Skip to main content
Log in

Small Scale CLTs for the Nodal Length of Monochromatic Waves

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the nodal length \(L(\lambda )\) of the restriction to a ball of radius \(r_\lambda \) of a Gaussian pullback monochromatic random wave of parameter \(\lambda >0\) associated with a Riemann surface \((\mathcal M,g)\) without conjugate points. Our main result is that, if \(r_\lambda \) grows slower than \((\log \lambda )^{1/25}\), then (as \(\lambda \rightarrow \infty \)) the length \(L(\lambda )\) verifies a Central Limit Theorem with the same scaling as Berry’s random wave model—as established in Nourdin et al. (Commun Math Phys 369(1):99–151, 2019). Taking advantage of some powerful extensions of an estimate by Bérard (Mathematische Zeitschrift 155:249–276, 1977) due to Keeler (A logarithmic improvement in the two-point Weyl law for manifolds without conjugate points, 2019. arXiv:1905.05136), our techniques are mainly based on a novel intrinsic bound on the coupling of smooth Gaussian fields, that is of independent interest, and moreover allow us to improve some estimates for the nodal length asymptotic variance of pullback random waves in Canzani and Hanin (Commun Math Phys 378:1677–1712, 2020). In order to demonstrate the flexibility of our approach, we also provide an application to phase transitions for the nodal length of arithmetic random waves on shrinking balls of the 2-torus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, R.J., Taylor, J.E.: Random fields and geometry. Springer Monographs in Mathematics, New York (2007)

    MATH  Google Scholar 

  2. Angst, J., Poly, G., Pham, V.H.: Universality of the nodal length of bivariate random trigonometric polynomials. Transactions of the American Mathematical Society 370(12), 8331–8357 (2018)

    Article  MATH  Google Scholar 

  3. Azaïs, J.-M., Wschebor, M.: Level sets and extrema of random processes and fields. John Wiley & Sons Inc, Hoboken, N.J. (2009)

    Book  MATH  Google Scholar 

  4. Avakumovic, V.G.: (1956) Über die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten. Math. Z. 65, 327–344 (1956)

    Article  MATH  Google Scholar 

  5. Beliaev, D., Maffucci, R.: Coupling of stationary fields with application to arithmetic waves. (2019) PreprintarXiv:1912.09470

  6. Beliaev, D., Wigman, I.: Volume distribution of nodal domains of random band-limited functions. Probability Theory and Related Fields 172(1–2), 453–492 (2018)

    Article  MATH  Google Scholar 

  7. Benatar, J., Maffucci, R.: Random waves on \({\mathbb{T}}^3\): nodal area variance and lattice point correlations. International Mathematics Research Notices 10, 3032–3075 (2019)

    Article  MATH  Google Scholar 

  8. Benatar, J., Marinucci, D., Wigman, I.: Planck-scale equidistribution of nodal length of arithmetic random waves. Journal d’Analyse Mathématique 141(2), 707–749 (2020)

    Article  MATH  Google Scholar 

  9. Bérard, P.: On the wave equation on a compact Riemannian manifold without conjugate points. Mathematische Zeitschrift 155, 249–276 (1977)

    Article  MATH  Google Scholar 

  10. Bérard, P.: Volume des ensembles nodaux des fonctions propres du laplacien. Bony-Sjostrand-Meyer seminar, Exp. No. 14 , 10 pp., École Polytechnique, Palaiseau (1985)

  11. Berry, M.V.: Regular and irregular semiclassical wavefunctions. Journal of Physics A 10(12), 2083–2091 (1977)

    Article  MATH  Google Scholar 

  12. Berry, M.V.: Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature. Journal of Physics A 35(13), 3025–3038 (2002)

    Article  MATH  Google Scholar 

  13. Bhatia, R.: Matrix analysis. Springer, New York (1997)

    Book  MATH  Google Scholar 

  14. Bonthonneau, Y.: A lower bound for the \(\Theta \) function on manifolds without conjugate points. Documenta Mathematica 22, 1275–1283 (2017)

    Article  MATH  Google Scholar 

  15. Cammarota, V.: Nodal area distribution for arithmetic random waves. Transactions of the American Mathematical Society 372, 3539–3564 (2019)

    Article  MATH  Google Scholar 

  16. Canzani, Y., Hanin, B.: \( C^\infty \) scaling asymptotics for the spectral projector of the Laplacian. Journal of Geometric Analysis 28(1), 111–122 (2018)

  17. Canzani, Y., Hanin, B.: Local universality for zeros and critical points of monochromatic random waves. Communications in Mathematical Physics. 378, 1677–1712 (2020)

