Skip to main content
Log in

The semiclassical propagator in fermionic Fock space

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We present a rigorous derivation of a semiclassical propagator for anticommuting (fermionic) degrees of freedom, starting from an exact representation in terms of Grassmann variables. As a key feature of our approach, the anticommuting variables are integrated out exactly, and an exact path integral representation of the fermionic propagator in terms of commuting variables is constructed. Since our approach is not based on auxiliary (Hubbard–Stratonovich) fields, it surpasses the calculation of fermionic determinants yielding a standard form \(\int {\fancyscript{D}}[\psi ,\psi ^{*}] \mathrm{e}^{i R[\psi ,\psi ^{*}]}\) with real actions for the propagator. These two features allow us to provide a rigorous definition of the classical limit of interacting fermionic fields and therefore to achieve the long-standing goal of a theoretically sound construction of a semiclassical van Vleck–Gutzwiller propagator in fermionic Fock space. As an application, we use our propagator to investigate how the different universality classes (orthogonal, unitary and symplectic) affect generic many-body interference effects in the transition probabilities between Fock states of interacting fermionic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Brack M, Bhaduri R (1997) Semiclassical physics, 1st edn. Westview Press, Boulder

    Google Scholar 

  2. Sakurai JJ, Napolitano JJ (2010) Modern quantum mechanics, 2nd edn. Addison-Wesley, Boston

    Google Scholar 

  3. Gutzwiller MC (1991) Chaos in classical and quantum mechanics, 1st edn. Springer, New York

    Google Scholar 

  4. Schulman LS (1996) Techniques and applications of path integration. Wiley, New York

    Google Scholar 

  5. Gutzwiller MC (1967) J Math Phys 8:1979

    Article  CAS  Google Scholar 

  6. Haake F (2010) Quantum signatures of chaos, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  7. Miller WH (1974) Adv Chem Phys 25:69

    Google Scholar 

  8. Baranger HU, Jalabert RA, Stone AD (1993) Phys Rev Lett 70:3876

    Article  Google Scholar 

  9. Richter K, Sieber M (2002) Phys Rev Lett 89:206801

    Article  Google Scholar 

  10. Richter K (2000) Semiclassical theory of mesoscopic quantum systems. Springer, Berlin

    Google Scholar 

  11. Jalabert RA (2000) Proc Int Sch Phys “Enrico Fermi” 143:145

    Google Scholar 

  12. Waltner D (2012) Semiclassical approach to mesoscopic systems. Springer, Berlin

    Book  Google Scholar 

  13. Miller WH (1975) Adv Chem Phys 30:77

    CAS  Google Scholar 

  14. Heller EJ (1991) J Chem Phys 94:2723

    Article  Google Scholar 

  15. Stock G, Thoss M (1997) Phys Rev Lett 78:578

    Article  CAS  Google Scholar 

  16. Wang H, Thoss M, Miller WH (2000) J Chem Phys 112:47

    Article  CAS  Google Scholar 

  17. Ullmo D (2008) Rep Prog Phys 71:026001

    Article  Google Scholar 

  18. Ezra GS, Richter K, Tanner G, Wintgen D (1991) J Phys B At Mol Opt Phys 24:L413

    Article  CAS  Google Scholar 

  19. Hummel Q, Urbina JD, Richter K (2013) J Phys A Math Theor 47:01510

    Google Scholar 

  20. Kirrander A, Shalashilin DV (2011) Phys Rev A 84:033406

    Article  Google Scholar 

  21. Paul T (2002) Semiklassik für spinabhängigen Transport in inhomogenen Magnetfeldern. Diploma thesis, Universität Regensburg

  22. Littlejohn RG, Flynn WG (1991) Phys Rev A 44:5239

    Article  CAS  Google Scholar 

  23. Littlejohn RG, Flynn WG (1992) Phys Rev A 45:7697

    Article  Google Scholar 

  24. Mathur H, Stone AD (1992) Phys Rev Lett 68:2964

    Article  Google Scholar 

  25. Bolte J, Glaser R, Keppeler S (2001) Ann Phys 293:1

    Article  CAS  Google Scholar 

  26. Pletyukhov M, Amann C, Mehta M, Brack M (2002) Phys Rev Lett 89:116601

    Article  CAS  Google Scholar 

  27. Pletyukhov M, Zaitsev O (2003) J Phys A Math Gen 36:5181

    Article  Google Scholar 

  28. Zaitsev O, Frustaglia D, Richter K (2005) Phys Rev B 72:155325

    Article  Google Scholar 

  29. Negele JW, Orland H (1988) Quantum many-particle systems. Addison-Wesley, Boston

    Google Scholar 

  30. Weinberg S (2005) The quantum theory of fields, volume 1: foundations. Cambridge University Press, Cambridge

    Google Scholar 

  31. Lewenstein M, Sanpera A, Ahufinger V (2012) Ultracold atoms in optical lattices: simulating quantum many-body systems. Oxford University Press, Oxford

    Book  Google Scholar 

  32. Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen(De) A, Sen U (2007) Adv Phys 56:243

