Skip to main content
Log in

An Invariant of Symmetry Protected Topological Phases with On-Site Finite Group Symmetry for Two-Dimensional Fermion Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider SPT-phases with on-site finite group G symmetry for two-dimensional Fermion systems. We derive an invariant of the classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araki, H.: On the diagonalization of a bilinear Hamiltonian by a Bogoliubov transformation. Publ. Res. Inst. Math. Sci. Kyoto Univ. Ser. A 4, 387–412 (1968)

  2. Araki, H., Moriya, H.: Equilibrium statistical mechanics of fermion lattice systems. Rev. Math. Phys. 15, 93–198 (2003)

    Article  MathSciNet  Google Scholar 

  3. Bachmann, S., Michalakis, S., Nachtergaele, B., Sims, R.: Automorphic equivalence within gapped phases of quantum lattice systems. Commun. Math. Phys. 309, 835–871 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  4. Blackadar, B.: K-Theory for Operator Algebras. Springer, Berlin (1986)

    Book  Google Scholar 

  5. Brumfiel, G., Morgan, J.: The Pontrjagin Dual of 3-Dimensional Spin Bordism. arXiv:1612.02860. 5

  6. Bourne, C., Ogata, Y.: The classification of symmetry protected topological phases of one-dimensional fermion systems. In: Forum of Mathematics, Sigma, vol. 9 (2021)

  7. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. 1. Springer, Berlin (1986)

    MATH  Google Scholar 

  8. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. 2. Springer, Berlin (1996)

    MATH  Google Scholar 

  9. Bru, J.-B., de Siqueira Pedra, W.: Lieb–Robinson Bounds for Multi-Commutators and Applications to Response Theory. Springer Briefs in Mathematical Physics, vol. 13. Springer, Berlin (2017)

  10. Davidson, K.R.: \(C^{*}\)-algebras by example. Fields Inst. Monogr. 6, 79–84 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Elliott, G.: Some simple \(C^{*}\)-algebras constructed as crossed products with discrete outer automorphism groups. Publ. Res. Inst. Math. Sci. Kyoto Univ. 16, 299–311 (1980)

  12. Evans, D., Kawahigashi, Y.: Quantum Symmetries on Operator Algebras. Oxford Mathematical Monographs. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  13. Farah, I.: Combinatorial Set Theory of \(C^{*}\)-Algebras. Springer Monographs in Mathematics. Springer, Berlin (2019)

    Book  Google Scholar 

  14. Hastings, M.B., Wen, X.G.: Quasi-adiabatic continuation of quantum states: the stability of topological ground-state degeneracy and emergent gauge invariance. Phys. Rev. B 72, 045141 (2005)

    Article  ADS  Google Scholar 

  15. Kishimoto, A., Ozawa, N., Sakai, S.: Homogeneity of the pure state space of a separable C*-algebra. Can. Math. Bull. 46, 365–372 (2003)

    Article  MathSciNet  Google Scholar 

  16. Matsui, T.: Split property and fermionic string order. arXiv:2003.13778 (2020)

  17. Moon, A., Ogata, Y.: Automorphic equivalence within gapped phases in the bulk. J. Funct. Anal. 278(8), 108422 (2020)

    Article  MathSciNet  Google Scholar 

  18. Nachtergaele, B., Sims, R., Young, A.: Lieb–Robinson bounds, the spectral flow, and stability of the spectral gap for lattice fermion systems. In: Mathematical Problems in Quantum Physics, vol. 717. Contemporary Mathematics. American Mathematical Society, Providence (2018)

  19. Nachtergaele, B., Sims, R., Young, A.: Quasi-locality bounds for quantum lattice systems. I. Lieb–Robinson bounds, quasi-local maps, and spectral flow automorphisms. J. Math. Phys. 60, 061101 (2019)

  20. Ogata, Y.: A classification of pure states on quantum spin chains satisfying the split property with on-site finite group symmetries. Trans. Am. Math. Soc. Ser. B 8, 39–65 (2021)

