Skip to main content
Log in

Random Tessellations and Gibbsian Solutions of Hamilton–Jacobi Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We pursue two goals in this article. As our first goal, we construct a family \({\mathcal M}_G\) of Gibbsian measures on the set of piecewise linear convex functions \(g:{\mathbb R}^2\rightarrow {\mathbb R}\). It turns out that there is a one-to-one correspondence between the gradient of such convex functions and Laguerre tessellations. Each cell in a Laguerre tessellation is a convex polygon that is marked by a vector \(\rho \in {\mathbb R}^2\). Each measure \(\nu ^f\in {\mathcal M}_G\) in our family is uniquely characterized by a kernel \(f(x,\rho ^-,\rho ^+)\), which represents the rate at which a line separating two cells associated with marks \(\rho ^-\) and \(\rho ^+\) passes through x. To construct our measures, we give a precise recipe for the law of the restriction of our tessellation to a box. This recipe involves a boundary condition, and a dynamical description of our random tessellation inside the box. As we enlarge the box, the consistency of these random tessellations requires that the kernel satisfies a suitable kinetic like PDE. Our interest in the family \({\mathcal M}_G\) stems from its close connection to Hamilton–Jacobi PDEs of the form \(u_t=H(u_x)\), with \(u:\Gamma \rightarrow {\mathbb R}\), for a convex set \(\Gamma \subset {\mathbb R}^2\times [0,\infty )\), and \(H:{\mathbb R}^2\rightarrow {\mathbb R}\) a strictly convex function. As our second goal, we study the invariance of the set \({\mathcal M}_G\) with respect to the dynamics of such Hamilton–Jacobi PDEs. In particular we conjecture the invariance of a suitable subfamily \(\widehat{\mathcal M}_G\) of \({\mathcal M}_G\). More precisely, we expect that if the initial slope \(u_x(\cdot ,0)\) is selected according to a measure \(\nu ^{f}\in \widehat{{\mathcal M}}_G\), then at a later time the law of \(u_x(\cdot , t)\) is given by a measure \(\nu ^{\Theta _t(f)}\in \widehat{{\mathcal M}}_G\), for a suitable kernel \(\Theta _t(f)\). As we vary t, the kernel \(\Theta _t(f)\) must satisfy a suitable kinetic equation. We remark that the function u is also piecewise linear convex function in (xt), and its law is an example of a Gibbsian measure on the set of Laguerre tessellations of certain convex subsets of \({\mathbb R}^3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abramson, J., Evans, S.N.: Lipschitz minorants of Brownian motion and Lévy processes. Probab. Theory Relat. Fields 158, 809–857 (2014)

    Article  Google Scholar 

  2. Bertoin, J.: The inviscid burgers equation with Brownian initial velocity. Commun. Math. Phys. 193, 397–406 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  3. Carraro, L., Duchon, J.: Solutions statistiques intrinseques de l’équation de Burgers et processus de Lévy. C. R. Acad. Sci. Sér. I. Math. 319, 855–858 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Carraro, L., Duchon, J.: Equation de Burgers avec conditions initiales a accroissements indépendants et homogenes. Ann. Inst. Henri Poincare (C) Nonlinear Anal. 15, 431–458 (1998)

    Article  ADS  Google Scholar 

  5. Davis, M.H.A.: Piecewise-deterministic Markov processes: a general class of non-diffusion stochastic models. J. R. Stat. Soc. Ser. B (Methodol.) 46, 353–388 (1984)

    MATH  Google Scholar 

  6. Evans, L.C.: Partial Differential Equations. Graduate studies in mathematics. American Mathematical Society, Providence (2010)

    Google Scholar 

  7. Evans, S.N., Ouaki, M.: 2022 Excursions away from the Lipschitz minorant of a Lévy process. Ann. Inst. Henri Poincare (B) Probab. Stat. 58(1), 424–454 (2022)

    MATH  Google Scholar 

  8. Groeneboom, P.: Brownian motion with a parabolic drift and airy functions. Probab. Theory and Relat. Fields 81, 79–109 (1989)

    Article  MathSciNet  Google Scholar 

  9. Kaspar, D., Rezakhanlou, F.: Scalar conservation laws with monotone pure-jump Markov initial conditions. Probab. Theory Related Fields 165, 867–899 (2016)

    Article  MathSciNet  Google Scholar 

  10. Kaspar, D., Rezakhanlou, F.: Kinetic statistics of scalar conservation laws with piecewise-deterministic Markov process data. Arch. Ration. Mech. Anal. 237, 259–298 (2020)

    Article  MathSciNet  Google Scholar 

  11. Li, L.-C.: An exact discretization of a lax equation for shock clustering and burgers turbulence I: dynamical aspects and exact solvability. Commun. Math. Phys. 361, 415–466 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  12. Menon, G.: Complete integrability of shock clustering and Burgers turbulence. Arch. Ration. Mech. Anal. 203, 853–882 (2012)

    Article  MathSciNet  Google Scholar 

  13. Menon, G., Srinivasan, R.: Kinetic theory and Lax equations for shock clustering and Burgers turbulence. J. Stat. Phys. 140, 1–29 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  14. Ouaki, M.: Scalar conservation laws with white noise initial data. Probab. Theory Relat. Fields (to appear)

  15. Pitman, J., Tang, W.: The argmin process of random walks, Brownian motion and Lévy processes. Electron. J. Probab. 23, 60 (2018)

    Article  Google Scholar 

  16. Rezakhanlou, F.: Stochastic Solutions to Hamilton-Jacobi Equations, Stochastic Solutions to Hamilton-Jacobi Equations. Springer Proceedings in Mathematics and Statistics 282, 206–238 (2019)

  17. Rezakhanlou, F.: Kinetic description of scalar conservation laws with Markovian data (in preparation)

Download references

Acknowledgements

The authors wish to express their sincere gratitude to Govind Menon for his very helpful comments on the first draft of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ouaki.

Ethics declarations

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Funding

The authors did not receive support from any organization for the submitted work.