    Article  Google Scholar 

  33. Baranger M, de Aguiar MAM, Keck F, Korsch HJ, Schellhaaß B (2001) J Phys A Math Gen 34:7227

    Article  Google Scholar 

  34. Engl T, Dujardin J, Argüelles A, Schlagheck P, Richter K, Urbina JD (2014) Phys Rev Lett 112:140403

    Article  Google Scholar 

  35. Klauder JR (1960) Ann Phys 11:123

    Article  Google Scholar 

  36. Meyer H, Miller WH (1979) J Chem Phys 71:2156

    Article  CAS  Google Scholar 

  37. Miller WH, White KA (1986) J Chem Phys 84:5059

    Article  CAS  Google Scholar 

  38. Grossmann F, Buchholz M, Pollak E, Nest M (2014) Phys Rev A 89:032104

    Article  Google Scholar 

  39. Li B, Miller WH (2012) J Chem Phys 137:154107

    Article  Google Scholar 

  40. Swenson DWH, Levy T, Cohen G, Rabani E, Miller WH (2011) J Chem Phys 134:164103

    Article  Google Scholar 

  41. Li B, Wilner EY, Thoss M, Rabani E, Miller WH (2014) J Chem Phys 140:104110

    Article  Google Scholar 

  42. Manning RS, Ezra GS (1996) Phys Rev A 53:661

    Article  CAS  Google Scholar 

  43. The authors tried, so far unsuccessfully, to establish such a link.

  44. Thoss M, Stock G (1999) Phys Rev A 59:64

    Article  CAS  Google Scholar 

  45. Berezin FA (1966) The method of second quantization. Academic Press, New York

    Google Scholar 

  46. Trotter HF (1959) Proc Am Math Soc 10:545

    Article  Google Scholar 

  47. Nolting W (2009) Fundamentals of many-body physics: principles and methods. Springer, New York

    Book  Google Scholar 

  48. Wilets L, Henley EM, Kraft M, Mackellar A (1977) Nucl Phys A 282:341

    Article  Google Scholar 

  49. Dorso C, Duarte S, Randrup J (1987) Phys Lett B 188:287

    Article  CAS  Google Scholar 

  50. Boal DH, Glosli JN (1988) Phys Rev C 38:1870

    Article  CAS  Google Scholar 

  51. Latora V, Belkacem M, Bonasera A (1994) Phys Rev Lett 73:1765

    Article  CAS  Google Scholar 

  52. Sun X, Miller WH (1997) J Chem Phys 106:6346

    Article  CAS  Google Scholar 

  53. Levein RD (2000) Proc Natl Acad Sci USA 97:1965

  54. Braun C, Garg A (2007) J Math Phys 48:032104

    Article  Google Scholar 

  55. Tabor M (1989) Chaos and integrability in nonlinear dynamics: an introduction, 1st edn. Wiley, New York

    Google Scholar 

  56. Solari HG (1987) J Math Phys 28:1097

    Article  Google Scholar 

  57. Kochetov EA (1995) J Math Phys 36:4667

    Article  Google Scholar 

  58. Vieira V, Sacramento P (1995) Nucl Phys B 448:331

    Article  Google Scholar 

  59. Pletyukhov M (2004) J Math Phys 45:1859

    Article  Google Scholar 

  60. Berry MV (1985) Proc R Soc Lond A 400:229

    Article  CAS  Google Scholar 

  61. Bychkov YA, Rashba EI (1984) J Phys C Solid State Phys 17:6039

    Article  Google Scholar 

  62. Lin YJ, Jimenez-Garcia K, Spielman IB (2011) Nature 471:83

    Article  CAS  Google Scholar 

  63. Engl T, Urbina JD, Richter K (in preparation)

Download references

Acknowledgments

We thank T. Guhr, P. Schlagheck, S. Essert and S. Smirnov for useful discussions. This work was financially supported by the Deutsche Forschungsgemeinschaft wihtin FOR 760 and SPP 1666.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Engl.

Additional information

Dedicated to Professor Greg Ezra and published as part of the special collection of articles celebrating his 60th birthday.

Appendices

Appendix 1: Derivation of the path integral

For simplicity, in this section, we assume a quantum hamiltonian given by

$$\begin{aligned} \hat{H}=\sum \limits _{\alpha ,\beta }^{}h_{\alpha \beta }\hat{c}_{\alpha }^{\dagger }\hat{c}_{\beta }^{}+{\mathop {\mathop {\sum }\limits _{\alpha ,\beta }}\limits _{\alpha \ne \beta }}^{}U_{\alpha \beta }\hat{c}_{\alpha }^{\dagger }\hat{c}_{\beta }^{\dagger }\hat{c}_{\beta }^{}\hat{c}_{\alpha }^{}. \end{aligned}$$
(85)

The result for a non-diagonal interaction \(U_{\alpha \beta \gamma \nu }\), however, is given in Appendix 3 In order to get from Eq. (17) to the complex path integral Eq. (19), the following two integrals with \(j,j^\prime \in \mathbb {N}_0\), will be inserted:

$$\begin{aligned}&\int \limits _{0}^{2\pi }\!\mathrm{d}\theta \int \limits _{}^{}\!\mathrm{d}^2\phi \exp \left( -\left| \phi \right| ^2+\left. \phi \right. ^*\mathrm{e}^{\mathrm{i}\theta }-\mathrm{i}j\theta \right) \phi ^{j^\prime }=2\pi ^2\delta _{j,j^\prime } \end{aligned}$$
(86)
$$\begin{aligned}&\int \limits _{}^{}\!\mathrm{d}^2\phi \int \limits _{}^{}\!\mathrm{d}^2\mu \exp \left( -\left| \phi \right| ^2-\left| \mu \right| ^2+\left. \phi \right. ^*\mu \right) \phi ^j\left( \left. \mu \right. ^*\right) ^{j^\prime }=\pi ^2j!\delta _{j,j^\prime }, \end{aligned}$$
(87)

Thereby \(\mathrm{d}^2\mu =\mathrm{d}\mathfrak {R}{\mu }\mathrm{d}\mathfrak {I}{\mu }\), i.e., the integrations over \(\phi\) and, in the second case, over \(\mu\) run over the whole complex plane. One should notice, that the first of these two integrals is just the second one, but with the modulus of \(\mu\) already integrated out.

The first of these two integrals is used to decouple \({\varvec{\zeta }}^{(0)}\) from \({\varvec{\zeta }}^{(1)}\) by the following identity:

$$\begin{aligned}&\int \mathrm{d}^{2J}\zeta ^{(0)}_{}\exp \left( -\left. {\varvec{\zeta }}^{(0)}\right. ^*\cdot {\varvec{\zeta }}^{(0)}\right) \left[ \prod \limits _{j=1}^{J}\left( 1+\left. \chi ^{(0)}_{j}\right. ^*\zeta ^{(0)}_{j}\right) \right] \prod \limits _{j=1}^{J}\left( \left. \zeta ^{(0)}_{j}\right. ^*\right) ^{n^{(i)}_{j}}= \\&\int \frac{\mathrm{d}^{2N_i}\phi ^{(0)}_{}}{\pi ^{N_i}}\int \limits _{0}^{2\pi }\frac{\mathrm{d}^{N_i}\theta ^{(i)}_{}}{\left( 2\pi \right) ^{N_i}}\int \mathrm{d}^{2J}\zeta ^{(0)}_{}\exp \left( -\left. {\varvec{\zeta }}^{(0)}\right. ^*\cdot {\varvec{\zeta }}^{(0)}-\left| {{\phi }}^{(0)}\right| ^2+\left. {{\phi }}^{(0)}\right. ^*\cdot {{\mu }}^{(0)}\right) \\&\left[ \prod \limits _{j=1}^{J}\left( 1+\left. \chi ^{(0)}_{j}\right. ^*\phi ^{(0)}_{j}\right) \right] \left[ \prod \limits _{j=0}^{J-1}\left( 1+\zeta ^{(0)}_{J-j}\left. \mu ^{(0)}_{J-j}\right. ^*\right) \right] \prod \limits _{j=1}^{J}\left( \left. \zeta ^{(0)}_{j}\right. ^*\right) ^{n^{(i)}_{j}}, \end{aligned}$$
(88)