    Article  MathSciNet  Google Scholar 

  21. One World Mathematical Physics Seminar 15. Dec. 2020 https://youtu.be/cXk6Fk5wD_4 Theoretical studies of topological phases of matter 17. Dec 2020 https://www.ms.u-tokyo.ac.jp/%7Eyasuyuki/yitp2020x.htm Current Developments in Mathematics 4th January 2021 https://www.math.harvard.edu/event/current-developments-in-mathematics-2020/

  22. Ogata, Y.: Classification of symmetry protected topological phases in quantum spin chains. Curr. Dev, Math (2020)

    MATH  Google Scholar 

  23. Ogata, Y.: A \(H^3(G, {T})\)-valued index of symmetry protected topological phases with on-site finite group symmetry for two-dimensional quantum spin systems, 2021. arXiv:2101.00426

  24. Ogata, Y.: Classification of gapped ground state phases in quantum spin systems. In: Proceedings of the International Congress of Mathematicians (ICM 2022)

  25. Takesaki, M.: Theory of Operator Algebras. I. Encyclopedia of Mathematical Sciences. Springer, Berlin (2002)

    MATH  Google Scholar 

  26. Wang, Q.-R., Gu, Z.C.: Construction and classification of symmetry-protected topological phases in interacting fermion systems. Phys. Rev. X 10, 031055 (2020)

    ADS  Google Scholar 

Download references

Acknowledgements

The author is grateful to Yuji Tachikawa for a stimulating discussion and helpful comments. This work was supported by JSPS KAKENHI Grant Numbers 16K05171 and 19K03534. It was also supported by JST CREST Grant Number JPMJCR19T2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiko Ogata.

Additional information

Communicated by Y. Kawahigashi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported in part by the Grants-in-Aid for Scientific Research, JSPS.

Appendices

Basic Notations

For a Hilbert space \({\mathcal {H}}\), \(B({\mathcal {H}})\) denotes the set of all bounded operators on \({\mathcal {H}}\), while \({\mathcal {U}}({\mathcal {H}})\) denotes the set of all unitaries on \({\mathcal {H}}\). If \(V:{\mathcal {H}}_1\rightarrow {\mathcal {H}}_2\) is a linear map from a Hilbert space \({\mathcal {H}}_1\) to another Hilbert space \({\mathcal {H}}_2\), then \({\mathrm {Ad}}(V):B({\mathcal {H}}_1)\rightarrow B({\mathcal {H}}_2)\) denotes the map \({\mathrm {Ad}}(V)(x):=V x V^*\), \(x\in B({\mathcal {H}}_1)\). Occasionally we write \({\mathrm {Ad}}_V\) instead of \({\mathrm {Ad}}(V)\). For a \(C^{*}\)-algebra \({\mathcal {B}}\) and \(v\in {\mathcal {B}}\), we set \({\mathrm {Ad}}(v)(x):={\mathrm {Ad}}_{v}(x):=vxv^{*}\), \(x\in {\mathcal {B}}\).