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Communicated by H. Spohn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: The Kinetic Equation

Appendix A: The Kinetic Equation

The purpose of this section is to prove the existence of a solution of the kinetic equation. To have a more conventional notation, we write (xt) for \((x_1,x_2)\) throughout this section. We start first with the following notation:

Notation A.1

(i) :

We fix \(P^-<P^+\) two real numbers, such that the range of our piecewise constant function \(\rho \) is in the box \([P^-,P^+]^2\).

(ii) :

For any measure space \({\mathcal E}\), let \({\mathcal F}_b({\mathcal E})\) be the space of real-valued bounded measurable functions defined on \({\mathcal E}\).

(iii) :

We introduce the function space \({\mathcal X}\) to be the set kernels \(h \in {\mathcal F}_b({\mathbb R}\times ([P^-,P^+]^2)^2)\) such that \(x \mapsto h(x,\rho ^-,\rho ^+)\) is \(C^1\) and Lipschitz for all \(\rho ^-\) and \(\rho ^+\).

(iv) :

We equip \({\mathcal X}\) with the following norm

$$\begin{aligned} \Vert h\Vert _{{\mathcal X}}:= \sup _{x \in {\mathbb R}} \ \sup _{\rho ^-,\rho ^+}\ \left[ |h(x,\rho ^-,\rho ^+)| + |\partial _x h(x,\rho ^-,\rho ^+)| \right] . \end{aligned}$$

It is standard that \(({\mathcal X},\Vert \cdot \Vert _{{\mathcal X}})\) is a Banach space.

(v) :

For any \(v \ge 0\), let \(\Gamma ^{v}\) and \(\Gamma ^v_+\) be the sets

$$\begin{aligned} \Gamma ^{v}:=&\Big \{(\rho ^-,\rho ^+) \in ([P^-,P^+]^2)^2 : \ \rho ^-\prec \rho ^+, \ |[\rho ^-,\rho ^+]| \le v \Big \}\\ =&\Big \{(\rho ^-,\rho ^+) \in ([P^-,P^+]^2)^2 : \ \rho ^+-\rho ^-\in C^v {\setminus } \{0\}\Big \},\\ \Gamma ^{v}_+: =&\Big \{(\rho ^-,\rho ^+) \in ([P^-,P^+]^2)^2 : \ \rho ^+-\rho ^-\in C^v_+ {\setminus } \{0\}\Big \}, \end{aligned}$$

where \(C^v\) and \(C^v_+\) are the cones

$$\begin{aligned} C^v&=\Big \{m=(m_1,m_2)\in {\mathbb R}^2:\ m_1\ge 0, \ |m_2| \le vm_1\Big \},\nonumber \\ C_+^v&=\Big \{m=(m_1,m_2)\in {\mathbb R}^2:\ m_1,m_2\ge 0, \ m_2 \le vm_1\Big \}. \end{aligned}$$
(A.1)
(vi) :

Let \(V_{\infty } \ge 0\), and \(\delta _0>0\). We write \({\mathcal X}(V_\infty ,\delta _0)\) for the set of \(h \in {\mathcal X}\) with the following properties:

(1):

The function \(h(\cdot ,\rho ^-,\rho ^+)\) is zero for \((\rho ^-,\rho ^+) \notin \Gamma ^{V_{\infty }}\).

(2):

There exists a constant \(\delta _0>0\) such that \(\inf _{x \in {\mathbb R}} \inf _{(\rho ^-,\rho ^+) \in \Gamma ^{V_{\infty }}} h(x,\rho ^-,\rho ^+) \ge \delta _0\).

(3):

For all \(\rho ^-,\rho ^+\), the function \(x \mapsto h(x,\rho ^-,\rho ^+)\) is \(C^2\) such that

$$\begin{aligned} \sup _{x \in {\mathbb R}} \sup _{\rho ^-,\rho ^+} |\partial ^2_x h(x,\rho ^-,\rho ^+)| < \infty . \end{aligned}$$

Likewise, we write \({\mathcal X}_+(V_\infty ,\delta _0)\) for the set of \(h \in {\mathcal X}_+(V_\infty ,\delta _0)\) with the similar properties, except that the set \(\Gamma ^{V_{\infty }}\) in (i) and (iii) is replaced with \(\Gamma ^{V_{\infty }}_+\).

\(\square \)

The following theorem proves the existence of a local solution of the kinetic equation.

Theorem A.1

Given \(h\in {\mathcal X}(V_\infty ,\delta _0)\), denote by \(M_0:=\sup _{x \in {\mathbb R}} \sup _{\rho ^-,\rho ^+} h(x,\rho ^-,\rho ^+)\), and define the time

$$\begin{aligned} T^{*}:=\min \left( \frac{1}{12V_{\infty }M_0},\ \frac{\delta _0}{48V_{\infty }M_0^2}\right) . \end{aligned}$$

Then, there exists a unique solution

$$\begin{aligned} f: {\mathbb R}\times [0,T^{*}] \times ([P^-,P^+]^2)^2 \rightarrow {\mathbb R}, \end{aligned}$$

of the kinetic equation

$$\begin{aligned} f_t-[\rho ^-,\rho ^+]f_x=Q(f)=:Q^{+}(f)-Q^{-}(f), \end{aligned}$$

where

$$\begin{aligned}&Q^{+}(f)(x,t,\rho ^-,\rho ^+)\\&\quad =\int \left( [\rho ^+,\rho ^*]-[\rho ^*,\rho ^-]\right) f(x,t,\rho ^-,\rho ^*)f(x,t,\rho ^*,\rho ^+)\ \beta (d\rho ^*),\\&Q^{-}(f)(x,t,\rho ^-,\rho ^+)\\&\quad = \left( \int ([\rho ^+,\rho ^*]-[\rho ^-,\rho ^+])f(x,t,\rho ^+,\rho ^*)\ \beta (d\rho ^*) \right. \\&\left. \qquad - \int ([\rho ^-,\rho ^*]-[\rho ^-,\rho ^+]) f(x,t,\rho ^-,\rho ^*)\ \beta (d\rho ^*) \right) f(x,t,\rho ^-,\rho ^+), \end{aligned}$$

