Skip to main content
Log in

A Groupoid Approach to Interacting Fermions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the algebra \({{\dot{\Sigma }}}({{\mathcal {L}}})\) generated by the inner-limit derivations over the \({\mathrm{GICAR}}\) algebra of a fermion gas populating an aperiodic Delone set \({{\mathcal {L}}}\). Under standard physical assumptions such as finite interaction range, Galilean invariance of the theories and continuity with respect to the deformations of the aperiodic lattices, we demonstrate that the image of \({{\dot{\Sigma }}}({{\mathcal {L}}})\) through the Fock representation can be completed to a groupoid-solvable pro-\(C^*\)-algebra. Our result is the first step towards unlocking the K-theoretic tools available for separable \(C^*\)-algebras for applications in the context of interacting fermions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akemann, C.A., Pedersen, G.K., Tomiyama, J.: Multipliers of \(C^\ast \)-algebras. J. Funct. Anal. 13, 277–301 (1973)

    Article  MATH  Google Scholar 

  2. Amini, M.: \(C^{\ast }\)-algebras of 2-groupoids. Rocky Mt. J. Math. 46, 693–728 (2016)

    Article  MATH  Google Scholar 

  3. Androulakis, G., Bellissard, J., Sadel, C.: Dissipative dynamics in semiconductors at low temperature. J. Stat. Phys. 147, 448–486 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Apigo, D.J., Qian, K., Prodan, C., Prodan, E.: Topological edge modes by smart patterning. Phys. Rev. Mater. 2, 124203 (2018)

    Article  Google Scholar 

  5. Austin, Kyle, Georgescu, Magdalena C.: Inverse systems of groupoids, with applications to groupoid \(C^\ast \)-algebras. J. Funct. Anal. 276, 716–750 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Austin, Kyle, Mitra, Atish: Groupoid models of \(C^\ast \)-algebras and the Gelfand functor. N. Y. J. Math. 27, 740–775 (2021)

    MathSciNet  MATH  Google Scholar 

  7. Apigo, D.J., Cheng, W., Dobiszewski, K.F., Prodan, E., Prodan, C.: Observation of topological edge modes in a quasi-periodic acoustic waveguide. Phys. Rev. Lett. 122, 095501 (2019)

    Article  ADS  Google Scholar 

  8. Bellissard, J.: K-theory of C\(^\ast \)-algebras in solid state physics. Lect. Notes Phys. 257, 99–156 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bellissard, J.: Gap labeling theorems for Schroedinger operators. In: Waldschmidt, M., Moussa, P., Luck, J.-M., Itzykson, C. (eds.) From Number Theory to Physics. Springer, Berlin (1995)

    Google Scholar 

  10. Bellissard, J., Herrmann, D.J.L., Zarrouati, M.: Hulls of aperiodic solids and gap labelling theorems. In: Directions in Mathematical Quasicrystals. CIRM Monograph Series, vol. 13, pp. 207–259 (2000)

  11. Bellissard, J.: Noncommutative geometry of aperiodic solids. In: Ocampo, H., Pariguan, E., Paycha, S. (eds.) Geometric and Topological Methods for Quantum Field Theory. World Scientific Publishing, River Edge (2003)

    Google Scholar 

  12. Blackadar, B.: K-Theory for Operator Algebras. Mathematical Sciences Research Institute Publications, vol. 5, 2nd edn. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  13. Bourne, C., Carey, A.L., Rennie, A.: A non-commutative framework for topological insulators. Rev. Math. Phys. 28, 1650004 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bourne, C., Mesland, B.: Index theory and topological phases of aperiodic lattices. Ann. Henri Poincaré 20, 1969–2038 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Bourne, C., Prodan, E.: Non-commutative Chern numbers for generic aperiodic discrete systems. J. Phys. A Math. Theor. 51, 235202 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Bratteli, O.: Inductive limits of finite dimensional \(C^\ast \)-algebras. Trans. Am. Math. Soc. 171, 195–234 (1972)

