Skip to main content
Log in

Variational Bihamiltonian Cohomologies and Integrable Hierarchies II: Virasoro Symmetries

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove that for any tau-symmetric bihamiltonian deformation of the tau-cover of the Principal Hierarchy associated with a semisimple Frobenius manifold, the deformed tau-cover admits an infinite set of Virasoro symmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Becker, K., Becker, M.: Non-perturbative solution of the super-Virasoro constraints. Mod. Phys. Lett. A 8, 1205–1214 (1993)

    Article  ADS  Google Scholar 

  2. Dijkgraaf, R., Verlinde, H., Verlinde, E.: Topological strings in d\(\le \) 1. Nucl. Phys. B 352, 59–86 (1991)

  3. Drinfel’d, V.G., Sokolov, V.V.: Lie algebras and equations of Korteweg–de Vries type. J. Soviet Math. 30, 1975–2036 (1985). Translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki (Noveishie Dostizheniya) 24, 81–180 (1984)

  4. Dubrovin, B.A.: Integrable systems and classification of 2-dimensional topological field theories. Integrable systems (Luminy, 1991), pp. 313–359. Progr. Math. 115 (1993)

  5. Dubrovin, B.A.: Geometry of 2D topological field theories. In: Integrable Systems and Quantum Groups (Montecatini Terme, 1993), pp. 120–348, Lecture Notes in Mathematics, vol. 1620. Springer, Berlin (1996)

  6. Dubrovin, B.A.: Painlevé transcendents in two-dimensional topological field theory. In: The Painlevé Property, CRM Series in Mathematical Physics, pp. 287–412. Springer, New York (1999)

  7. Dubrovin, B.A., Liu, S.-Q., Zhang, Y.: On Hamiltonian perturbations of hyperbolic systems of conservation laws. I. Quasi-triviality of bi-Hamiltonian perturbations. Commun. Pure Appl. Math. 59, 559–615 (2006)

    Article  MathSciNet  Google Scholar 

  8. Dubrovin, B.A., Liu, S.-Q., Zhang, Y.: Frobenius manifolds and central invariants for the Drinfeld–Sokolov bihamiltonian structures. Adv. Math. 219, 780–837 (2008)

  9. Dubrovin, B.A., Liu, S.-Q., Zhang, Y.: Bihamiltonian cohomologies and integrable hierarchies II: the tau structures. Commun. Math. Phys. 361, 467–524 (2018)

  10. Dubrovin, B.A., Novikov, S.P.: Hamiltonian formalism of one-dimensional systems of the hydrodynamic type and the Bogolyubov–Whitham averaging method. Dokl. Akad. Nauk SSSR 270, 781–785 (1983). (Russian)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Dubrovin, B.A., Zhang, Y.: Frobenius manifolds and Virasoro constraints. Selecta Math. 5, 423–466 (1999)

    Article  MathSciNet  Google Scholar 

  12. Dubrovin, B.A., Zhang, Y.: Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants. arXiv:math/0108160v1 (2001)

  13. Falqui, G., Lorenzoni, P.: Exact Poisson pencils, \(\tau \)-structures and topological hierarchies. Phys. D 241, 2178–2187 (2012)

    Article  MathSciNet  Google Scholar 

  14. Ferapontov, E.: Compatible Poisson brackets of hydrodynamic type. J. Phys. A 34, 2377–2388 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  15. Gel’fand, I.M., Fuks, D.B.: Cohomologies of the Lie algebra of formal vector fields. Izv. Akad. Nauk SSSR Ser. Mat. 34, 322–337 (1970). (Russian)

    MathSciNet  MATH  Google Scholar 

  16. Givental, A.B.: Gromov–Witten invariants and quantization of quadratic Hamiltonians. Mosc. Math. J. 1, 551–568 (2001)

    Article  MathSciNet  Google Scholar 

  17. Grinevich, P.G., Orlov, A., Yu.: Virasoro action on Riemann surfaces, Grassmannians, det \({\bar{\partial }}_J\) and Segal-Wilson \({\tau }\)-function. In: Problems of Modern Quantum Field Theory (Alushta) pp. 86–106. Research Reports in Physics. Springer, Berlin (1989)

  18. Kersten, P., Krasil’shchik, I., Verbovetsky, A.: Hamiltonian operators and \(l^*\)-coverings. J. Geom. Phys. 50, 273–302 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  19. Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147, 1–23 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  20. Liu, S.-Q.: Lecture notes on bihamiltonian structures and their central invariants. In: B-Model Gromov–Witten Theory. Trends in Mathematics, pp. 573–625. Birkhäuser/Springer, Cham (2018)

  21. Liu, S.-Q., Wang, Z., Zhang, Y.: Linearization of Virasoro symmetries associated with semisimple Frobenius manifolds. arXiv:2109.01846 (2021)

  22. Liu, S.-Q., Wang, Z., Zhang, Y.: Super tau-covers of bihamiltonian integrable hierarchies. J. Geom. Phys. 170, 104351 (2021)

  23. Liu, S.-Q., Wang, Z., Zhang, Y.: Variational bihamiltonian cohomologies and integrable hierarchies I: foundations. arXiv:2106.13038 (2021)

  24. Liu, S.-Q., Zhang, Y.: Deformations of semisimple bihamiltonian structures of hydrodynamic type. J. Geom. Phys. 54, 427–453 (2005)

  25. Liu, S.-Q., Zhang, Y.: Jacobi structures of evolutionary partial differential equations. Adv. Math. 227, 73–130 (2011)

    Article  MathSciNet  Google Scholar 

  26. Liu, S.-Q., Zhang, Y.: Bihamiltonian cohomologies and integrable hierarchies I: a special case. Commun. Math. Phys. 324, 897–935 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. Lorenzoni, P., Vitolo, R.: Weakly nonlocal Poisson brackets, Schouten brackets and supermanifolds. J. Geom. Phys. 149, 103573 (2020)

    Article  MathSciNet  Google Scholar 

  28. Tsar\(\ddot{e}\)v, S.P.: The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method. Izv. Akad. Nauk SSSR Ser. Mat. 54 1048–1068 (1990). (Russian)

  29. Witten, E.: On the structure of the topological phase of two-dimensional gravity. Nucl. Phys. B 340, 281–332 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  30. Witten, E.: Two-dimensional gravity and intersection theory on moduli space. In: Surveys in Differential Geometry, pp. 243–310. Lehigh University, Bethlehem (1990)

  31. Wu, C.-Z.: Tau functions and Virasoro symmetries for Drinfeld–Sokolov hierarchies. Adv. Math. 306, 603–652 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC Nos. 12171268,  11725104 and  11771238. We thank the anonymous referees for helpful comments and suggestions to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youjin Zhang.

Additional information

Communicated by Y. Kawahigashi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SQ., Wang, Z. & Zhang, Y. Variational Bihamiltonian Cohomologies and Integrable Hierarchies II: Virasoro Symmetries. Commun. Math. Phys. 395, 459–519 (2022). https://doi.org/10.1007/s00220-022-04433-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04433-7

Navigation