with \(f(\cdot ,0,\cdot ,\cdot )=h\). The function f is \(C^1\) in the variables (xt) for all fixed \(\rho ^-,\rho ^+\) and \(f(\cdot ,\cdot ,\rho ^-,\rho ^+) \equiv 0\) for all \((\rho ^-,\rho ^+) \notin \Gamma ^{V_{\infty }}\). Furthermore, we have that

$$\begin{aligned} \sup _{t \in [0,T^{*}]} \Vert f(\cdot ,t,\cdot ,\cdot )\Vert _{{\mathcal X}} < \infty ,\quad \inf _{t \in [0,T^{*}]} \inf _{x \in {\mathbb R}} \inf _{(\rho ^-,\rho ^+) \in \Gamma ^{V_{\infty }}} f(x,t,\rho ^-,\rho ^+) \ge \frac{\delta _0}{2}. \end{aligned}$$

Moreover if \(h\in {\mathcal X}_+(V_\infty ,\delta _0)\), then there exists a unique solution f with similar properties except that the set \(\Gamma ^{V_{\infty }}\) must be replaced with \(\Gamma ^{V_{\infty }}_+\).

Proof

(Step 1) We assume here without loss of generality that the measure \(\beta \) has total mass 1 on the box \([P^-,P^+]^2\). By the following standard change of variables, we transform the previous PDE to an ODE. For instance, define the function g as

$$\begin{aligned} g(x,t,\rho ^-,\rho ^+)=f(x-[\rho ^-,\rho ^+]t,t,\rho ^-,\rho ^+). \end{aligned}$$
(A.2)

Then by the chain rule, g must verify the following ODE

$$\begin{aligned} g_t=\tilde{Q}^{+}(g)-\tilde{Q}^{-}(g) =\tilde{Q}^{+}(g)-\tilde{L}(g)g, \end{aligned}$$

where

$$\begin{aligned} \tilde{Q}^{+}(g)(x,t,\rho ^-,\rho ^+)=&\int [\rho ^-,\rho ^*,\rho ^+]\ g\left( x-([\rho ^-,\rho ^+]-[\rho ^-,\rho ^*])t,t,\rho ^-,\rho ^*\right) \\&\quad g(x-([\rho ^-,\rho ^+]-[\rho ^+,\rho ^*])t,t,\rho ^*,\rho ^+)\ \ \beta (d\rho ^*),\\ \tilde{L}(g)(x,t,\rho ^-,\rho ^+)=&\int ([\rho ^+,\rho ^*]-[\rho ^-,\rho ^+])\ g(x-([\rho ^-,\rho ^+]\\&\quad -[\rho ^+,\rho ^*])t,t,\rho ^+,\rho ^*)\ \beta (d\rho ^*) - \int ([\rho ^-,\rho ^*]-[\rho ^-,\rho ^+])\\&\quad g(x-([\rho ^-,\rho ^+]-[\rho ^-,\rho ^*])t,t,\rho ^-,\rho ^*)\ \beta (d\rho ^*). \end{aligned}$$

We will prove the existence of a solution g by an approximation scheme and then recover the desired f via the equation (A.2). Define the functional \({\mathcal H}: {\mathcal X}\times {\mathbb R}\rightarrow {\mathcal X}\), \({\mathcal H}(g,t):={\mathcal H}^+(g,t)-{\mathcal K}(g,t)g\), by

$$\begin{aligned} {\mathcal H}^+(h,t)(x,\rho ^-,\rho ^+) :=&\int [\rho ^+,\rho ^*,\rho ^-]\ h(x-([\rho ^-,\rho ^+]-[\rho ^-,\rho ^*])t,\rho ^-,\rho ^*) \\&\quad h(x-([\rho ^-,\rho ^+]-[\rho ^+,\rho ^*])t,\rho ^*,\rho ^+)\ \beta (d\rho ^*),\\ {\mathcal K}^+(h,t)(x,\rho ^-,\rho ^+) :=&\int ([\rho ^+,\rho ^*]-[\rho _-,\rho ^+])\\&\quad h(x-([\rho ^-,\rho ^+]-[\rho ^+,\rho ^*])t,\rho ^+,\rho ^*)\ \beta (d\rho ^*) \\&\quad - \int ([\rho ^-,\rho ^*]-[\rho ^-,\rho ^+])\\&\quad h(x-([\rho ^-,\rho ^+]-[\rho ^-,\rho ^*])t,\rho ^-,\rho ^*)\ \beta (d\rho ^*). \end{aligned}$$

Our goal is to prove the existence of a local solution \(g: [0,T^{*}] \mapsto {\mathcal X}\) to the inhomogeneous ODE

$$\begin{aligned} \dot{g}(t)={\mathcal H}(g(t),t) \end{aligned}$$
(A.3)

under the initial condition \(g(0)=h\). As the function space \(({\mathcal X},\Vert \cdot \Vert _{{\mathcal X}})\) is clearly Banach, we will construct a Cauchy sequence \((g_n)_{n \in {\mathbb N}}\) of elements in \(C([0,T^{*}],{\mathcal X})\) that will converge to our desired solution g.