with \(\mu ^{(0)}_{j}=n^{(i)}_{j}\exp ( \mathrm{i}\theta ^{(i)}_{j})\) for all \(j\in \{1,\ldots ,J\}\), where \(J\) is the number of single-particle states taken into account. Note that here, for the initially unoccupied single-particle states, the phases \(\theta ^{(i)}_{j}\) are arbitrary but fixed, e.g. to zero, while the integration runs only over those initial phases \(\theta ^{(i)}_{j}\), for which \(n^{(i)}_{l}=1\). In this way, the integrals, that have to be performed exactly, in order to get a reasonable and correct semiclassical approximation for the propagator are already done, and do not have to be carried out later.

For the \(N_i=\sum _{j=1}^{J}n^{(i)}_{j}\) initially occupied single-particle states, the identity follows directly from Eq. (86), while for the unoccupied ones, it is important to notice, that the term \(\left. \chi ^{(0)}_{j}\right. ^*\zeta ^{(0)}_{j}\) does vanish when integrating over \({\varvec{\zeta }}^{(0)}\). This is because of the properties of the Grassmann integrals Eq. (10) and the fact, that there is no \(\left. \zeta ^{(0)}_{j}\right. ^*\) for those components, for which \(n^{(i)}_{j}=0\).

The thus obtained expression is the starting point for an iterative insertion of integrals of the form of Eq. (87). For \(1\le m<M\), an evaluation of the overlaps and matrix elements of Eq. (17) containing \({\varvec{\zeta }}^{(m)}\) yields the following expression:

$$\begin{aligned}&\left[ \prod \limits _{j=1}^{J}\left( 1+\left. \chi ^{(m)}_{j}\right. ^*\zeta ^{(m)}_{j}\right) \right]\\&\times \left[ 1-\frac{\mathrm{i}\tau }{\hbar }\sum \limits _{\alpha ,\beta =1}^{J}\left( h_{\alpha \beta }^{(m-1)}\left. \zeta ^{(m)}_{\alpha }\right. ^*\chi ^{(m-1)}_{\beta }+U_{\alpha \beta }^{(m-1)}\left. \zeta ^{(m)}_{\alpha }\right. ^*\left. \zeta ^{(m)}_{\beta }\right. ^*\chi ^{(m-1)}_{\beta }\chi ^{(m-1)}_{\alpha }\right) \right] \prod \limits _{j=1}^{J}\left( 1+\left. \zeta ^{(m)}_{j}\right. ^*\chi ^{(m-1)}_{j}\right)\\ &= \left[ a^{(m)}-\frac{\mathrm{i}\tau }{\hbar }\sum \limits _{\alpha }^{}h_{\alpha \alpha }^{(m-1)}b_\alpha ^{(m)}-\frac{\mathrm{i}\tau }{\hbar }{\mathop {\mathop {\sum }\limits _{\alpha ,\beta }}\limits _{\alpha \ne \beta }}^{}h_{\alpha \beta }^{(m-1)}c_{\alpha \beta }^{(m)}-\frac{\mathrm{i}\tau }{\hbar }{\mathop {\mathop {\sum }\limits _{\alpha ,\beta }}\limits _{\alpha \ne \beta }}^{}U_{\alpha \beta }^{(m-1)}d_{\alpha \beta }^{(m)}\right] \\&\prod \limits _{j=1}^{J}\left( 1+\left. \zeta ^{(m)}_{j}\right. ^*\chi ^{(m-1)}_{j}\right) . \end{aligned}$$
(89)

With the help of the integral Eq. (87), the coefficients \(a^{(m)},\) \(b^{(m)}\), \(c^{(m)}\) and \(d^{(m)}\) can successively—starting from \(m=1\) – be written as