For a state \(\omega \) on a \(C^*\)-algebra \({\mathfrak {B}}\), we denote by \(({\mathcal {H}}_\omega , \pi _\omega ,\Omega _\omega )\) its GNS triple. For a \(C^*\)-algebra \({\mathfrak {B}}\), we denote by \({\mathcal {U}}({\mathfrak {B}})\) the set of all unitaries in \({\mathfrak {B}}\). For a \(C^*\)-algebra \({\mathfrak {B}}\), \({\mathfrak {B}}_{+,1}\) denotes the set of all positive elements of \({\mathfrak {B}}\) with norm less than or equal to 1. For states \(\omega ,\varphi \) on a \(C^*\)-algebra \({\mathfrak {B}}\), we write \(\omega \simeq \varphi \) if they are equivalent and \(\omega \sim _{{q.e.}}\varphi \) if they are quasi-equivalent. We denote by \({\mathrm {Aut}}{\mathcal {B}}\) the group of automorphisms on a \(C^{*}\)-algebra \({\mathcal {B}}\). The group of inner automorphisms on a unital \(C^{*}\)-algebra \({\mathcal {B}}\) is denoted by \({\mathrm {Inn}}{\mathcal {B}}\). For \(\gamma _1,\gamma _2\in {\mathrm {Aut}}({\mathcal {B}})\), \(\gamma _1=({\mathrm{inner}})\circ \gamma _2\) means there is some unitary u in \({\mathcal {B}}\) such that \(\gamma _1={\mathrm {Ad}}(u)\circ \gamma _2\). For a unital \(C^{*}\)-algebra \({\mathcal {B}}\), the unit of \({\mathcal {B}}\) is denoted by \(\mathbb {I}_{{\mathcal {B}}}\). For a Hilbert space we write \(\mathbb {I}_{{\mathcal {H}}}:=\mathbb {I}_{{\mathcal {B}}({\mathcal {H}})}\).But we occationally omit \({\mathcal {B}},{\mathcal {H}}\) etc. For a state \(\varphi \) on \({\mathcal {B}}\) and a \(C^{*}\)-subalgebra \({\mathcal {C}}\) of \({\mathcal {B}}\), \(\varphi \vert _{{\mathcal {C}}}\) indicates the restriction of \(\varphi \) to \({\mathcal {C}}\).

The center of a von Neumann algebra \({\mathcal {M}}\) is denoted by \(Z({\mathcal {M}})\).

To denote the composition of automorphisms \(\alpha _1\), \(\alpha _2\), all of \(\alpha _1\circ \alpha _2\), \(\alpha _1\alpha _2\), \(\alpha _1\cdot \alpha _2\) are used. Frequently, the first one serves as a bracket to visually separate a group of operators.

Graded von Neumann Algebras

In this section we collect facts we use about graded von Neumann algebras. See [BO] for further explanation. A graded von Neumann algebra is a pair \(({\mathcal {M}},\theta )\) with \({\mathcal {M}}\) a von Neumann algebra \(\theta \) an involutive automorphism on \({\mathcal {M}}\), \(\theta ^2 = \mathrm {Id}\). The even/odd part of \({\mathcal {M}}\) with respect to the grading is denoted by \({\mathcal {M}}^{(0)}\)/\({\mathcal {M}}^{(1)}\). If \({\mathcal {M}}\subset {\mathcal {B}}({\mathcal {H}})\) and there is a self-adjoint unitary \(\Gamma \) on \({\mathcal {H}}\) such that \(\mathrm {Ad}_{\Gamma }|_{\mathcal {M}}= \theta \), then we call \(({\mathcal {M}},\theta )\) a spatially graded von Neumann algebra with grading operator \(\Gamma \). We say \(({\mathcal {M}},\theta )\) is balanced if \({\mathcal {M}}\) contains an odd self-adjoint unitary. If \(Z({\mathcal {M}})\cap {\mathcal {M}}^{(0)}={\mathbb {C}}\mathbb {I}\) for the center \(Z({\mathcal {M}})\) of \({\mathcal {M}}\), we say \(({\mathcal {M}}, \theta )\) is central.

For a homogeneous state \(\omega \) on a graded \(C^*\)-algebra \({\mathfrak {B}}\), there is a self-adjoint unitary \(\Gamma _\omega \) implementing the grading with respect to \(\pi _\omega \). As a result, the grading extends to the von Neumann algebra \(\pi _\omega ({\mathfrak {B}})''\) by \({\mathrm {Ad}}\Gamma _\omega \). We always consider this extension without mentioning explicitly.

Lemma B.1

Let \(({\mathcal {M}},\Gamma )\) be a balanced central graded von Neumann algebra on a Hilbert space \({\mathcal {H}}\). Then both of \({\mathcal {M}}\) and \({\mathcal {M}}^{(0)}\) are either a factor or a direct sum of two factors of the same type.