(Step 2) For any fixed \(n \in {\mathbb N}\), we define the polygonal function \(g_n\) such that \(g_n(0)=h\) and

$$\begin{aligned} \dot{g}_n(t)={\mathcal H}\left( g_n\left( \frac{j}{n}\right) ,\frac{j}{n} \right) \text { for all } t \in \left( \frac{j}{n},\frac{j+1}{n}\right) \end{aligned}$$

for all \(j \ge 0\). Let us denote \(g_n^{j}=g_n \left( \frac{j}{n} \right) \), then it is clear that all \(g_n^{j}\) are \(C^2\) in the variable x. We have that

$$\begin{aligned} n(g_n^{j+1}-g_n^{j})={\mathcal H}\left( g_n^{j},\frac{j}{n} \right) . \end{aligned}$$
(A.4)

Let us prove first that \(g_n^{j}(\cdot ,\rho ^-,\rho ^+) \equiv 0\) for all \((\rho ^-,\rho ^+) \notin \Gamma ^{V_{\infty }}\) by induction on j. Suppose this is true for j and we wish to prove it for \(j+1\). Take \(x \in {\mathbb R}\), \((\rho ^-,\rho ^+) \notin \Gamma ^{V_{\infty }}\), and take any \(\rho ^*\) such that \(\rho ^- \prec \rho ^* \prec \rho ^+\). Since \(C^v\) of (A.1) is a cone, we have that either \((\rho ^-,\rho ^*) \notin \Gamma ^{V_{\infty }}\) or \((\rho ^*,\rho ^+) \notin \Gamma ^{V_{\infty }}\). In either cases

$$\begin{aligned}&g_n^{j}\left( x-\left( [\rho ^-,\rho ^+]-[\rho ^-,\rho ^*]\right) \frac{j}{n},\rho ^-,\rho ^*\right) \\&\quad g_n^{j}\left( x-([\rho ^-,\rho ^+]-[\rho ^+,\rho ^*])\frac{j}{n},\rho ^*,\rho ^+\right) = 0, \end{aligned}$$

by the induction hypothesis. As a result, \(g_n^{j+1}(x,\rho ^-,\rho ^+) = 0\), as desired.

Next, let us define

$$\begin{aligned} m_j:&=\inf _{x \in {\mathbb R}} \inf _{(\rho ^-,\rho ^+) \in \Gamma ^{V_{\infty }}} g_n^{j}(x,\rho ^-,\rho ^+),\qquad M_j:=\sup _{x \in {\mathbb R}} \sup _{(\rho ^-,\rho ^+) \in \Gamma ^{V_{\infty }}} |g_n^{j}(x,\rho ^-,\rho ^+)|,\\ M'_j:&=\sup _{x \in {\mathbb R}} \sup _{(\rho ^-,\rho ^+) \in \Gamma ^{V_{\infty }}} |\partial _x g_n^{j}(x,\rho ^-,\rho ^+)|, \!\quad M''_j:=\sup _{x \in {\mathbb R}} \sup _{(\rho ^-,\rho ^+) \in \Gamma ^{V_{\infty }}} \!|\partial ^2_x g_n^{j}(x,\rho ^-,\rho ^+)|, \end{aligned}$$

It is clear from the expression of \({\mathcal H}\) that we have for all \(j \ge 0\),

$$\begin{aligned} n(m_{j+1}-m_j) \ge -6V_{\infty }M_j^2,\quad n(M_{j+1}-M_j) \le 6V_{\infty } M_j^2. \end{aligned}$$
(A.5)

Let us prove first by induction on j the following inequality,

$$\begin{aligned} rj<1\quad \implies \quad M_j \le M_0 (1-rj)^{-1}. \end{aligned}$$
(A.6)

where \(r=\frac{6V_{\infty }M_0}{n}\). The verification for \(j=0\) is trivial. Assume it is true for j, then from the second inequality in (A.5), it suffices to prove that

$$\begin{aligned} (1-rj)^{-1} \left( 1+r(1-rj)^{-1}\right) \le \left( 1-r(j+1) \right) ^{-1}. \end{aligned}$$

This inequality is equivalent to

$$\begin{aligned} (1-(j-1)r)(1-(j+1)r) \le (1-jr)^2, \end{aligned}$$

which is clearly true. As an immediate consequence of (A.6) we have that

$$\begin{aligned} \sup _{t \in [0,T^{*}]} \Vert g_n(t)\Vert _{L^{\infty }} \le M_0 \sup _{t \in [0,T^{*}]} \left( 1-\frac{6 \left\lfloor nt \right\rfloor V_{\infty } M_0}{n}\right) ^{-1} \le 2M_0. \end{aligned}$$

By differentiating the identity (A.4), we also have that

$$\begin{aligned} n(M'_{j+1}-M'_j) \le 12V_{\infty } M'_j M_j, \end{aligned}$$

So for all j such that \(\frac{j+1}{n} \le T^*\), we have that

$$\begin{aligned} M'_{j+1} \le M'_j\left( 1+\frac{24V_{\infty }M_0}{n}\right) , \end{aligned}$$

from which it follows that

$$\begin{aligned} M'_j \le M'_0\left( 1+\frac{24V_{\infty }M_0}{n}\right) ^j\le M'_0 e^{\frac{2j}{nT^*}}\le M'_0 e^2, \end{aligned}$$

and hence

$$\begin{aligned} \sup _{t \in [0,T^{*}]} \Vert \partial _x g_n(t)\Vert _{L^{\infty }} \le M'_0e^2. \end{aligned}$$

Likewise, by differentiating twice the identity (A.4), we get that

$$\begin{aligned} n(M''_{j+1}-M''_j) \le 12V_{\infty }M_jM''_j+12V_{\infty }(M'_j)^2\le 24V_{\infty }M_0 M''_j+12V_{\infty }(M'_0)^2e^4. \end{aligned}$$

From this, it follows by similar arguments as before that

$$\begin{aligned} M''_j \le \left( M''_0+\frac{(M'_0)^2e^4}{2M_0}\right) e^{\frac{24V_{\infty }M_0j}{n}}, \end{aligned}$$

and hence

$$\begin{aligned} \sup _{t \in [0,T^{*}]} \Vert \partial ^2_x g_n(t)\Vert _{L^{\infty }} \le \left( M''_0+\frac{(M'_0)^2e^4}{2M_0}\right) e^{2}. \end{aligned}$$

Now since we have for every j such that \(\frac{j+1}{n} \le T_{*}\),

$$\begin{aligned} m_{j+1} \ge m_j -\frac{24V_{\infty }M_0^2}{n}, \end{aligned}$$

it follows easily that

$$\begin{aligned} \inf _{t \in [0,T_{*}]} \inf _{x \in {\mathbb R}} \inf _{(\rho ^-,\rho ^+) \in \Gamma ^{V_{\infty }}} g_n(t)(x,\rho ^-,\rho ^+) \ge \frac{\delta _0}{2} >0. \end{aligned}$$

We have hence proved that all the approximating functions \((g_n)_{n \in {\mathbb N}} \in {\mathcal C}([0,T^{*}],{\mathcal X})\) are supported on \(\Gamma ^{V_{\infty }}\) in the \((\rho ^-,\rho ^+)\) variables, and are uniformly bounded from above and below by positive constants in their supports.