$$\begin{aligned} a^{(m)}&= \int \frac{\mathrm{d}^{2J}\mu ^{(m)}_{}}{\pi ^J}\int \frac{\mathrm{d}^{2J}\phi ^{(m)}_{}}{\pi ^J}\left[ \prod \limits _{j=1}^{J}\left( 1+\left. \chi ^{(m)}_{j}\right. ^*\phi ^{(m)}_{j}\right) \right] \\&\times \exp\left( -\left| {{\phi }}^{(m)}\right| ^2-\left| {{\mu }}^{(m)}\right| ^2+\left. {{\phi }}^{(m)}\right. ^*\cdot {{\mu }}^{(m)}\right) \\&\times \prod \limits _{j=0}^{J-1}\left[ 1+\zeta ^{(m)}_{J-j}\sum \limits _{k=1}^{\infty }\frac{1}{k!}\left( \left. \mu ^{(m)}_{J-j}\right. ^*\right) ^{k}\left( \phi ^{(m-1)}_{J-j}\right) ^{k-1}\right] , \end{aligned}$$
(90)
$$\begin{aligned} b_{\alpha }^{(m)}&= \int \frac{\mathrm{d}^{2J}\mu ^{(m)}_{}}{\pi ^J}\int \frac{\mathrm{d}^{2J}\phi ^{(m)}_{}}{\pi ^J}\exp \left( -\left| {{\phi }}^{(m)}\right| ^2 \right) \\ &\times \exp\left(-\left| {{\mu }}^{(m)}\right| ^2+\left. {{\phi }}^{(m)}\right. ^*\cdot {{\mu }}^{(m)}\right) \left. \zeta ^{(m)}_{\alpha }\right. ^*\chi ^{(m-1)}_{\alpha } \\&\times \left\{ \prod \limits _{j=0}^{J-\alpha -1}\left[ 1+\zeta ^{(m)}_{J-j}\sum \limits _{k=1}^{\infty }\frac{1}{k!}\left( \left. \mu ^{(m)}_{J-j}\right. ^*\right) ^{k}\left( \phi ^{(m-1)}_{J-j}\right) ^{k-1}\right] \right\} \\&\quad \times \left[ 1+\zeta ^{(m)}_{\alpha }\sum \limits _{k=1}^{\infty }c_k^{(1)}\left( \phi ^{(m-1)}_{\alpha }\right) \left( \left. \mu ^{(m)}_{\alpha }\right. ^*\right) ^{k}\right] \\&\times \left\{ \prod \limits _{j=J-\alpha +1}^{J-1}\left[ 1+\zeta ^{(m)}_{J-j}\sum \limits _{k=1}^{\infty }\frac{1}{k!}\left( \left. \mu ^{(m)}_{J-j}\right. ^*\right) ^{k}\left( \phi ^{(m-1)}_{J-j}\right) ^{k-1}\right] \right\} \\&\times \left[ \prod \limits _{j=1}^{J}\left( 1+\left. \chi ^{(m)}_{j}\right. ^*\phi ^{(m)}_{j}\right) \right] , \end{aligned}$$
(91)
$$\begin{aligned} c_{\alpha \beta }^{(m)}&= \int \frac{\mathrm{d}^{2J}\mu ^{(m)}_{}}{\pi ^J}\int \frac{\mathrm{d}^{2J}\phi ^{(m)}_{}}{\pi ^J} \\&\quad \times \exp\left( -\left| {{\phi }}^{(m)}\right| ^2-\left| {{\mu }}^{(m)}\right| ^2+\left. {{\phi }}^{(m)}\right. ^*\cdot {{\mu }}^{(m)}\right) \left. \zeta ^{(m)}_{\alpha }\right. ^*\chi ^{(m-1)}_{\beta } \\&\quad \times \left\{ \prod \limits _{j=0}^{J-\max \left( \alpha ,\beta \right) -1}\left[ 1+\zeta ^{(m)}_{J-j}\sum \limits _{k=1}^{\infty }\frac{1}{k!}\left( \left. \mu ^{(m)}_{J-j}\right. ^*\right) ^{k}\left( \phi ^{(m-1)}_{J-j}\right) ^{k-1}\right] \right\} \\&\quad \times \left[ 1+\zeta ^{(m)}_{\max \left( \alpha ,\beta \right) }\sum \limits _{k=1}^{\infty }c_k^{(2)}\left( \phi ^{(m-1)}_{\max \left( \alpha ,\beta \right) }\right) \left( \left. \mu ^{(m)}_{\max \left( \alpha ,\beta \right) }\right. ^*\right) ^k\right] \\&\quad \times \left\{ \prod \limits _{j=J-\max \left( \alpha ,\beta \right) +1}^{J-\min \left( \alpha ,\beta \right) -1}\left[ 1+\zeta ^{(m)}_{J-j}\sum \limits _{k=1}^{\infty }c_k^{(3)}\left( \phi ^{(m-1)}_{J-j}\right) \left( \left. \mu ^{(m)}_{J-j}\right. ^*\right) ^{k}\right] \right\} \\&\quad \times \left[ 1+\zeta ^{(m)}_{\min \left( \alpha ,\beta \right) }\sum \limits _{k=1}^{\infty }c_k^{(2)}\left( \phi ^{(m-1)}_{\min \left( \alpha ,\beta \right) }\right) \left( \left. \mu ^{(m)}_{\min \left( \alpha ,\beta \right) }\right. ^*\right) ^k\right] \\&\quad \times \left\{ \prod \limits _{j=J-\min \left( \alpha ,\beta \right) +1}^{J-1}\left[ 1+\zeta ^{(m)}_{J-j}\sum \limits _{k=1}^{\infty }\frac{1}{k!}\left( \left. \mu ^{(m)}_{J-j}\right. ^*\right) ^{k}\left( \phi ^{(m-1)}_{J-j}\right) ^{k-1}\right] \right\} \\&\quad \times \left[ \prod \limits _{j=1}^{J}\left( 1+\left. \chi ^{(m)}_{j}\right. ^*\phi ^{(m)}_{j}\right) \right] \end{aligned}$$
(92)
$$\begin{aligned} d_{\alpha \beta }^{(m)}&= \int \frac{\mathrm{d}^{2J}\mu ^{(m)}_{}}{\pi ^J}\int \frac{\mathrm{d}^{2J}\phi ^{(m)}_{}}{\pi ^J}\exp \left( -\left| {{\phi }}^{(m)}\right| ^2-\left| {{\mu }}^{(m)}\right| ^2+\left. {{\phi }}^{(m)}\right. ^*\cdot {{\mu }}^{(m)}\right) \\&\quad \times \left[ \prod \limits _{j=1}^{J}\left( 1+\left. \chi ^{(m)}_{j}\right. ^*\phi ^{(m)}_{j}\right) \right] \left. \zeta ^{(m)}_{\alpha }\right. ^*\left. \zeta ^{(m)}_{\beta }\right. ^*\chi ^{(m-1)}_{\beta }\chi ^{(m-1)}_{\alpha } \\&\quad \times \left\{ \prod \limits _{j=0}^{J-\max \left( \alpha ,\beta \right) -1}\left[ 1+\zeta ^{(m)}_{J-j}\sum \limits _{k=1}^{\infty }\frac{1}{k!}\left( \left. \mu ^{(m)}_{J-j}\right. ^*\right) ^{k}\left( \phi ^{(m-1)}_{J-j}\right) ^{k-1}\right] \right\} \\&\quad \times \left[ 1+\zeta ^{(m)}_{\max \left( \alpha ,\beta \right) }\sum \limits _{k=1}^{\infty }c_k^{(4)}\left( \phi ^{(m-1)}_{\max \left( \alpha ,\beta \right) }\right) \left( \left. \mu ^{(m)}_{\max \left( \alpha ,\beta \right) }\right. ^*\right) ^k\right] \\&\quad \times \left\{ \prod \limits _{j=J-\max \left( \alpha ,\beta \right) +1}^{J-\min \left( \alpha ,\beta \right) -1}\left[ 1+\zeta ^{(m)}_{J-j}\sum \limits _{k=1}^{\infty }\frac{1}{k!}\left( \left. \mu ^{(m)}_{J-j}\right. ^*\right) ^{k}\left( \phi ^{(m-1)}_{J-j}\right) ^{k-1}\right] \right\} \\&\quad \times \left[ 1+\zeta ^{(m)}_{\min \left( \alpha ,\beta \right) }\sum \limits _{k=1}^{\infty }c_k^{(4)}\left( \phi ^{(m-1)}_{\min \left( \alpha ,\beta \right) }\right) \left( \left. \mu ^{(m)}_{\min \left( \alpha ,\beta \right) }\right. ^*\right) ^k\right] \\&\quad \times \left\{ \prod \limits _{j=J-\min \left( \alpha ,\beta \right) +1}^{J-1}\left[ 1+\zeta ^{(m)}_{J-j}\sum \limits _{k=1}^{\infty }\frac{1}{k!}\left( \left. \mu ^{(m)}_{J-j}\right. ^*\right) ^{k}\left( \phi ^{(m-1)}_{J-j}\right) ^{k-1}\right] \right\} , \end{aligned}$$
(93)

