Skip to main content
Log in

Spectrum of the Transfer Matrices of the Spin Chains Associated with the \(A^{(2)}_3\) Lie Algebra

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the exact solution of quantum integrable system associated with the \(A^{(2)}_3\) twist Lie algebra, where the boundary reflection matrices have non-diagonal elements thus the U(1) symmetry is broken. With the help of the fusion technique, we obtain the closed recursive relations of the fused transfer matrices. Based on them, together with the asymptotic behaviors and the values at special points, we obtain the eigenvalues and Bethe ansatz equations of the system. We also show that the method is universal and valid for the periodic boundary condition where the U(1) symmetry is reserved. The results in this paper can be applied to studying the exact solution of the \(A^{(2)}_n\)-related integrable models with arbitrary n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. If \(m\le 0\), we have \(0\le L_1\le N\). When \(m\ge 0\), we have \(N\le L_1\le 2N\).

References

  1. Sklyanin, E.K.: Boundary conditions for integrable quantum systems. J. Phys. A 21, 2375 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Gaudin, M., Caux, J.-S.: The Bethe wavefunction. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  3. Takhtadzhan, L.A., Faddeev, L.D.: The quantum method of the inverse problem and the Heisenberg XYZ model. Russ. Math. Surv. 34, 11 (1979)

    Article  Google Scholar 

  4. Sklyanin, E.K., Takhtajan, L.A., Faddeev, L.D.: Qunatum inverse problem method. Theor. Math. Phys. 40, 688 (1980)

    Article  Google Scholar 

  5. Korepin, V.E., Boliubov, N.M., Izergin, A.G.: Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  6. Baseilhac, P.: The q-deformed analogue of the Onsager algebra: beyond the Bethe ansatz approach. Nucl. Phys. B 754, 309 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Baseilhac, P., Koizumi, K.: Exact spectrum of the XXZ open spin chain from the q-Onsager algebra representation theory. J. Stat. Mech. P09006 (2007)

  8. Baseilhac, P., Belliard, S.: Generalized q-Onsager algebras and boundary affine Toda field theories. Lett. Math. Phys. 93, 213 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Baseilhac, P., Belliard, S.: The half-infinite XXZ chain in Onsager’s approach. Nucl. Phys. B 873, 550 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Sklyanin, E.K.: Separation of variables-new trends. Prog. Theor. Phys. Suppl. 118, 35 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Frahm, H., Seel, A., Wirth, T.: Separation of variables in the open XXX chain. Nucl. Phys. B 802, 351 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Frahm, H., Grelik, J.H., Seel, A., Wirth, T.: Functional Bethe ansatz methods for the open XXX chain. J. Phys. A 44, 015001 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Niccoli, G.: Non-diagonal open spin-1/2 XXZ quantum chains by separation of variables: complete spectrum and matrix elements of some quasi-local operators. J. Stat. Mech. P10025 (2012)

  14. Cao, J., Yang, W.-L., Shi, K., Wang, Y.: Off-diagonal Bethe ansatz and exact solution of a topological spin ring. Phys. Rev. Lett. 111, 137201 (2013)

    Article  ADS  Google Scholar 

  15. Wang, Y., Yang, W.-L., Cao, J., Shi, K.: Off-Diagonal Bethe Ansatz for Exactly Solvable Models. Springer Press, Berlin (2015)

    Book  MATH  Google Scholar 

  16. Belliard, S., Crampé, N.: Heisenberg XXX model with general boundaries: eigenvectors from algebraic Bethe Ansatz. SIGMA 9, 072 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Belliard, S.: Modified algebraic Bethe ansatz for XXZ chain on the segment I: triangular cases. Nucl. Phys. B 892, 1 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Belliard, S., Pimenta, R.A.: Modified algebraic Bethe ansatz for XXZ chain on the segment II: general cases. Nucl. Phys. B 894, 527 (2015)

    Article  ADS  MATH  Google Scholar 

  19. Avan, J., Belliard, S., Grosjean, N., Pimenta, R.A.: Modified algebraic Bethe ansatz for XXZ chain on the segment III: proof. Nucl. Phys. B 899, 229 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Reshetikhin, NYu.: A method of functional equations in the theory of exactly solvable quantum systems. Sov. Phys. JETP 57, 691 (1983)