(Step 3) To finish the proof, we shall show that the sequence \(\{g_n\}\) is Cauchy. This is achieved by obtaining Lipschitz estimates on \(g_n\). Observe that for any \(s<t\), and \(k_1,k_2 \in {\mathcal X}\) that are \(C^2\) in the x-variable and supported on \(\Gamma ^{V_{\infty }}\) such that

$$\begin{aligned} \max (\Vert \partial ^2_x k_1\Vert _{L^{\infty }},\Vert \partial ^2_x k_2\Vert _{L^{\infty }})<\infty , \end{aligned}$$

it is straightforward to show

$$\begin{aligned} \Vert {\mathcal H}(k_1,t)-{\mathcal H}(k_2,t)\Vert _{{\mathcal X}} \le&6V_{\infty }\left( \Vert k_1\Vert _{{\mathcal X}} +\Vert k_2\Vert _{{\mathcal X}}\right) \Vert k_1-k_2\Vert _{{\mathcal X}},\\ \Vert {\mathcal H}(k_1,t)-{\mathcal H}(k_1,s)\Vert _{{\mathcal X}} \le&72V_{\infty }^2\Vert k_1\Vert _{{\mathcal X}} \left( \Vert k_1\Vert _{{\mathcal X}}+\Vert \partial ^2_x k_1\Vert _{L^{\infty }}\right) (t-s). \end{aligned}$$

Let us denote

$$\begin{aligned} M:=\max \left( 2M_0,M'_0e^2, \left( M''_0+\frac{(M'_0)^2e^4}{2M_0}\right) e^{2}\right) \end{aligned}$$

The constant M is a uniform upper bound on the supremum norm of \(g_n(t),\partial _x g_n(t),\partial ^2_x g_n(t)\) for all \(t \in [0,T^{*}]\) and \(n \in {\mathbb N}\). We have that

$$\begin{aligned} \Vert \dot{g}_n(t)-\dot{g}_m(t)\Vert _{{\mathcal X}} =&\left\| {\mathcal H}\left( g_n \left( \frac{\left\lfloor nt \right\rfloor }{n}\right) ,\frac{\left\lfloor nt \right\rfloor }{n}\right) -{\mathcal H}\left( g_m \left( \frac{\left\lfloor mt \right\rfloor }{m}\right) ,\frac{\left\lfloor mt \right\rfloor }{m}\right) \right\| _{{\mathcal X}}\\ \le&\left\| {\mathcal H}\left( g_n \left( \frac{\left\lfloor nt \right\rfloor }{n}\right) ,\frac{\left\lfloor nt \right\rfloor }{n}\right) -{\mathcal H}\left( g_n \left( \frac{\left\lfloor nt \right\rfloor }{n}\right) ,t\right) \right\| _{{\mathcal X}}\\&+ \left\| {\mathcal H}\left( g_n \left( \frac{\left\lfloor nt \right\rfloor }{n}\right) ,t\right) -{\mathcal H}\left( g_n(t),t\right) \right\| _{{\mathcal X}}\\&+ \left\| {\mathcal H}(g_n(t),t)-{\mathcal H}(g_m(t),t) \right\| _{{\mathcal X}}\\&+ \left\| {\mathcal H}(g_m(t),t)-{\mathcal H}\left( g_m \left( \frac{\left\lfloor mt \right\rfloor }{m}\right) ,t\right) \right\| _{{\mathcal X}}\\&+ \left\| {\mathcal H}\left( g_m \left( \frac{\left\lfloor mt \right\rfloor }{m}\right) ,t\right) -{\mathcal H}\left( g_m \left( \frac{\left\lfloor mt \right\rfloor }{m}\right) ,\frac{\left\lfloor mt \right\rfloor }{m}\right) |\right\| _{{\mathcal X}} \\ \le&144V_{\infty }^2M^2 \left( \frac{1}{n}+\frac{1}{m}\right) +12V_{\infty }M \left( \left\| g_n\left( \frac{\left\lfloor nt \right\rfloor }{n}\right) -g_n(t)\right\| _{{\mathcal X}}\right. \\&+ \left. \left\| g_m\left( \frac{\left\lfloor mt \right\rfloor }{m}\right) -g_m(t)\right\| _{{\mathcal X}}\right) +12V_{\infty }M\Vert g_n(t)-g_m(t)\Vert _{{\mathcal X}}. \end{aligned}$$

On the other hand,

$$\begin{aligned} \left\| g_n \left( \frac{\left\lfloor nt \right\rfloor }{n} \right) -g_n(t)\right\| _{{\mathcal X}} \le \frac{1}{n}\left\| {\mathcal H}\left( g_n \left( \frac{ \left\lfloor nt \right\rfloor }{n} \right) \right) \right\| _{{\mathcal X}} \le \frac{6V_{\infty } M^2}{n} \end{aligned}$$

and similarly for the term concerning m. Hence there exist two positive constants \(C_1,C_2\) that only depend on \(V_{\infty }\) and M, such that for all \(t \in [0,T^{*}]\),

$$\begin{aligned} \Vert \dot{g}_n(t)-\dot{g}_m(t)\Vert _{{\mathcal X}} \le C_1\left( \frac{1}{n}+\frac{1}{m}\right) +C_2\Vert g_n(t)-g_m(t)\Vert _{{\mathcal X}}, \end{aligned}$$

which implies

$$\begin{aligned} \left| \left| g_n(t)-g_m(t)\right| \right| _{{\mathcal X}} \le C_1 \left( \frac{1}{n}+\frac{1}{m}\right) t+C_2\int _{0}^{t}\Vert g_n(s)-g_m(s)\Vert _{{\mathcal X}}\ ds. \end{aligned}$$