with \(c_1^{(1)}=c_1^{(2)}=c_1^{(3)}=c_1^{(4)}=1\).

It is important to notice, that the integral over \({{\phi }}^{(m)}\) and \({{\mu }}^{(m)}\) selects only the \(k=1\) terms of the occurring sums. Therefore, the terms with \(k\ge 2\) can be varied, in order to modify the final path integral in the desired way.

Finally, for \(m=M\), a similar argument as for \(m=0\) allows to restrict the integrals over \({{\phi }}^{(M)}\) again to those \(N_f=\sum _{j=1}^{J}n^{(f)}_{j}\) components with \(n^{(f)}_{j}=1\), while setting all the other components of \({{\phi }}^{(M)}\) to zero.

After this the \(m\)-th factor in the product over the timesteps only depends on \({\varvec{\zeta }}^{(m+1)}\) and \({\varvec{\chi }}^{(m)}\), such that one can easily integrate out the intermediate Grassmann variables \({\varvec{\zeta }}^{(1)},\ldots ,{\varvec{\zeta }}^{(M)}\) and \({\varvec{\chi }}^{(0)},\ldots ,{\varvec{\chi }}^{(M-1)}\) by using

$$\begin{aligned}&\int \mathrm{d}^{2J}\zeta \int \limits _{}^{}\!\mathrm{d}^{2J}\chi \exp \left( -\left. \varvec{\zeta }\right. ^*\cdot \varvec{\zeta }-\left. \varvec{\chi }\right. ^*\cdot \varvec{\chi }\right) \\&\quad \times \left[ \prod \limits _{j=0}^{J-1}\left( 1+\zeta _{J-j}f_{J-j}^{(m)}\right) \right] \\&\quad \times \left[ \prod \limits _{j=1}^{J}\left( 1+\left. \zeta _{j}\right. ^*\chi _{j}\right) \right] \left[ \prod \limits _{j=1}^{J}\left( 1+\left. \chi _{j}\right. ^*\phi ^{(m)}_{j}\right) \right] =\prod \limits _{j=1}^{J}\left( 1+f_j^{(m)}\phi ^{(m)}_{j}\right) , \end{aligned}$$
(94)
$$\begin{aligned}&\int \mathrm{d}^{2J}\zeta \int \limits _{}^{}\!\mathrm{d}^{2J}\chi \exp \left( -\left. \varvec{\zeta }\right. ^*\cdot \varvec{\zeta }-\left. \varvec{\chi }\right. ^*\cdot \varvec{\chi }\right) \\&\quad \times \left[ \prod \limits _{j=0}^{J-1}\left( 1+\zeta _{J-j}f_{J-j}^{(m)}\right) \right] \\&\quad \times \left[ \prod \limits _{j=1}^{J}\left( 1+\left. \zeta _{j}\right. ^*\chi _{j}\right) \right] \left[ \prod \limits _{j=1}^{J}\left( 1+\left. \chi _{j}\right. ^*\phi ^{(m)}_{j}\right) \right] \left. \zeta _{\alpha }\right. ^*\chi _{\beta } \\&\quad =f_\alpha ^{(m)}\phi ^{(m)}_{\beta } \\&\quad \times \left[ \prod \limits _{j=1}^{\min \left( \alpha ,\beta \right) -1}\left( 1+f_j^{(m)}\phi ^{(m)}_{j}\right) \right] \\&\quad \times \left[ \prod \limits _{j=\max \left( \alpha ,\beta \right) +1}^{J}\left( 1+f_j^{(m)}\phi ^{(m)}_{j}\right) \right] \prod \limits _{j=\min \left( \alpha ,\beta \right) +1}^{\max \left( \alpha ,\beta \right) -1}\left( 1-f_j^{(m)}\phi ^{(m)}_{j}\right) , \end{aligned}$$
(95)
$$\begin{aligned}&\int \mathrm{d}^{2J}\zeta \int \limits _{}^{}\!\mathrm{d}^{2J}\chi \exp \left( -\left. \varvec{\zeta }\right. ^*\cdot \varvec{\zeta }-\left. \varvec{\chi }\right. ^*\cdot \varvec{\chi }\right) \\&\quad \times \left[ \prod \limits _{j=0}^{J-1}\left( 1+\zeta _{J-j}f_{J-j}^{(m)}\right) \right] \\&\quad \times \left[ \prod \limits _{j=1}^{J}\left( 1+\left. \zeta _{j}\right. ^*\chi _{j}\right) \right] \left[ \prod \limits _{j=1}^{J}\left( 1+\left. \chi _{j}\right. ^*\phi ^{(m)}_{j}\right) \right] \left. \zeta _{\alpha }\right. ^*\left. \zeta _{\beta }\right. ^*\chi _{\beta }\chi _{\alpha } \\&\quad = f_\alpha ^{(m)}f_\beta ^{(m)}\phi ^{(m)}_{\beta }\phi ^{(m)}_{\alpha }{\mathop {\mathop {\prod }\limits _{ j=1 }}\limits _{j\ne \alpha ,\beta }^{J}}\left( 1+f_j^{(m)}\phi ^{(m)}_{j}\right) . \end{aligned}$$
(96)