Proof

The proof is basically the same as part of Proposition 2.9 of [BO]. From Lemma A.2 of [BO], if \({\mathcal {M}}\) is not a factor, it is a direct sum of two factors of the same type which maps to each other by \({\mathrm {Ad}}\Gamma \).

Let U be a self-adjoint odd unitary in \({\mathcal {M}}\). Suppose that \({\mathcal {M}}^{(0)}\) is not a factor. Then there exists a projection z in \(Z({\mathcal {M}}^{(0)})\) which is not 0 nor \(\mathbb {I}\). For such a projection, we have \(z+{\mathrm {Ad}}_{U}(z)\in {\mathcal {M}}^{(0)}\cap \left( {{\mathcal {M}}^{(0)}}\right) '\cap \{U\}'=Z({\mathcal {M}}) \cap {\mathcal {M}}^{(0)}={\mathbb {C}}\mathbb {I}\), which then implies that \(z+{\mathrm {Ad}}_{U}(z)=\mathbb {I}\). (We note that for orthogonal projections pq satisfying \(p+q=t\mathbb {I}\) with \(t\in {\mathbb {R}}\), either \(p+q=\mathbb {I}\) or \(p=0,\,\mathbb {I}\) holds, by considering the spectrum of \(p=t\mathbb {I}-q\).)

We claim \(Z({\mathcal {M}}^{(0)})={\mathbb {C}}z+{\mathbb {C}}\mathbb {I}\). Now, for any projection s in \(Z({\mathcal {M}}^{(0)})\), zs is a projection in \(Z({\mathcal {M}}^{(0)})\). Therefore either \(zs=0\) or \(zs+{\mathrm {Ad}}_{U}(zs)=\mathbb {I}\). The latter is possible only if \(zs=z\) because \(z+{\mathrm {Ad}}_{U}(z)=\mathbb {I}\). Similarly, we have \((\mathbb {I}-z)s=0\) or \((\mathbb {I}-z)s=\mathbb {I}-z\). Hence we have \(Z({\mathcal {M}}^{(0)})={\mathbb {C}}z+{\mathbb {C}}\mathbb {I}\), proving the claim.

Hence \({\mathcal {M}}^{(0)}\) is a summation of two factors \({\mathcal {M}}^{(0)}={\mathcal {M}}^{(0)}z\oplus {\mathcal {M}}^{(0)}(\mathbb {I}-z)\). Because \({\mathrm {Ad}}U(z)=\mathbb {I}-z\), these factors \({\mathcal {M}}^{(0)}z\), \({\mathcal {M}}^{(0)}(\mathbb {I}-z)\) are isomorphic. In particular, they have the same type. \(\square \)

Let \(({\mathcal {M}}_1,{\mathrm {Ad}}_{\Gamma _1})\) and \(({\mathcal {M}}_2,{\mathrm {Ad}}_{\Gamma _2})\) be spatially graded von Neumann algebras acting on on \({\mathcal {H}}_1\), \({\mathcal {H}}_2\) with grading operators \(\Gamma _1\), \(\Gamma _2\). We define a product and involution on the algebraic tensor product \({\mathcal {M}}_1\odot {\mathcal {M}}_2\) by

$$\begin{aligned} (a_1{\hat{\otimes }} b_1)(a_2{\hat{\otimes }} b_2)&=(-1)^{\partial b_1\partial a_2}(a_1a_2{\hat{\otimes }} b_1b_2), \nonumber \\ (a{\hat{\otimes }} b)^*&=(-1)^{\partial a\partial b} a^*{\hat{\otimes }} b^*. \end{aligned}$$
(B.1)

for homogeneous elementary tensors. The algebraic tensor product with this multiplication and involution is a \(*\)-algebra, denoted \({\mathcal {M}}_1\,\hat{\odot }\,{\mathcal {M}}_2\). On the Hilbert space \({\mathcal {H}}_1\otimes {\mathcal {H}}_2\),

$$\begin{aligned} \pi (a{\hat{\otimes }} b) :=a\Gamma _1^{\partial b}\otimes b \end{aligned}$$
(B.2)

for homogeneous \(a\in {\mathcal {M}}_1\), \(b\in {\mathcal {M}}_2\) defines a faithful \(*\)-representation of \({\mathcal {M}}_1\,\hat{\odot }\,{\mathcal {M}}_2\).

