac{d}{p}}\Vert \Delta _k R(u,v) \Vert _{L_{p/2}({\mathbb {R}}^d)}\cdot \end{aligned}$$

Therefore, using convolution inequalities and (A.9), we discover that

$$\begin{aligned} 2^{-k\frac{d}{p}}\Vert \Delta _k R(u,v)\Vert _{L_p({\mathbb {R}}^d)}&\lesssim \sum _{\nu \le N_0}\Vert \widetilde{\Delta }_{k-\nu } u\Delta _{k-\nu } v\Vert _{L_{p/2}({\mathbb {R}}^d)}\\&\lesssim \sum _{\nu \le N_0} 2^{\frac{(k-\nu )d}{p}}\Vert \widetilde{\Delta }_{k-\nu } u\Vert _{L_p({\mathbb {R}}^d)} 2^{-\frac{(k-\nu )d}{p}} \Vert \Delta _{k-\nu } v \Vert _{L_p({\mathbb {R}}^d)} \end{aligned}$$

which gives (A.7).

In order to prove (A.8), we start from the following properties of continuity of the paraproduct operator (see e.g. [21, Chapter 2]):

$$\begin{aligned} \Vert T_{u}v\Vert _{H^{-1}({\mathbb {R}}^2)}&\lesssim \Vert u\Vert _{L_\infty ({\mathbb {R}}^2)}\Vert v\Vert _{H^{-1}({\mathbb {R}}^2)}, \end{aligned}$$
(A.9)
$$\begin{aligned} \Vert T_{v}u\Vert _{H^{-1}({\mathbb {R}}^2)}&\lesssim \Vert v\Vert _{H^{-1}({\mathbb {R}}^2)}\Vert u\Vert _{H^1({\mathbb {R}}^2)}\cdot \end{aligned}$$
(A.10)

Next, we decompose R(uv) into low and high frequencies, using (A.7), to get for all \(n\in {\mathbb {N}},\)

$$\begin{aligned} \Vert R(u,v)\Vert ^2_{H^{-1}({\mathbb {R}}^2)}&=\sum _{j\ge -1} 2^{-2j} \Vert \Delta _j R(u,v)\Vert ^2_{L_2({\mathbb {R}}^2)}\\&=\sum _{-1\le j\le N} 2^{-2j}\Vert \Delta _j R(u,v) \Vert ^2_{L_2({\mathbb {R}}^2)}+\sum _{j>N} 2^{-2j}\Vert \Delta _j R(u,v)\Vert ^2_{L_2({\mathbb {R}}^2)}\\&\lesssim N \Vert R(u,v)\Vert ^2_{B^{-1}_{2,\infty }({\mathbb {R}}^2)}+2^{-2N}\Vert R(u,v) \Vert ^2_{B^0_{2,\infty }({\mathbb {R}}^2)}\\&\lesssim N \Vert u\Vert ^2_{H^1({\mathbb {R}}^2)}\Vert v\Vert ^2_{H^{-1}({\mathbb {R}}^2)}+2^{-2N} \Vert u\Vert ^2_{H^1({\mathbb {R}}^2)}\Vert v\Vert ^2_{B^{-1}_{\infty ,2}({\mathbb {R}}^2)}\cdot \end{aligned}$$

Then, choosing N to be the closest integer larger than \(\textrm{log}\,_2 \Bigl (1\!+\!\frac{\Vert v\Vert _{B^{-1}_{\infty ,2}}}{\Vert v\Vert _{H^{-1}}}\Bigr )\) leads to

$$\begin{aligned} \Vert R(u,v)\Vert _{H^{-1}({\mathbb {R}}^2)}\lesssim \textrm{log}\,^{\frac{1}{2}} \biggl (1+\frac{\Vert v\Vert _{B^{-1}_{\infty ,2}({\mathbb {R}}^2)}}{\Vert v\Vert _{H^{-1}({\mathbb {R}}^2)}}\biggr ) \Vert u\Vert _{H^1({\mathbb {R}}^2)}\Vert v\Vert _{H^{-1}({\mathbb {R}}^2)}\cdot \end{aligned}$$

Combining with the embedding \(B^0_{2,2}({\mathbb {R}}^2)\hookrightarrow B^{-1}_{\infty ,2}({\mathbb {R}}^2)\), and Inequalities (A.10), (A.11), this completes the proof of (A.8). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danchin, R., Wang, S. Global Unique Solutions for the Inhomogeneous Navier-Stokes equations with only Bounded Density, in Critical Regularity Spaces. Commun. Math. Phys. 399, 1647–1688 (2023). https://doi.org/10.1007/s00220-022-04592-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04592-7

Navigation