Moreover, the integrals over \({\varvec{\zeta }}^{(0)}\) and \({\varvec{\chi }}^{(M)}\) yield

$$\begin{aligned}&\int \mathrm{d}^{2J}\zeta ^{(0)}_{}\exp \left( -\left. {\varvec{\zeta }}^{(0)}\right. ^*\cdot {\varvec{\zeta }}^{(0)}\right) \left[ \prod \limits _{j=0}^{J-1}\left( 1+\zeta ^{(0)}_{J-j}\left. \mu ^{(0)}_{J-j}\right. ^*\right) \right] \\ & \quad \times \prod \limits _{j=1}^{J}\left( \left. \zeta ^{(0)}_{j}\right. ^*\right) ^{n^{(i)}_{j}}=\prod \limits _{j:n^{(i)}_{j}=1}^{}\left. \mu ^{(0)}_{j}\right. ^* \end{aligned}$$
(97)
$$\begin{aligned}&\int \mathrm{d}^{2J}\chi ^{(M)}_{}\exp \left( -\left. {\varvec{\chi }}^{(M)}\right. ^*\cdot {\varvec{\chi }}^{(M)}\right) \left[ \prod \limits _{j=0}^{J-1}\left( \chi ^{(M)}_{J-j}\right) ^{n^{(f)}_{J-j}}\right]\\ &\quad \times \prod \limits _{j=1}^{J}\left( 1+\chi ^{(M)}_{j}\left. \phi ^{(M)}_{j}\right. ^*\right) =\prod \limits _{j:n^{(f)}_{j}=1}^{}\phi ^{(M)}_{j} \end{aligned}$$
(98)

After performing these integrals, one notices, that the inserted integrals have been chosen such, that the resulting sums can be performed and yield exponentials, such that the propagator is, after integrating out \({{\mu }}^{(1)},\ldots ,{{\mu }}^{(M)}\) as well as \({{\phi }}^{(0)}\) and undo the expansion in \(\tau\), given by the path integral Eq. (19), where the classical Hamiltonian is given by

$$\begin{aligned}& H_{cl}\left( \left. {\mu }\right. ^*,{\phi }\right)= \sum \limits _{\alpha }^{}h_{\alpha \alpha }\left. \mu _\alpha \right. ^*\phi _\alpha f_1\left( \left. \mu _\alpha \right. ^*,\phi _\alpha \right) \\&+{\mathop {\mathop {\sum }\limits _{\alpha ,\beta }}\limits _{\alpha \ne \beta }}^{}U_{\alpha \beta }\left. \mu _\alpha \right. ^*\left. \mu _\beta \right. ^*\phi _\alpha \phi _\beta f_3\left( \left. \mu _\alpha \right. ^*,\phi _\alpha \right) f_3\left( \left. \mu _\beta \right. ^*,\phi _\beta \right) \\&+{\mathop {\mathop {\sum }\limits _{\alpha ,\beta }}\limits _{\alpha \ne \beta }}^{}h_{\alpha \beta }\left. \mu _\alpha \right. ^*\phi _\beta f_2\left( \left. \mu _\alpha \right. ^*,\phi _\alpha \right) \exp \left( -\left. \mu _\beta \right. ^*\phi _\beta \right) {\prod \limits _{l}}^{\alpha ,\beta }g\left( \left. \mu _l\right. ^*,\phi _l\right) , \end{aligned}$$
(99)

where \(f_1,\, f_2,\, f_3\) and \(g\) are arbitrary analytic functions satisfying the following conditions:

$$\begin{aligned} f_1\left( 0,\phi \right) =f_2\left( 0,\phi \right) =f_3\left( 0,\phi \right)&= 1 \end{aligned}$$
(100)
$$\begin{aligned} g\left( 0,\phi \right)&= 1 \end{aligned}$$
(101)
$$\begin{aligned} \left. \frac{\partial }{\partial \mu ^*}g\left( \mu ^*,\phi \right) \right| _{\mu ^*=0}&= -2\phi . \end{aligned}$$
(102)

Moreover, as in Sect. 3, the product in the third line runs only over those values of \(j\), which are lying between \(\alpha\) and \(\beta\), excluding \(\alpha\) and \(\beta\) themselves,

$$\begin{aligned} {\prod \limits _{j}}^{\alpha ,\beta }\ldots =\prod \limits _{j=\min \left( \alpha ,\beta \right) +1}^{\max \left( \alpha ,\beta \right) -1}\ldots \end{aligned}$$
(103)

Appendix 2: The semiclassical amplitude

The semiclassical amplitude is given by the integral over the exponential of the second variation of the path integral around the classical path which can be written as,