We call the von Neumann algebra generated by \(\pi ({\mathcal {M}}_1\,\hat{\odot }\,{\mathcal {M}}_2)\) the graded tensor product of \(({\mathcal {M}}_1,{\mathcal {H}}_1,\Gamma _1)\) and \(({\mathcal {M}}_2,{\mathcal {H}}_2,\Gamma _2)\) and denote it by \({\mathcal {M}}_1 {\hat{\otimes }} {\mathcal {M}}_2\). It is simple to check that \({\mathcal {M}}_1 {\hat{\otimes }} {\mathcal {M}}_2\) is a spatially graded von Neumann algebra with a grading operator \(\Gamma _1\otimes \Gamma _2\).

For \(a\in {\mathcal {M}}_1\) and homogeneous \(b\in {\mathcal {M}}_2\), we denote \(\pi (a{\hat{\otimes }} b)\) by \(a{{\hat{\otimes }}} b\), embedding \({\mathcal {M}}_1\,\hat{\odot }\,{\mathcal {M}}_2\) in \({\mathcal {M}}_1{\hat{\otimes }}{\mathcal {M}}_2\). Note that \(\partial (a{\hat{\otimes }} b) = \partial (a) + \partial (b)\) for homogeneous \(a\in {\mathcal {M}}_1\) and \(b\in {\mathcal {M}}_2\).

Lemma B.2

For each \(i=1,2\), let \(({\mathcal {M}}_i,\Gamma _i)\) be balanced central graded von Neumann algebras on a Hilbert space \({\mathcal {H}}_i\). Suppose that \({\mathcal {M}}_1{\hat{\otimes }} {\mathcal {M}}_2\) is of type I factor. Then both of \({\mathcal {M}}_1\) and \({\mathcal {M}}_2\) are type I.

Proof

By Lemma B.1, all of \({\mathcal {M}}_1\), \({\mathcal {M}}_2\), \({\mathcal {M}}_1^{(0)}\), \({\mathcal {M}}_2^{(0)}\) are either a factor or a direct sum of two factors of the same type. Then by Lemma A.1 of [BO], the type of \({\mathcal {M}}_i\) and \({\mathcal {M}}_i^{(0)}\) are the same for each \(i=1,2\).

Because \({\mathcal {M}}_1{\hat{\otimes }} {\mathcal {M}}_2\) is a type I factor, it has a faithful semifinite normal trace \(\tau \) whose restriction to \({\mathcal {M}}_1^{(0)}\otimes {\mathcal {M}}_2^{(0)}\) is also a faithful semifinite normal trace. Therefore, from Theorem 2.15 of [T], \({\mathcal {M}}_1^{(0)}\otimes {\mathcal {M}}_2^{(0)}\) is semifinite. From Theorem 2.30, it means both of \({\mathcal {M}}_1^{(0)}\) and \({\mathcal {M}}_2^{(0)}\) are semifinite. Because \({\mathcal {M}}_1{\hat{\otimes }} {\mathcal {M}}_2\) is a type I factor, for the set of orthogonal projections \({\mathcal {P}}\left( {\mathcal {M}}_1{\hat{\otimes }} {\mathcal {M}}_2\right) \) of \({\mathcal {M}}_1{\hat{\otimes }} {\mathcal {M}}_2\), \(\tau \left( {\mathcal {P}}\left( {\mathcal {M}}_1{\hat{\otimes }} {\mathcal {M}}_2\right) \right) \) is a countable set. It means that for the set of orthogonal projections \({\mathcal {P}}\left( {\mathcal {M}}_1^{(0)}\otimes {\mathcal {M}}_2^{(0)}\right) \) of \({\mathcal {M}}_1^{(0)}\otimes {\mathcal {M}}_2^{(0)}\), \(\tau \left( {\mathcal {P}}\left( {\mathcal {M}}_1^{(0)}{\hat{\otimes }} {\mathcal {M}}_2^{(0)}\right) \right) \) is also countable. It means that \({\mathcal {M}}_1^{(0)}\otimes {\mathcal {M}}_2^{(0)}\) is not of type II. It means both of \({\mathcal {M}}_1^{(0)}\) and \( {\mathcal {M}}_2^{(0)}\) are type I, hence both of \({\mathcal {M}}_1\) and \( {\mathcal {M}}_2\) are type I. \(\square \)