    ADS  Google Scholar 

  21. Reshetikhin, NYu.: The spectrum of the transfer matrices connected with Kac-Moody algebras. Lett. Math. Phys. 14, 235 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Artz, S., Mezincescu, L., Nepomechie, R.I.: Analytical Bethe Ansatz for \(A^{(2)}_{2n-1}, B^{(1)}_n, C^{(1)}_n, D^{(1)}_n\) quantum-algebra-invariant open spin chains. J. Phys. A 28, 5131 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Nepomechie, R.I., Pimenta, R.A., Retore, A.L.: The integrable quantum group invariant \(A_{2n-1}^{(2)}\) and\( D_{n+1}^{(2)}\) open spin chains. Nucl. Phys. B 924, 86 (2017)

    Article  ADS  MATH  Google Scholar 

  24. Li, G.-L., Shi, K.J.: The algebraic Bethe ansatz for open vertex models. J. Stat. Mech. 0701, P01018 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Cao, J., Yang, W.-L., Shi, K., Wang, Y.: Nested off-diagonal Bethe ansatz and exact solutions of the \(SU(N)\) spin chain with generic integrable boundaries. JHEP 04, 143 (2014)

    Article  ADS  Google Scholar 

  26. Izergin, A.G., Korepin, V.E.: The inverse scattering method approach to the quantum Shabat-Mikhailov model. Commun. Math. Phys. 79, 303 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  27. Hao, K., Cao, J., Li, G.-L., Yang, W.-L., Shi, K., Wang, Y.: Exact solution of the Izergin-Korepin model with general non-diagonal boundary terms. JHEP 06, 128 (2014)

    Article  ADS  Google Scholar 

  28. Martins, M.J., Guan, X.W.: Integrability of the \(D^{(2)}_n\) vertex models with open boundary. Nucl. Phys. B 583, 721 (2000)

    Article  ADS  MATH  Google Scholar 

  29. Nepomechie, R.I., Pimenta, R.A.: New \(D^{(2)}_{n+1}\)\(K\)-matrices with quantum group symmetry. J. Phys. A 51, 39LT02 (2018)

    Article  MATH  Google Scholar 

  30. Nepomechie, R.I., Pimenta, R.A., Retore, A.L.: Towards the solution of an integrable \(D^{(2)}_2\) spin chain. J. Phys. A 52, 434004 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Nepomechie, R.I., Retore, A.L.: Factorization identities and algebraic Bethe ansatz for \(D^{(2)}_2\) models. JHEP 03, 089 (2021)

    Article  ADS  Google Scholar 

  32. Kulish, P.P., Reshetikhin, NYu., Sklyanin, E.K.: Yang–Baxter equation and representation theory 1. Lett. Math. Phys. 5, 393 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Kulish, P.P., Reshetikhin, N.Y.: Quantum linear problem for the sine-Gordon equation and higher representation. J. Sov. Math. 23, 2435 (1983)

    Article  Google Scholar 

  34. Karowski, M.: On the bound state problem in (1+1)-dimensional field theories. Nucl. Phys. B 153, 244 (1979)

    Article  ADS  Google Scholar 

  35. Kirillov, A.N., Reshetikhin, NYu.: Exact solution of the Heisenberg XXZ model of spin \(s\). J. Sov. Math. 35, 2627 (1986)

    Article  MATH  Google Scholar 

  36. Kirillov, A.N., Reshetikhin, NYu.: Exact solution of the integrable XXZ Heisenberg model with arbitrary spin I: the ground state and the excitation spectrum. J. Phys. A 20, 1565 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  37. Mezincescu, L., Nepomechie, R.I.: Fusion Procedure for Open Chains. J. Phys. A 25, 2533 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  38. Mezincescu, L., Nepomechie, R.I.: Analytical Bethe ansatz for quantum algebra invariant spin chains. Nucl. Phys. B 372, 597 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  39. Jimbo, M.: Quantum \(R\) matrix for the generalized Toda system. Commun. Math. Phys. 102, 537 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Lima-Santos, A., Malara, R.: \(C^{(1)}_n\), \(D^{(1)}_n\) and \(A^{(2)}_{2n-1}\) reflection \(K\)-matrices. Nucl. Phys. B 675, 661 (2003)

    Article  ADS  MATH  Google Scholar 

  41. Malara, R., Lima-Santos, A.: On \(A^{(1)}_{n-1}\), \(B^{(1)}_{n}\), \(C^{(1)}_{n}\), \(D^{(1)}_{n}\), \(A^{(2)}_{2n}\), \(A^{(2)}_{2n-1}\) and \(D^{(2)}_{n+1}\) reflection \(K\)-matrices, J. Stat. Mech. P09013 (2006)