$$\begin{aligned} \fancyscript{A}_\gamma&= \lim \limits _{M\rightarrow \infty }\frac{1}{\left( 2\pi \right) ^{2N-1+\left( M-1\right) J}}\int \limits _{}^{}\!\mathrm{d}^{N-1}\delta \theta ^{(0)}_{}\int \limits _{}^{}\!\mathrm{d}^N\delta J^{(M)}_{}\int \limits _{}^{}\!\mathrm{d}^N\delta \theta ^{(M)}_{}\int \limits _{}^{}\!\mathrm{d}^J\delta J^{(1)}_{}\int \limits _{}^{}\!\mathrm{d}^J\delta \theta ^{(1)}_{} \\&\cdots \int \limits _{}^{}\!\mathrm{d}^J\delta J^{(M-1)}_{}\int \limits _{}^{}\!\mathrm{d}^J\delta \theta ^{(M-1)}_{} \\&\quad \exp \Bigg \{-\frac{1}{2}\delta {\varvec{\theta }}^{(0)}\mathbf {P}_i^\prime \frac{\partial {{\phi }}^{(0)}}{\partial {\varvec{\theta }}^{(i)}}\left[ -\exp \left[ -2\mathrm{i}\mathrm{diag}\left( {\varvec{\theta }}^{(i)}\right) \right] +\frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(0)}}{\partial {{{\phi }}^{(0)}}^2}\right] \frac{\partial {{\phi }}^{(0)}}{\partial {\varvec{\theta }}^{(i)}}{\mathbf {P}_i^\prime }^\mathrm{T}\delta {\varvec{\theta }}^{(0)} \\&\quad -\frac{1}{2}\left( \begin{array}{c} \delta {\varvec{\theta }}^{(M)}\mathbf {P}_f \\ \delta \mathbf{J}^{(M)}\mathbf {P}_f \end{array}\right) {\mathbf {O}^{(M)}}^\mathrm{T}\left( \begin{array}{cc} \exp \left[ -2\mathrm{i}\mathrm{diag}\left( {\varvec{\theta }}^{(M)}\right) \right] & \mathbf {I}_{J} \\ \mathbf {I}_{J} & \frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(M-1)}}{\partial {\left. {{\phi }}^{(M)}\right. ^*}^2} \end{array}\right) \mathbf {O}^{(M)}\left( \begin{array}{c} \mathbf {P}_f^\mathrm{T}\delta {\varvec{\theta }}^{(M)} \\ \mathbf {P}_f^\mathrm{T}\delta \mathbf{J}^{(M)} \end{array}\right) \\&\quad -\frac{1}{2}\sum \limits _{m=1}^{M-1}\left( \begin{array}{c} \delta {\varvec{\theta }}^{(m)} \\ \delta \mathbf{J}^{(m)} \end{array}\right) {\mathbf {O}^{(m)}}^\mathrm{T}\left( \begin{array}{cc} \frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(m)}}{\partial {{{\phi }}^{(m)}}^2} & \mathbf {I}_{J} \\ \mathbf {I}_{J} & \frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(m-1)}}{\partial {\left. {{\phi }}^{(m)}\right. ^*}^2} \end{array}\right) \mathbf {O}^{(m)}\left( \begin{array}{c} \delta {\varvec{\theta }}^{(m)} \\ \delta \mathbf{J}^{(m)} \end{array}\right) \\&\quad +\left( \begin{array}{c} \delta {\varvec{\theta }}^{(1)} \\ \delta \mathbf{J}^{(1)} \end{array}\right) {\mathbf {O}^{(1)}}^\mathrm{T}\left( \begin{array}{c} 0 \\ \mathbf {I}_{J}-\frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(0)}}{\partial \left. {{\phi }}^{(1)}\right. ^*\partial {{\phi }}^{(0)}} \end{array}\right) \frac{\partial {{\phi }}^{(0)}}{\partial {\varvec{\theta }}^{(i)}}{\mathbf {P}_i^\prime }^\mathrm{T}\delta {\varvec{\theta }}^{(i)} \\&\quad +\left( \begin{array}{c} \delta {\varvec{\theta }}^{(M)}\mathbf {P}_f \\ \delta \mathbf{J}^{(M)}\mathbf {P}_f \end{array}\right) {\mathbf {O}^{(M)}}^\mathrm{T}\left( \begin{array}{cc} 0 &{} 0 \\ \mathbf {I}_{J}-\frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(M-1)}}{\partial \left. {{\phi }}^{(M)}\right. ^*\partial {{\phi }}^{(M-1)}} &{} 0 \end{array}\right) \mathbf {O}^{(M-1)}\left( \begin{array}{c} \delta {\varvec{\theta }}^{(M-1)} \\ \delta \mathbf{J}^{(M-1)} \end{array}\right) \\&\quad +\sum \limits _{m=1}^{M-2}\left( \begin{array}{c} \delta {\varvec{\theta }}^{(m)} \\ \delta \mathbf{J}^{(m)} \end{array}\right) {\mathbf {O}^{(m)}}^\mathrm{T}\left( \begin{array}{cc} 0 &{} 0 \\ \mathbf {I}_{J}-\frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(m)}}{\partial \left. {{\phi }}^{(m+1)}\right. ^*\partial {{\phi }}^{(m)}} &{} 0 \end{array}\right) \mathbf {O}^{(m)}\left( \begin{array}{c} \delta {\varvec{\theta }}^{(m)} \\ \delta \mathbf{J}^{(m)} \end{array}\right) \Bigg \}, \end{aligned}$$
(104)

with

$$\begin{aligned} \mathbf {O}^{(m)}=\left( \begin{array}{cc} \frac{\partial {{\phi }}^{(m)}}{\partial {\varvec{\theta }}^{(m)}} &{} \frac{\partial {{\phi }}^{(m)}}{\partial \mathbf{J}^{(m)}} \\ \frac{\partial \left. {{\phi }}^{(m)}\right. ^*}{\partial {\varvec{\theta }}^{(m)}} &{} \frac{\partial \left. {{\phi }}^{(m)}\right. ^*}{\partial \mathbf{J}^{(m)}} \end{array}\right) . \end{aligned}$$
(105)

Moreover, \(\mathrm{diag}\left( \mathbf{v}\right)\) is the diagonal \(d\times d\)-matrix for which the \((j,j)\)-th entry is equal to \(v_j\), where \(d\) is the dimensionality of the vector \(\mathbf{v}\) and \(\mathbf {P}_{i/f}\) and \(\mathbf {P}_{i/f}^\prime\) are defined as the \(N\times J\) and \((N-1)\times J\)-matrices, respectively, which project onto the subspace of initially and finally occupied single-particle states, with the latter excluding the first occupied one,

$$\begin{aligned} \left( \mathbf {P}_{i/f}\right) _{lj}=&\delta _{j_{l}^{(\prime )},j} \end{aligned}$$
(106)
$$\begin{aligned} \left( \mathbf {P}_{i/f}^\prime \right) _{lj}=&\delta _{j_{l+1}^{(\prime )},j}, \end{aligned}$$
(107)

where \(j_1<\cdots <j_{N}\in \left\{ j\in \{1,\ldots ,J\}:n^{(i)}_{j}=1\right\}\) and \(j_1^\prime <\cdots <j_{N}^\prime \in \left\{ j\in \{1,\ldots ,J\}:n^{(f)}_{j}=1\right\}\) are the initially, respectively finally, occupied single-particle states.

For later reference, we also define \(\bar{\mathbf {P}}_{i/f}\) as the complement of \(\mathbf {P}_{i/f}\) as well as

$$\begin{aligned} \mathbf {Q}_{i/f}=\left( \begin{array}{c} \bar{\mathbf {P}}_{i/f} \\ \mathbf {P}_{i/f} \end{array}\right) , \end{aligned}$$
(108)

which are the (orthogonal) matrices, which put the components corresponding to initially and finally unoccupied single-particle states to the first \(J-N\) positions, and those corresponding to occupied single-particle states to the last \(N\) positions, i.e.,

$$\begin{aligned} \mathbf {Q}_{i/f}\mathbf{n}^{(i/f)}=(\underbrace{0,\ldots ,0}_{J-N},\underbrace{1,\ldots ,1}_{N})^\mathrm{T}. \end{aligned}$$
(109)