  18. Chavel, I.: Eigenvalues in Riemannian geometry. Academic Press (1984)

  19. Chen, W.: Landau-Kolmogorov inequalities on a finite interval. Bulletin of the Australian Mathematical Society 48, 485–494 (1993)

    Article  MATH  Google Scholar 

  20. Dalmao, F., Nourdin, I., Peccati, G., Rossi, M.: Phase singularities in complex arithmetic random waves, Electronic Journal of Probability, 24(71), 45 pages (2019)

  21. Demengel, F., Demengel, G.: Functional Spaces for the Theory of Elliptic Partial Differential Equations. Springer Verlag (2012)

  22. De Vito, E., Umanità, V., Villa, S.: An extension of Mercer theorem to matrix-valued measurable kernels. Applied Harmonic Analysis 34, 339–351 (2013)

    Article  MATH  Google Scholar 

  23. Do Carmo, Manfredo P.: Differential geometry of curves and surfaces. Translated from the Portuguese. Prentice-Hall, Inc., Englewood Cliffs, N.J., viii+503 pp. 53-02 (1976)

  24. Erdős, P., Hall, R.R.: On the angular distribution of Gaussian integers with fixed norm. Discrete mathematics 200(1–3), 87–94 (1999)

    Article  MATH  Google Scholar 

  25. Geršgorin, S.: Über die Abgrenzung der Eigenwerte einer Matrix. Bulletin de l’Académie des Sciences de L’URSS. 6, 749–754 (1931)

    MATH  Google Scholar 

  26. Gohberg, I. C., Krein, M. G.: Introduction to the theory of linear non-selfadjoint operators. American Mathematical Society. Translated from the Russian by Feinstein, A. Translations of Mathematical Monographs, Vol. 18 (1969)

  27. Heinrich, S., Kühn, T.: Embedding maps between Hölder spaces over metric compacta and eigenvalues of integral operators. Indagationes Mathematicae 88(1), 47–62 (1985)

    Article  MATH  Google Scholar 

  28. Kátai, I., Környei, I.: On the distribution of lattice points on circles. Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös Nominatae, Sectio Mathematica. 19, 87–91 (1977)

    MATH  Google Scholar 

  29. Keeler, B.: A logarithmic improvement in the two-point Weyl law for manifolds without conjugate points. (2019) PreprintarXiv:1905.05136

  30. Krishnapur, M., Kurlberg, P., Wigman, I.: Nodal length fluctuations for arithmetic random waves, Annals of Mathematics (2) 177, no. 2, 699–737 (2013)

  31. Kühn, T.: Eigenvalues of integral operators with smooth positive definite kernels. Archiv der Mathematik 49, 525–534 (1986)

    Article  MATH  Google Scholar 

  32. Kurlberg, P., Wigman, I.: On probability measures arising from lattice points on circles. Mathematische Annalen 367, 1057–1098 (2017)

    Article  MATH  Google Scholar 

  33. Levitan, B.M.: On the asymptotic behavior of the spectral function of a self-adjoint differential equation of the second order and on expansion in eigenfunctions. Izvestiya Akad. Nauk SSSR. Ser. Mat. 17, 331–364 (1953)

    Google Scholar 

  34. Levitan, B.M.: On the asymptotic behavior of a spectral function and on expansion in eigenfunctions of a self-adjoint differential equation of second order. II. Izv. Akad. Nauk SSSR. Ser. Mat. 19, 33–58 (1955)

    Google Scholar 

  35. Macci, C., Rossi, M., Todino, A.P.: Moderate Deviation estimates for nodal lengths of random spherical harmonics. Latin American Journal of Probability and Mathematical Statistics 18, 249–263 (2021)

  36. Marinucci, D., Peccati, G., Rossi, M., Wigman, I.: Non-Universality of Nodal Length Distribution for Arithmetic Random Waves. Geometric and Functional Analysis, 3, 926–960 (2016)

    Article  MATH  Google Scholar 

  37. Marinucci, D., Rossi, M., Wigman, I.: The asymptotic equivalence of the sample trispectrum and the nodal length for random spherical harmonics. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques 56(1), 374–390 (2020)

  38. Nazarov, F., Sodin, M.: Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions. Journal of Mathematical Physics, Analysis, Geometry 12(3), 205–278 (2016)

    MATH  Google Scholar 

  39. Notarnicola, M.: Fluctuations of nodal sets on the 3-torus and general cancellation phenomena. Preprint (2020) arXiv:2004.04990