This, and the Gronwall’s inequality give

$$\begin{aligned} \sup _{t \in [0,T^{*}]} \Vert g_n(t)-g_m(t)\Vert _{{\mathcal X}} \le C_1\left( \frac{1}{n}+\frac{1}{m} \right) T^{*}\left( 1+c_2T^{*}e^{C_2T^{*}}\right) \end{aligned}$$

which implies that \((g_n)_{n \in {\mathbb N}}\) is a Cauchy sequence and therefore admits a limit \(g_{\infty } \in {\mathcal C}([0,T^{*}],{\mathcal X})\). The function \(g_{\infty }\) (that we now regard as a function of the four variables \((x,t,\rho ^-,\rho ^+)\)) is \(C^1\) in the variables x and t, and verify the inhomogeneous ODE (A.3) and is bounded uniformly from below by \(\frac{\delta _0}{2}\) and is such that

$$\begin{aligned} \sup _{t \in [0,T^*]} \sup _{x \in {\mathbb R}} \sup _{\rho ^-,\rho ^+} g_{\infty }(x,t,\rho ^-,\rho ^+) \le M. \end{aligned}$$

Moreover, for any fixed x and t in its domain of definition, the function \((\rho ^-,\rho ^+) \mapsto g_{\infty }(x,t,\rho ^-,\rho ^+)\) is supported on \(\Gamma ^{V_{\infty }}\). Now defining

$$\begin{aligned} f(x,t,\rho ^-,\rho ^+)=g_{\infty }(x+[\rho ^-,\rho ^+]t,t,\rho ^-,\rho ^+) \end{aligned}$$
(A.7)

f is again \(C^1\) in x and t, verify the same properties as \(g_{\infty }\) and verifies the desired kinetic equation.

Finally we remark that in the above proof, we may replace the set \(\Gamma ^{V_{\infty }}\) with \(\Gamma ^{V_{\infty }}_+\). \(\square \)

For the second part of this section, we will prove the existence of the solution to the Kolmogorov forward equation both in space x and time t. More precisely, we wish to address the existence of a unique uniformly positive solution \(\ell \) of the equations (2.3) and (2.4), provided that the kernel f is uniformly positive. We remark that these equations are consistant by Proposition 4.1. Because of this, we only need to solve (2.3) in \([a^-,a^+]\) for an initial condition \(\ell (a^-,t,\cdot )\) that solves (2.4). The existence of a solution to (2.3) can be carried out by standard arguments. However, we need to ensure the constructed solution is uniformly positive in \(\Lambda \), if the initial \(\ell ^0(\rho )=\ell (a^-,t_0,\rho )\) is uniformly positive. Observe that if \(\ell \) solves (2.3), then

$$\begin{aligned} \frac{d}{dx}\int \ell (x,t,\rho )\ \beta (d\rho )=0, \end{aligned}$$

because the \(\beta \)-integral of the right-hand side of (2.3) is 0. This means

$$\begin{aligned} \int \ell (x,t)\ \beta (d\rho )=1, \end{aligned}$$
(A.8)

if this is the case for \(x=a^-\). On the other hand, if the total integral of \(\beta \) is one, \(f\ge \delta _1\) for some positive constant \(\delta _1\), and \(\ell \) is a solution of (2.3) satisfying (A.8), then

$$\begin{aligned} \ell _x(x,t,\rho )\ge \delta _1-\lambda (x,t,\rho )\ell (x,t,\rho ), \end{aligned}$$

which leads to the lower bound

$$\begin{aligned} \ell (x,t,\rho )\ge \ell (a^-,t,\rho )e^{-\int _{a^-}^x \lambda (\theta ,t,\rho )\ d\theta } +\delta _1\int _{a^-}^xe^{-\int _{y}^x \lambda (\theta ,t,\rho )\ d\theta }\ dy. \end{aligned}$$

From this we learn that \(\ell \) is uniformly positive in \(\Lambda \) if this is the case on the left boundary side of \(\Lambda \). By assumption, \(\ell \) is uniformly positive at \((a^-,t_0)\), and as t varies, the function \(t\mapsto \ell (a^-,t,\rho )\) satisfies (2.4). If the kernel f is supported in \(\Gamma ^{V_{\infty }}_+\), then \([\rho ^-,\rho ^+]f\ge 0\), and a repetition of the above reasoning guarantees

$$\begin{aligned} \ell (a^-,t,\rho )\ge \ell (a^-,t_0,\rho )e^{-\int _{t_0}^x A(a^-,\theta ,\rho )\ d\theta }. \end{aligned}$$

In summary, when the kernel f is supported in \(\Gamma ^{V_{\infty }}_+\), and is uniformly positive on its support, we can construct a unique uniformly positive solution \(\ell \) to forward equations (2.3) and (2.4) by standard arguments. However some care is needed if \([\rho ^-,\rho ^+]\) can change sign in the support of our kernel f. In this case, we can guarantee the existence of a uniformly positive solution to (2.3) and (2.4) if we either replace the time interval \([0,T^*]\) with a shorter interval, or assume that the initial \(\ell (a^-,t_0,\rho )\) is sufficiently positive. As an example, we demonstrate how a lower bound of 1/6 on the initial \(\ell \) can guarantee the positivity of the solution.

Theorem A.2

Fix \(a^{-}<a^{+}\). Let \(\ell ^{0} : [P^-,P^+]^2 \rightarrow [0,+\infty )\) be a measurable function such that there exists two constants \(c,C>0\) with

$$\begin{aligned} c \le \ell ^{0}(\rho ) \le C \text { for all } \rho \end{aligned}$$

and \(\int \ell ^{0}(\rho )\ \beta (d\rho )=1\). Moreover, assume that \(c \ge \frac{1}{6}\). Then there exists a \(C^1\) solution \(\ell : [a^{-},a^{+}] \times [0,T^{*}] \times [P^-,P^+]^2 \rightarrow [0,+\infty )\) to the equations (2.3) and (2.4) such that \(\ell (a^{-},0,\cdot )=\ell ^{0}\), and such that \(\ell \) is uniformly bounded below by a positive constant and

$$\begin{aligned} \int \ell (x,t,\rho )\ \beta (d\rho )=1, \end{aligned}$$

for all \((x,t) \in [a^{-},a^{+}] \times [0,T^{*}]\).