    MathSciNet  MATH  Google Scholar 

  17. Bratteli, O.: Derivations, Dissipations and Group Actions on \(C^\ast \)-Algebras. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  18. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 2. Springer, Berlin (2002)

    MATH  Google Scholar 

  19. Buss, A., Meyer, R., Zhu, C.: Non-Hausdorff symmetries of \(C^{*}\)-algebras. Math. Ann. 352, 73–97 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, H., Zhang, H., Wu, Q., Huang, Y., Nguyen, H., Prodan, E., Zhou, X., Huang, G.: Creating synthetic spaces for higher-order topological sound transport. Nat. Commun. 12, 1–10 (2021)

    Google Scholar 

  21. Cheng, W., Prodan, E., Prodan, C.: Experimental demonstration of dynamic topological pumping across incommensurate bilayered acoustic metamaterials. Phys. Rev. Lett. 125, 224301 (2020)

    Article  ADS  Google Scholar 

  22. Cheng, W., Prodan, E., Prodan, C.: Revealing the boundary Weyl physics of the four-dimensional Hall effect via phason engineering in metamaterials. Phys. Rev. Appl. 16, 044032 (2021)

    Article  ADS  Google Scholar 

  23. Davidson, K.R.: \(C^\ast \)-Algebras by Example. AMS, Providence (1996)

    MATH  Google Scholar 

  24. Dynin, A.: Inversion problem for singular integral operators: \(C^\ast \)-approach. Proc. Natl. Acad. Sci. USA 75, 4668–4670 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Forrest, A., Hunton, J., Kellendonk, J.: Topological Invariants for Projection Method Patterns. AMS, Providence (2002)

    Book  MATH  Google Scholar 

  26. Hugenholtz, N.M., Kadison, R.V.: Automorphisms and quasi-free states of the CAR algebra. Commun. Math. Phys. 43, 181–197 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Jensen, K.K., Thomsen, K.: Elements of KK-Theory. Springer, New York (1991)

    Book  MATH  Google Scholar 

  28. Jorgensen, P.: Approximately inner derivations, decompositions and vector fields of simple C*-algebras. In: Araki, H., Kadison, R.V. (eds.) Mappings of Operator Algebras, Progress in Mathematics, vol. 84. Birkhäuser, Boston (1991)

    Google Scholar 

  29. Kellendonk, J.: Noncommutative geometry of tilings and gap labelling. Rev. Math. Phys. 7, 1133–1180 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kellendonk, J., Prodan, E.: Bulkboundary principle in Sturmian Kohmoto type models. Ann. Henri Poincare 20, 2039–2070 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Khoshkam, M., Skandalis, G.: Regular representation of groupoid \(C^\ast \)-algebras and applications to inverse semigroups. J. Reine Angew. Math. 546, 47–72 (2002)

    MathSciNet  MATH  Google Scholar 

  32. Lenz, D., Stollmann, P.: Delone dynamical systems and associated random operators. In: Operator Algebras and Mathematical Physics, pp. 267–285. Theta, Bucharest (2003)

  33. Liu, Y., Santos, L.F., Prodan, E.: Topological gaps in quasi-periodic spin chains: A numerical and K-theoretic analysis. Phys. Rev. B 105, 035115 (2022)

    Article  ADS  Google Scholar 

  34. Lux, F.R., Ghosh, S., Prass, P., Prodan, E., Mokrousov, Y.: Unified topological characterization of electronic states in spin textures from noncommutative K-theory, arXiv:2103.01047 (2021)

  35. Meyer, R.: Representations of \(\ast \)-algebras by unbounded operators: \(C^\ast \)-hulls, local-global principle, and induction. Documenta Mathematica 22, 1375–1466 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Murphy, G.J.: \(C^\ast \)-Algebras and Operator Theory. Academic Press, Boston (1990)