Lemma B.3

Let \({\mathcal {H}}\) be a Hilbert space with a self-adjoint unitary \(\Gamma \) that gives a grading for \({\mathcal {B}}({\mathcal {H}})\). Let \({\mathcal {M}}_1\), \({\mathcal {M}}_2\) be \({\mathrm {Ad}}_{\Gamma }\)-invariant type I von Neumann subalgebras of \({\mathcal {B}}({\mathcal {H}})\) with \({\mathcal {M}}_1 \vee {\mathcal {M}}_2 = {\mathcal {B}}({\mathcal {H}})\). Suppose with respect to the grading given by \({\mathrm {Ad}}_{\Gamma }\) that both of \({\mathcal {M}}_1\) and \({\mathcal {M}}_2\) have a center of the form \(Z\left( {\mathcal {M}}_i\right) ={\mathbb {C}}\mathbb {I}+{\mathbb {C}}V_i\) with a self-adjoint odd unitary \(V_i\). Suppose further that

$$\begin{aligned} ab- (-1)^{\partial a \partial b} b a = 0,\quad \text {for homogeneous}\quad a\in {\mathcal {M}}_1, b \in {\mathcal {M}}_2. \end{aligned}$$
(B.3)

Then there are Hilbert spaces \({\mathcal {K}}_1,{\mathcal {K}}_2\) and a unitary \(W:{\mathcal {H}}\rightarrow {\mathcal {K}}_1\otimes {\mathcal {K}}_2\otimes {\mathbb {C}}^2\) such that

$$\begin{aligned} \begin{aligned} {\mathrm {Ad}}W \left( {\mathcal {M}}_1^{(0)}\right)&={\mathcal {B}}({\mathcal {K}}_1)\otimes {\mathbb {C}}\mathbb {I}_{{\mathcal {K}}_2}\otimes {\mathbb {C}}\mathbb {I}_{{\mathbb {C}}^2},\\ {\mathrm {Ad}}W \left( {\mathcal {M}}_2^{(0)}\right)&={\mathbb {C}}\mathbb {I}_{{\mathcal {K}}_1} \otimes {\mathcal {B}}({\mathcal {K}}_2)\otimes {\mathbb {C}}\mathbb {I}_{{\mathbb {C}}^2},\\ {\mathrm {Ad}}W (V_1)&=\mathbb {I}_{{\mathcal {K}}_1}\otimes \mathbb {I}_{{\mathcal {K}}_2}\otimes \sigma _z,\\ {\mathrm {Ad}}W(V_2)&=\mathbb {I}_{{\mathcal {K}}_1}\otimes \mathbb {I}_{{\mathcal {K}}_2}\otimes \sigma _x. \end{aligned} \end{aligned}$$
(B.4)