Download references

Acknowledgements

We would like to thank Professor Y. Wang for his valuable discussions and continuous encouragement. The financial supports from National Key R &D Program of China (Grant No. 2021YFA1402104), the National Natural Science Foundation of China (Grant Nos. 12175180, 12105221, 12074410, 12047502, 12075177, 11934015, 11975183, 11947301, 91536115, 12275214, 12205235 and 12105221), Major Basic Research Program of Natural Science of Shaanxi Province (Grant Nos. 2021JCW-19, 2017KCT-12 and 2017ZDJC-32), the Scientific Research Program Funded by Shaanxi Provincial Education Department (Grant No. 21JK0946), Australian Research Council (Grant No. DP 190101529), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33000000), Beijing National Laboratory for Condensed Matter Physics (Grant No. 202162100001), Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, Xi’an Jiaotong University, and the Double First-Class University Construction Project of Northwest University are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junpeng Cao or Wen-Li Yang.

Additional information

Communicated by J.d-Gier.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Expression of the R-Matrix \(\varvec{R}_{{\overline{1}}{2}}(u)\)

Appendix A: Expression of the R-Matrix \(\varvec{R}_{{\overline{1}}{2}}(u)\)

In this appendix, we give the explicit expression of the R-matrix \(R_{{\bar{1}}{2}}(u)\) define in (3.7) as