    MATH  Google Scholar 

  37. Ni, X., Chen, K., Weiner, M., Apigo, D.J., Prodan, C., Alù, A., Prodan, E., Khanikaev, A.B.: Observation of Hofstadter butterfly and topological edge states in reconfigurable quasi-periodic acoustic crystals. Commun. Phys. 2, 55 (2019)

    Article  Google Scholar 

  38. Noohi, B.: Notes on 2-groupoids, 2-groups and crossed modules. Homol. Homotopy Appl. 9, 75–106 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Phillips, N.C.: Inverse limits of \(C^\ast \)-algebras. J. Oper. Theory 19, 159–195 (1988)

    MathSciNet  MATH  Google Scholar 

  40. Prodan, E., Haldane, F.D.M.: Mapping the braiding properties of the Moore-Read state. Phys. Rev. B 80, 11512 (2009)

    Article  Google Scholar 

  41. Prodan, E., Schulz-Baldes, H.: Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics. Mathematical Physics Studies, Springer (2016)

  42. Prodan, E.: Topological lattice defects by groupoid methods and Kasparov’s KK-theory. J. Phys. A Math. Theor. 54, 424001 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  43. Renault, J.: A Groupoid Approach to \(C^\ast \)-Algebras. Springer-Verlag, Berlin (1980)

    Book  MATH  Google Scholar 

  44. Rosa, M.I.N., Pal, R.K., Arruda, J.R.F., Ruzzene, M.: Edge states and topological pumping in spatially modulated elastic lattices. Phys. Rev. Lett. 123, 034301 (2019)

    Article  ADS  Google Scholar 

  45. Rosa, M.I.N., Ruzzene, M., Prodan, E.: Topological gaps by twisting. Commun. Phys. 4, 130 (2021)

    Article  Google Scholar 

  46. Sadun, L.: Topology of Tiling Spaces. AMS, Providence (2008)

    Book  MATH  Google Scholar 

  47. Savchuk, Y., Schmüdgen, K.: Unbounded induced representations of \(\ast \)-algebras. Algebr. Represent. Theory 16, 309–376 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sims, A., Szabó, G., Williams, D.: Operator Algebras and Dynamics: Groupoids, Crossed Products, and Rokhlin Dimension. Springer, Cham (2020)

    Book  Google Scholar 

  49. Tomiyama, J.: On the projections of norm one in \(W^\ast \) algebras. Proc. Jpn. Acad. 22, 608–612 (1958)

    MATH  Google Scholar 

  50. Upmeier, H.: Multivariable Toeplitz operators and index theory. In: Araki, H., Kadison, R.V. (eds.) Mappings of Operator Algebras, Progress in Mathematics, vol. 84. Birkhäuser, Boston (1991)

    Google Scholar 

  51. Upmeier, H.: Toeplitz Operators and Index Theory in Several Complex Variables. Birkhäuser, Berlin (1996)

    MATH  Google Scholar 

  52. Wegge-Olsen, N.E.: K-Theory and C\(^*\)-Algebras. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  53. Whitehead, J.H.: Combinatorial homotopy. II. Bull. Am. Math. Soc. 55, 453–496 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  54. Williams, D.P.: A Tool Kit for Groupoid \(C^\ast \)-Algebras. AMS, Providence (2019)

    Book  MATH  Google Scholar 

  55. Xia, Y., Riva, E., Rosa, M.I.N., Cazzulani, G., Erturk, A., Braghin, F., Ruzzene, M.: Experimental observation of temporal pumping in electro-mechanical waveguides. Phys. Rev. Lett. 126, 095501 (2021)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Prodan.

Additional information

Communicated by Y. Kawahigashi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Emil Prodan was supported by the U.S. National Science Foundation through the Grants DMR-1823800 and CMMI-2131760.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesland, B., Prodan, E. A Groupoid Approach to Interacting Fermions. Commun. Math. Phys. 394, 143–213 (2022). https://doi.org/10.1007/s00220-022-04397-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04397-8

Navigation