Proof

By Proposition 2.9 of [BO] (with G a trivial group), \({\mathcal {M}}_i^{(0)}\) \(i=1,2\) are type I factors. By the assumption (B.3), \({\mathcal {M}}_1^{(0)}\) and \({\mathcal {M}}_2^{(0)}\) commute. From (B.3) and the fact that \(V_i\) belongs to center of \({\mathcal {M}}_i\), we know that both of \(V_1\) and \(V_2\) commute with \({\mathcal {M}}_1^{(0)}\) and \({\mathcal {M}}_2^{(0)}\). As a result, there are Hilbert spaces \({\mathcal {K}}_1,{\mathcal {K}}_2,{\mathcal {K}}_3\) and a unitary \({\hat{W}}: {\mathcal {H}}\rightarrow {\mathcal {K}}_1\otimes {\mathcal {K}}_2\otimes {\mathcal {K}}_3\) such that

$$\begin{aligned} \begin{aligned} {\mathrm {Ad}}{\hat{W}} \left( {\mathcal {M}}_1^{(0)}\right)&={\mathcal {B}}({\mathcal {K}}_1)\otimes {\mathbb {C}}\mathbb {I}_{{\mathcal {K}}_2}\otimes {\mathbb {C}}\mathbb {I}_{{\mathcal {K}}_3},\\ {\mathrm {Ad}}{\hat{W}} \left( {\mathcal {M}}_2^{(0)}\right)&={\mathbb {C}}\mathbb {I}_{{\mathcal {K}}_1} \otimes {\mathcal {B}}({\mathcal {K}}_2)\otimes {\mathbb {C}}\mathbb {I}_{{\mathcal {K}}_3},\\ {\mathrm {Ad}}{\hat{W}} (V_1)&=\mathbb {I}_{{\mathcal {K}}_1}\otimes \mathbb {I}_{{\mathcal {K}}_2}\otimes y_1,\\ {\mathrm {Ad}}{\hat{W}}(V_2)&=\mathbb {I}_{{\mathcal {K}}_1}\otimes \mathbb {I}_{{\mathcal {K}}_2}\otimes y_2, \end{aligned} \end{aligned}$$
(B.5)

with \(y_1,y_2\) self-adjoint unitaries on \({\mathcal {K}}_3\). Because \(V_2 V_1 V_2^*=-V_1\), we have \(y_2 y_1y_2^*=-y_1\). With \(y_1=r_{1+}-r_{1-}\) as a spectral projection, this means that \(y_2 r_{1\pm }y_2=r_{1\mp }\), and \(u:=r_{1+} y_2 r_{1-}: r_{1-}{\mathcal {K}}_3\rightarrow r_{1+}{\mathcal {K}}_3\) is a unitary. Let \(\{e_1,e_2\}\) be the standard basis of \({\mathbb {C}}^2\) and set \(v:{\mathcal {K}}_3\rightarrow {\mathbb {C}}^2\otimes r_{1+}{\mathcal {K}}\) be a unitary given by

$$\begin{aligned} v\xi := e_1\otimes r_{1+}\xi +e_2\otimes ur_{1-}\xi ,\quad \xi \in {\mathcal {K}}_3. \end{aligned}$$
(B.6)

It is then straightforward to show that

$$\begin{aligned} \begin{aligned} {\mathrm {Ad}}v(y_1)=\sigma _z\otimes \mathbb {I}_{r_{1+}{\mathcal {K}}},\\ {\mathrm {Ad}}v(y_2)=\sigma _x\otimes \mathbb {I}_{r_{1+}{\mathcal {K}}}. \end{aligned} \end{aligned}$$
(B.7)

From this, (B.5) and \({\mathcal {M}}_1 \vee {\mathcal {M}}_2 = {\mathcal {B}}({\mathcal {H}})\), we see that \(r_{1+}{\mathcal {K}}\) is one-dimensional. Hence \(W:=(\mathbb {I}_{{\mathcal {K}}_1}\otimes \mathbb {I}_{{\mathcal {K}}_2}\otimes v){\hat{W}} : {\mathcal {H}}\rightarrow {\mathcal {K}}_1\otimes {\mathcal {K}}_2\otimes {\mathbb {C}}^2\) defines a unitary satisfying (B.4). \(\square \)

Miscellaneous Lemmas

It is elementary to show the following Lemma. We omit the proof.