Proof

Without loss of generality let us assume that \(a^{-}=0\) and denote \(a^{+}=a\). We will construct a two-parameter function \(\ell :[-V_{\infty }T^{*},a] \times [0,T^{*}] \rightarrow {\mathcal F}_b([P^-,P^+]^2)\). The reason why we extend the space domain to \([-V_{\infty }T^{*},a]\) instead of [0, a] will be made clear later. Let us define first \(\ell (\cdot ,0)\) on \([-V_{\infty }T^{*},a]\) using the first ODE in the x-direction. The utility of the condition \(c \ge \frac{1}{6}\) is to ensure the non-negativity of \(\ell \) as we run the ODE backwards from \(0 \rightarrow -V_{\infty }T^{*}\). Our strategy for proving the existence of the solution of the ODE at \(t=0\) is done in a similar fashion as the kinetic equation via an approximation scheme. In other words, we construct a polygonal approximating \(\ell _n : [-V_{\infty }T^{*},a] \rightarrow {\mathcal F}_b([P^-,P^+]^2)\) by putting \(\ell _n(0)=\ell ^{0}\), and for any \(k \in {\mathbb Z}\) by the inductive relation. More precisely, we put \(f^k(\rho ,\rho _*):=f(k/n,0,\rho ,\rho _*)\), and require that functions \(\ell _n^{k}:=\ell _n \left( \frac{k}{n} \right) \in {\mathcal F}_b([P^-,P^+]^2)\) to satisfy

$$\begin{aligned} n \left( \ell ^{k+1}_n(\rho )-\ell ^k_n(\rho )\right) =&\int f^k \left( \rho ^*,\rho \right) \ell _n^k(\rho ^*)\ \beta (d\rho ^*) -\left( \int f^k\left( \rho ,\rho ^+\right) \ \beta (d\rho ^+) \right) \ell _n^k(\rho ), \end{aligned}$$

for \(k\ge 0\), and

$$\begin{aligned} -n \left( \ell ^{k-1}_n(\rho )-\ell ^k_n(\rho )\right) =&\int f^k \left( \rho ^*,\rho \right) \ell _n^k(\rho ^*)\ \beta (d\rho ^*) \\&-\left( \int f^k\left( \rho ,\rho ^+\right) \ \beta (d\rho ^+) \right) \ell _n^k(\rho ), \end{aligned}$$

for \(k \le 0\). The intermediate values \(\ell _n(x)\) for \(x \in (\frac{k}{n},\frac{k+1}{n})\) are obtained by linear interpolation. As an initial observation, remark that

$$\begin{aligned} \int \ell _n^{k}(\rho )\ \beta (d\rho )=\int \ell _n^{k \pm 1}(\rho )\ \beta (d\rho ), \end{aligned}$$

and hence

$$\begin{aligned} \int \ell _n^{k}(\rho )\ \beta (d\rho )=1,\quad {\text { for all }} \; k \in {\mathbb Z}. \end{aligned}$$

Now, if we take \(n \ge M_0\) where \(M_0=\Vert f(\cdot ,0,\cdot ,\cdot )\Vert _{L^{\infty }}\), then by induction it follows that \(\ell _n^{k} \ge 0\) for all \(k \ge 0\), as we have that

$$\begin{aligned} \ell _n^{k+1}(\rho )&=\ell _n^{k}(\rho )+\frac{1}{n} \left( \int f^k \left( \rho ^*,\rho \right) \ell _n^k(\rho ^*)\ \beta (d\rho ^*) - \left( \int f^k\left( \rho ,\rho ^+\right) \ \beta (d\rho ^+) \right) \ell _n^k(\rho ) \right) \\&\ge \ell _n^{k}(\rho ) - \frac{M_0}{n} \ell _n^{k}(\rho ), \end{aligned}$$

which in turn implies the following lower bound

$$\begin{aligned} \ell _n^{k}(\rho ) \ge \ell ^0(\rho )\left( 1 -\frac{M_0}{n} \right) ^k \ge \ell ^{0}(\rho ) e^{-\frac{M_0 k}{n}}\ \ \text { for all } \ k \ge 0. \end{aligned}$$

On the other hand, for \(k \le 0\) we have

$$\begin{aligned} \ell _n^{k-1}(\rho )&=\ell _n^{k}(\rho )-\frac{1}{n} \int f^k (\rho ^*,\rho ) \ell _n^k(\rho ^*)\ \beta (d\rho ^*) +\frac{1}{n} \left( \int f^k\left( \rho ,\rho ^+\right) \ \beta (d\rho ^+) \right) \ell _n^k(\rho ), \end{aligned}$$

which leads to

$$\begin{aligned} \ell _n^{k}(\rho ) \ge \ell ^{0}(\rho )-\frac{M_0k}{n}, \end{aligned}$$

because

$$\begin{aligned} \int f^k \left( \rho ^*,\rho \right) \ell _n^k(\rho ^*)\ \beta (d\rho ^*) \le M_0 \int \ell _n^{k}(\rho ^*)\ \beta (d\rho _*) =M_0. \end{aligned}$$

In particular, if \(\frac{k}{n} \ge -V_{\infty }T^{*}\), then \(\frac{M_0k}{n}\ge -\frac{1}{2}\), and

$$\begin{aligned} \inf _{\rho } \ell _n^{k}(\rho ) \ge c -\frac{1}{12} \ge \frac{1}{12}. \end{aligned}$$