  40. Nourdin, I., Peccati, G.: Normal approximations with Malliavin calculus. From Stein’s method to universality. Cambridge Tracts in Mathematics, 192. Cambridge University Press, Cambridge (2012)

  41. Nourdin, I., Peccati, G., Rossi, M.: Nodal statistics of planar random waves. Communications in Mathematical Physics 369(1), 99–151 (2019)

    Article  ADS  MATH  Google Scholar 

  42. Olkin, I., Pukelsheim, F.: The distance between two random vectors with given dispersion matrices. Linear Algebra Appl. 48, 257–263 (1982)

    Article  MATH  Google Scholar 

  43. Oravecz, F., Rudnick, Z., Wigman, I.: The Leray measure of nodal sets for random eigenfunctions on the torus. Annales de l’Institut Fourier (Grenoble) 58(1), 299–335 (2008)

    Article  MATH  Google Scholar 

  44. Peccati, G., Rossi, M.: Quantitative limit theorems for local functionals of arithmetic random waves. Computation and Combinatorics in Dynamics, Stochastics and Control, The Abel Symposium, Rosendal, Norway, August 2016, 13, 659–689 (2018)

  45. Peccati, G., Vidotto, A.: Gaussian random measures generated by Berry’s nodal sets. Journal of Statistical Physics 178(4), 996–1027 (2020)

  46. Rudin, W.: Real and Complex Analysis. McGraw Hill (1986)

  47. Rudnick, Z., Wigman, I.: On the volume of nodal sets for eigenfunctions of the Laplacian on the torus. Annales de l’Institut Henri Poincaré 1(9), 109–130 (2008)

    Article  ADS  MATH  Google Scholar 

  48. Sartori, A.: Spectral quasi correlations and phase-transitions for the nodal length of Arithmetic Random Waves. International Mathematics Research Notices, in press (2020) (arXiv: 2005.04698)

  49. Schulte, M., Thäle, C.: Cumulants on Wiener chaos: moderate deviations and the fourth moment theorem. Journal of Functional Analysis 270(6), 2223–2248 (2016)

    Article  MATH  Google Scholar 

  50. Sodin, M.: Lectures on random nodal portraits. Lecture notes for a mini-course given at the St. Petersburg Summer School in Probability and Statistical Physics (June, 2012) (2012)

  51. Sogge, C., Zelditch, S.: Riemannian manifolds with maximal eigenfunctions growth. Duke Mathematical Journal 114(3), 387–437 (2002)

    Article  MATH  Google Scholar 

  52. Todino, A.P.: Nodal Lengths in Shrinking Domains for Random Eigenfunctions on \({\mathbb{S}}^2\). Bernoulli 26(4), 3081–3110 (2020)

    Article  MATH  Google Scholar 

  53. Vidotto, A.: A Note on the Reduction Principle for the Nodal Length of Planar Random Waves. Statistics and Probability Letters 174 (2021)

  54. Wigman, I.: Fluctuations of the nodal length of random spherical harmonics. Communications in Mathematical Physics. 298(3), 787–831 (2010)

    Article  ADS  MATH  Google Scholar 

  55. Zelditch, S.: Real and complex zeros of Riemannian random waves. Contemporary Mathematics. Volume 14 (2009)

Download references

Acknowledgements

We heartily thank an anonymous referee for insightful comments, B. Hanin for discussing with us several aspects of his work [CH20] and B. Keeler for sharing his work [Kee19] before publication. We also thank Y. Canzani, P. Kurlberg, L. Pratelli, P. Rigo and M. Sodin for fruitful discussions. M.R. thanks D. Marinucci for raising an interesting question leading to Remark 1.7 (d). The work of Gauthier Dierickx has been supported by the FNR grant STARS(PUL) at Luxembourg University and in part by the Collaborative Research Center “Statistical modeling of nonlinear dynamic processes” (SFB 823, Teilprojekt C2) of the German Research Foundation (DFG). Ivan Nourdin is supported by the FNR grant APOGee at Luxembourg University. Giovanni Peccati is supported by the FNR grant FoRGES at Luxembourg University. The research of Maurizia Rossi has been supported by the Foundation Science Mathématique de Paris and (partially) by the ANR-17-CE40-0008 project Unirandom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Nourdin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dierickx, G., Nourdin, I., Peccati, G. et al. Small Scale CLTs for the Nodal Length of Monochromatic Waves. Commun. Math. Phys. 397, 1–36 (2023). https://doi.org/10.1007/s00220-022-04422-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04422-w

Navigation