Lemma C.1

For \(\sigma =L,R\), let \({\mathcal {B}}_\sigma \) be a graded \(C^*\)-algebra with a grading automorphism \(\Theta _\sigma \). Let \(({\mathcal {H}}_\sigma ,\pi _\sigma )\) be an irreducible representation of \({\mathcal {B}}_\sigma \) with a self-adjoint unitary \(\Gamma _\sigma \) implementing \(\Theta _\sigma \). Let \(\zeta _\sigma \in {\mathrm {Aut}}^{(0)}({\mathcal {B}}_\sigma )\). Then the followings hold.

(i):

If each \(\zeta _\sigma \) is implemented by a unitary \(u_\sigma \) on \(({\mathcal {H}}_\sigma ,\pi _\sigma )\), i.e., \({\mathrm {Ad}}\left( u_\sigma \right) \circ \pi _\sigma =\pi _\sigma \circ \zeta _\sigma \), then \(u_\sigma \) is homogeneous with respect to \({\mathrm {Ad}}(\Gamma _\sigma )\) and

$$\begin{aligned} \begin{aligned}&{\mathrm {Ad}}\left( \mathbb {I}\otimes u_R\right) \circ \left( \pi _L{\hat{\otimes }} \pi _R\right) =\left( \pi _L{\hat{\otimes }} \pi _R\right) \circ \left( {\mathrm {id}}_{{\mathcal {B}}_L}{\hat{\otimes }} \zeta _R\right) ,\\&{\mathrm {Ad}}\left( u_L\otimes \Gamma _R^{\partial u_L}\right) \circ \left( \pi _L{\hat{\otimes }} \pi _R\right) =\left( \pi _L{\hat{\otimes }} \pi _R\right) \left( \zeta _L{\hat{\otimes }} {\mathrm {id}}_{{\mathcal {B}}_R}\right) . \end{aligned} \end{aligned}$$
(C.1)

Here \(\partial u_L\) denotes the grade of \(u_L\) with respect to \({\mathrm {Ad}}(\Gamma _L)\).

(ii):

Suppose that there are unitaries \(U_\sigma \), \(\sigma =L,R\) on \({\mathcal {H}}_L\otimes {\mathcal {H}}_R\) such that

$$\begin{aligned} \begin{aligned}&{\mathrm {Ad}}\left( U_R\right) \circ \left( \pi _L{\hat{\otimes }} \pi _R\right) =\left( \pi _L{\hat{\otimes }} \pi _R\right) \circ \left( {\mathrm {id}}_{{\mathcal {B}}_L}{\hat{\otimes }} \zeta _R\right) ,\\&{\mathrm {Ad}}\left( U_L\right) \circ \left( \pi _L{\hat{\otimes }} \pi _R\right) =\left( \pi _L{\hat{\otimes }} \pi _R\right) \left( \zeta _L{\hat{\otimes }} {\mathrm {id}}_{{\mathcal {B}}_R}\right) . \end{aligned} \end{aligned}$$
(C.2)

Then there are unitaries \(u_\sigma \in {\mathcal {U}}({\mathcal {H}}_\sigma )\) such that \({\mathrm {Ad}}\left( u_\sigma \right) \circ \pi _\sigma =\pi _\sigma \circ \zeta _\sigma \), and

$$\begin{aligned} \mathbb {I}\otimes u_R=U_R,\quad u_L\otimes \Gamma _R^{\partial u_L}=U_L. \end{aligned}$$
(C.3)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogata, Y. An Invariant of Symmetry Protected Topological Phases with On-Site Finite Group Symmetry for Two-Dimensional Fermion Systems. Commun. Math. Phys. 395, 405–457 (2022). https://doi.org/10.1007/s00220-022-04438-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04438-2

Navigation