We have therefore constructed the polygonal approximating function \(\ell _n : [-V_{\infty }T^{*},a] \rightarrow {\mathcal F}_b([P^-,P^+]^2)\) such that it is uniformly bounded from below by \(\min ({1}/{12},c e^{-M_0 a })\). The sequence \((\ell _n)_{n \in {\mathbb N}}\) is a Cauchy sequence in the space \(C([-V_{\infty }T^{*},a],{\mathcal F}_b([P^-,P^+]^2)\) where \({\mathcal F}_b([P^-,P^+]^2)\) is viewed as a Banach space equipped with the uniform norm. We obtain that the limit \(\ell _{\infty }:=\lim _{n \rightarrow \infty } \ell _n\) is a solution to the ODE

$$\begin{aligned} (\ell _{\infty })_x(x,\rho )= & {} \int f(x,0,\rho ^*,\rho )\ell _{\infty }(x,\rho ^*)\ \beta (d\rho ^*) \\&- \left( \int f(x,0,\rho ,\rho ^+)\ \beta (d\rho ^+) \right) \ell _{\infty }(x,\rho ) \end{aligned}$$

We define \(\ell (\cdot ,0)=\ell _{\infty }\). We will move on now to prove the existence of the solution \(\ell \) as an ODE in the time variable t. In order to preserve the non-negativity of \(\ell \), we have taken advantage in the ODE in the x-direction of the positivity of the kernel \(f(x,t,\rho ^-,\rho ^+)\), however in the t-direction the kernel is equal to \([\rho ^-,\rho ^+]f(x,t,\rho ^-,\rho ^+)\). To circumvent this difficulty, we take advantage of the finite speed propagation (this also explains why we have constructed \(\ell (0,\cdot )\) on \([-V_{\infty }T^{*},a]\) instead of just [0, a]). For any \(x \in {\mathbb R}\) and \(t \in [0,T^{*}]\) we define

$$\begin{aligned} \tilde{f}(x,t,\rho ^-,\rho ^+)=f(x+V_{\infty }t,t,\rho ^-,\rho ^+) \text { for all } \rho ^-,\rho ^+. \end{aligned}$$

We define a function \(\tilde{\ell } :[-V_{\infty }T^{*},a] \times [0,T^{*}] \rightarrow {\mathcal F}_b([P^-,P^+]^2)\) that satisfies the initial condition \(\tilde{\ell }(x,0)=\ell _{\infty }(x)=\ell (x,0)\). Now, for \(x=-V_{\infty }T^{*}\) we define \(\tilde{\ell }(-V_{\infty }T^{*},\cdot ) : [0,T^{*}] \rightarrow {\mathcal F}_b([P^-,P^+]^2)\) by solving the ODE

$$\begin{aligned} \tilde{\ell }_t(-V_{\infty }T^{*},t,\rho )=&\int \left( [\rho ^*,\rho ]+V_{\infty } \right) \tilde{f}(-V_{\infty }T^{*},t,\rho ^*,\rho )\tilde{\ell }(-V_{\infty }T^{*},t,\rho ^*)\ \beta (d\rho ^*) \\&-\left( \int \left( [\rho ,\rho ^+]+V_{\infty }\right) \tilde{f}(-V_{\infty }T^{*},t,\rho ,\rho ^+)\ \beta (d\rho ^+) \right) \\&\qquad \tilde{\ell }(-V_{\infty }T^{*},t,\rho ), \end{aligned}$$

with initial condition \(\tilde{\ell }(-V_{\infty }T^{*},0)=\ell _{\infty }(-V_{\infty }T^{*})\). Now, for any fixed \(t \in (0,T^{*}]\) we define \(\tilde{\ell } (\cdot ,t) : [-V_{\infty }T^{*},a] \rightarrow {\mathcal F}_b([P^-,P^+]^2)\) by solving the ODE on \([-V_{\infty }T^{*},a]\)

$$\begin{aligned} \tilde{\ell }_x(x,t,\rho )= & {} \int \tilde{f}(x,t,\rho ^*,\rho )\tilde{\ell }(x,t,\rho ^*)\ \beta (d\rho ^*)\\&- \left( \int \tilde{f}(x,t,\rho ,\rho ^+)\ \beta (d\rho ^+) \right) \tilde{\ell }(x,t,\rho ) \end{aligned}$$

with initial condition determined by \(\tilde{\ell }(-V_{\infty }T^{*},t)\). The existence of these solutions is done by exactly the same approximation scheme than before, and the function \(\tilde{\ell }\) is bounded uniformly from below on the box \([-V_{\infty }T^{*},a]\times [0,T^{*}]\) due to the non-negativity of the kernels \(([\rho ^-,\rho ^+]+V_{\infty })f(x,t,\rho ^-,\rho ^+)\) and \(f(x,t,\rho ^-,\rho ^+)\). Moreover, if we assume that initially \(f(0,\cdot )\) is \(C^3\) then we get that f is \(C^2\) in the variables (xt), it follows that \(\ell \) is also \(C^2\) and thus from Proposition 5.1, the ODE in t is verified for all \(x \in [-V_{\infty }T^{*},a]\), i.e

$$\begin{aligned} \tilde{\ell }_t(x,t,\rho )=&\int \left( [\rho ^*,\rho ]+V_{\infty } \right) \tilde{f}(x,t,\rho ^*,\rho )\tilde{\ell }(x,t,\rho ^*)\ \beta (d\rho ^*) \\&-\left( \int \left( [\rho ,\rho ^+]+V_{\infty }\right) \tilde{f}(x,t,\rho ,\rho ^+)\ \beta (d\rho ^+) \right) \tilde{\ell }(x,t,\rho ) \end{aligned}$$

Now, it suffices to define

$$\begin{aligned} \ell (x,t,\rho )=\tilde{\ell }(x-V_{\infty }t,t,\rho ) \text { for all } (x,t) \in [0,a] \times [0,T^{*}] \text{ and } \rho \in [P^-,P^+]^2 \end{aligned}$$

then \(\ell \) is \(C^1\) in (xt) and verify the desired ODEs. Moreover, the total of mass of \(\ell \) is conserved through space and time. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouaki, M., Rezakhanlou, F. Random Tessellations and Gibbsian Solutions of Hamilton–Jacobi Equations. Commun. Math. Phys. 394, 409–470 (2022). https://doi.org/10.1007/s00220-022-04402-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04402-0

Navigation