$$\begin{aligned} R_{\bar{1}2}(u)&= \begin{pmatrix} \begin{array}{cccc|cccc|cccc|cccc|cccc|cccc} r_1&{}&{}&{}&{}&{} &{}&{}&{}&{}&{}&{} &{}&{}&{}&{}&{}&{} &{}&{}&{}&{}&{}&{} \\ &{}r_1&{}&{}&{}&{} &{}&{}&{}&{}&{}&{} &{}&{}&{}&{}&{}&{} &{}&{}&{}&{}&{}&{} \\ &{}&{}r_2&{} &{}&{}r_7 &{}&{} &{}r_8&{}&{}&{} &{}r_{10}&{}&{}&{}&{}&{} &{}&{}&{}&{}&{}&{} \\ &{}&{}&{}r_{2} &{}&{} &{}&{} &{}&{}r_9&{}&{} &{}&{}r_{11}&{}&{} &{}r_{12}&{} &{}&{}&{}&{}&{}&{} \\ \hline &{}&{}&{}&{}r_{1}&{} &{}&{}&{}&{}&{}&{} &{}&{}&{}&{}&{}&{} &{}&{}&{}&{}&{}&{} \\ &{}&{}r_7&{} &{}&{}r_{2} &{}&{} &{}r_8&{}&{}&{} &{}-r_{10}&{}&{}&{}&{}&{} &{}&{}&{}&{}&{}&{} \\ &{}&{}&{} &{}&{} &{}r_{1}&{}&{}&{}&{}&{} &{}&{}&{}&{}&{}&{} &{}&{}&{}&{}&{}&{} \\ &{}&{}&{} &{}&{} &{}&{}r_{2} &{} &{}&{}r_9&{} &{}&{}&{}-r_{11}&{} &{}&{} &{}&{} &{}r_{12}&{}&{}&{} \\ \hline &{}&{}r_{13}&{} &{}r_{13}&{} &{}&{}&{}r_{3}&{}&{}&{} &{}&{}&{}&{}&{}&{} &{}&{}&{}&{}&{}&{} \\ &{}&{}&{}r_{14} &{}&{} &{}&{} &{}&{}r_{4}&{}&{} &{}&{}r_{15}&{}&{} &{}r_9&{} &{}&{}&{}&{}&{}&{} \\ &{}&{}&{} &{}&{} &{}&{}r_{14} &{}&{}&{}r_{4}&{} &{}&{}&{}-r_{15}&{} &{}&{} &{}&{} &{}r_{9}&{}&{}&{} \\ &{}&{}&{} &{}&{} &{}&{} &{}&{}&{}&{}r_{3} &{}&{}&{}&{} &{}&{} &{}r_8&{} &{}&{}r_8&{}&{} \\ \hline &{}&{}r_{16}&{} &{}-r_{16}&{} &{} &{} &{}&{}&{}&{} &{}r_{5}&{}&{}&{}&{}&{} &{}&{}&{}&{}&{}&{} \\ &{}&{}&{}r_{17} &{}&{} &{}&{} &{}&{}-r_{15}&{}&{} &{}&{}r_{6}&{}&{} &{}-r_{11}&{} &{}&{}&{}&{}&{}&{} \\ &{}&{}&{} &{}&{} &{}&{}-r_{17} &{}&{}&{}r_{15}&{} &{}&{}&{}r_{6}&{} &{}&{} &{}&{}&{}r_{11}&{}&{}&{} \\ &{}&{}&{}&{}&{} &{}&{}&{}&{}&{}&{} &{}&{}&{}&{}r_{5}&{}&{} &{}-r_{10}&{} &{}&{}r_{10}&{}&{} \\ \hline &{}&{}&{}r_{18} &{}&{} &{}&{} &{}&{}r_{14}&{}&{} &{}&{}-r_{17}&{}&{}&{}r_{2}&{} &{}&{}&{}&{}&{}&{} \\ &{}&{}&{}&{}&{} &{}&{}&{}&{}&{}&{} &{}&{}&{}&{}&{}&{}r_{1} &{}&{}&{}&{}&{}&{} \\ &{}&{}&{} &{}&{} &{}&{} &{}&{}&{}&{}r_{13} &{}&{}&{}&{}-r_{16}&{}&{} &{}r_{2}&{} &{}&{}r_7&{}&{} \\ &{}&{}&{}&{}&{} &{}&{}&{}&{}&{}&{} &{}&{}&{}&{}&{}&{} &{}&{}r_{1}&{}&{}&{}&{} \\ \hline &{}&{}&{} &{}&{} &{}&{}r_{18} &{}&{}&{}r_{14}&{} &{}&{}&{}r_{17}&{}&{}&{} &{}&{}&{}r_{2}&{}&{}&{} \\ &{}&{}&{} &{}&{} &{}&{} &{}&{}&{}&{}r_{13} &{}&{}&{}&{}r_{16}&{}&{} &{}r_7&{}&{}&{}r_{2}&{}&{} \\ &{}&{}&{}&{}&{} &{}&{}&{}&{}&{}&{} &{}&{}&{}&{}&{}&{} &{}&{}&{}&{}&{}r_{1}&{} \\ &{}&{}&{}&{}&{} &{}&{}&{}&{}&{}&{} &{}&{}&{}&{}&{}&{} &{}&{}&{}&{}&{}&{}r_{1} \end{array} \end{pmatrix}, \end{aligned}$$
(A.1)
$$\begin{aligned} r_1=&\,2\sinh (u-3\eta ),\ r_2=2\sinh (u-\eta ),\ r_3=4\sinh \frac{1}{2}(u-3\eta )\cosh \frac{1}{2}(u-\eta ),\nonumber \\ r_4=&\,2(\sinh (u-2\eta )+\sinh 2\eta \sinh \eta ),\ r_5=4\sinh \frac{1}{2}(u-\eta )\cosh \frac{1}{2}(u-3\eta ),\nonumber \\ r_6=&\,2(\sinh (u-2\eta )-\sinh 2\eta \sinh \eta ),\ r_7=-2\sinh 2\eta ,\nonumber \\ r_8=&\,-4e^{-\frac{u}{2}}\sinh \eta \sqrt{\cosh \eta }\sinh \frac{1}{2}(u-3\eta ),\nonumber \\ r_9=&\,-4e^{-\frac{u}{2}+\eta }\sinh \eta \sqrt{\cosh \eta }\cosh \frac{1}{2}(u-\eta ),\nonumber \\ r_{10}=&\,4e^{-\frac{u}{2}}\sinh \eta \sqrt{\cosh \eta }\cosh \frac{1}{2}(u-3\eta ), \nonumber \\ r_{11}=&\,4e^{-\frac{u}{2}+\eta }\sinh \eta \sqrt{\cosh \eta }\sinh \frac{1}{2}(u-\eta ),\nonumber \\ r_{12}=&\,2e^{-\eta }\sinh 2\eta ,\ r_{13}=-e^ur_8,\ r_{14}=e^{u-2\eta }r_9, \ r_{15}=-2\sinh \eta \sinh 2\eta ,\nonumber \\ r_{16}=&\,e^ur_{10},\ r_{17}=-e^{u-2\eta }r_{11},\ r_{18}=2e^{\eta }\sinh 2\eta . \end{aligned}$$
(A.2)

The above expression allows us to derive the very properties (3.9) of the resulting fused R-matrix \(R_{\bar{1}2}(u)\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, GL., Cao, J., Hao, K. et al. Spectrum of the Transfer Matrices of the Spin Chains Associated with the \(A^{(2)}_3\) Lie Algebra. Commun. Math. Phys. 399, 651–672 (2023). https://doi.org/10.1007/s00220-022-04566-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04566-9

Navigation