The integral over \(\delta {\varvec{\theta }}^{(0)}\) is given by

$$\begin{aligned}&\frac{1}{\left( 2\pi \right) ^{N-1}}\int \limits _{}^{}\!\mathrm{d}^{N-1}\delta \theta ^{(0)}_{}\exp \Bigg \{-\frac{1}{2}\delta {\varvec{\theta }}^{(0)}\mathbf {P}_i^\prime \frac{\partial {{\phi }}^{(0)}}{\partial {\varvec{\theta }}^{(i)}}\left( -\exp \left[ -2\mathrm{i}\mathrm{diag}\left( {\varvec{\theta }}^{(i)}\right) \right] +\frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(0)}}{\partial {{{\phi }}^{(0)}}^2}\right) \frac{\partial {{\phi }}^{(0)}}{\partial {\varvec{\theta }}^{(i)}}{\mathbf {P}_i^\prime }^\mathrm{T}\delta {\varvec{\theta }}^{(0)} \\&\quad +\left( \begin{array}{c} \delta {\varvec{\theta }}^{(1)} \\ \delta \mathbf{J}^{(1)} \end{array}\right) {\mathbf {O}^{(1)}}^\mathrm{T}\left( \begin{array}{c} 0 \\ \mathbf {I}_{J}-\frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(0)}}{\partial \left. {{\phi }}^{(1)}\right. ^*\partial {{\phi }}^{(0)}} \end{array}\right) \frac{\partial {{\phi }}^{(0)}}{\partial {\varvec{\theta }}^{(i)}}{\mathbf {P}_i^\prime }^\mathrm{T}\delta {\varvec{\theta }}^{(i)} \\&\quad -\frac{1}{2}\left( \begin{array}{c} \delta {\varvec{\theta }}^{(1)} \\ \delta \mathbf{J}^{(1)} \end{array}\right) {\mathbf {O}^{(1)}}^\mathrm{T}\left( \begin{array}{cc} \frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(1)}}{\partial {{{\phi }}^{(1)}}^2} &{} \mathbf {I}_{J} \\ \mathbf {I}_{J} &{} \frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(0)}}{\partial {\left. {{\phi }}^{(1)}\right. ^*}^2} \end{array}\right) \mathbf {O}^{(1)}\left( \begin{array}{c} \delta {\varvec{\theta }}^{(1)} \\ \delta \mathbf{J}^{(1)} \end{array}\right) \Bigg \} \\&\quad =\frac{1}{\sqrt{2\pi }^{N-1}}\left\{ \det \left[ \mathbf {I}_{J}-\frac{\partial ^2{H^{(cl)}}^{(0)}}{\partial \left( \mathbf {P}_i{{\phi }}^{(0)}\right) ^2}\exp \left[ 2\mathrm{i}\mathrm{diag}\left( {\varvec{\theta }}^{(i)}\right) \right] \right] \right\} ^{-1} \\&\quad \times \exp \left\{ -\frac{1}{2}\left( \begin{array}{c} \delta {\varvec{\theta }}^{(1)} \\ \delta \mathbf{J}^{(1)} \end{array}\right) {\mathbf {O}^{(1)}}^\mathrm{T}\left( \begin{array}{cc} \frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(1)}}{\partial {{{\phi }}^{(1)}}^2} &{} \mathbf {I}_{J} \\ \mathbf {I}_{J} &{} \mathbf {X}^{(1)} \end{array}\right) \mathbf {O}^{(1)}\left( \begin{array}{c} \delta {\varvec{\theta }}^{(1)} \\ \delta \mathbf{J}^{(1)} \end{array}\right) \right\} , \end{aligned}$$
(110)

where \(\mathbf {X}^{(1)}\) is defined as

$$\begin{aligned} \mathbf {X}^{(1)}&= \frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(0)}}{\partial {\left. {{\phi }}^{(1)}\right. ^*}^2}+\left( \mathbf {I}_{J}-\frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(0)}}{\partial \left. {{\phi }}^{(1)}\right. ^*\partial {{\phi }}^{(0)}}\right) {\mathbf {P}_i^\prime }^\mathrm{{T}} \\&\quad \times \left\{ \exp \left[ -2\mathrm{i}\mathrm{diag}\left( \mathbf {P}_i^\prime {\varvec{\theta }}^{(i)}\right) \right] -\frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(0)}}{\partial \left( \mathbf {P}_i^\prime {{\phi }}^{(0)}\right) ^2}\right\} ^{-1}\mathbf {P}_i^\prime \left( \mathbf {I}_{J}-\frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(0)}}{\partial {{\phi }}^{(0)}\partial \left. {{\phi }}^{(1)}\right. ^*}\right) \end{aligned}$$
(111)

It can be shown, that Eq. (111) can also be written as

$$\begin{aligned} \mathbf {X}^{(1)}&= \frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(0)}}{\partial {\left. {{\phi }}^{(1)}\right. ^*}^2} \\& + \left( \mathbf {I}_{J}-\frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(0)}}{\partial \left. {{\phi }}^{(1)}\right. ^*\partial {{\phi }}^{(0)}}\right) \mathbf {X}^{(0)} \\&\times \left( \mathbf {I}_{J}-\frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(0)}}{\partial {{{\phi }}^{(0)}}^2}\mathbf {X}^{(0)}\right) ^{-1}\left( \mathbf {I}_{J}-\frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(0)}}{\partial {{\phi }}^{(0)}\partial \left. {{\phi }}^{(1)}\right. ^*}\right) , \end{aligned}$$
(112)

with

$$\begin{aligned} \mathbf {X}^{(0)}={\mathbf {Q}_i}^\mathrm{T}\left( \begin{array}{cc} 0 \\ &{} \exp \left[ 2\mathrm{i}\mathrm{diag}\left( \mathbf {P}_i^\prime {\varvec{\theta }}^{(i)}\right) \right] \end{array}\right) \mathbf {Q}_i. \end{aligned}$$
(113)

Now, consider the integral

$$\begin{aligned}&\frac{1}{\left( 2\pi \right) ^{J}}\int \limits _{}^{}\!\mathrm{d}^J\delta J^{(m)}_{}\int \limits _{}^{}\!\mathrm{d}^J\delta \theta ^{(m)}_{}\exp \Bigg \{-\frac{1}{2}\left( \begin{array}{c} \delta {\varvec{\theta }}^{(m+1)} \\ \delta \mathbf{J}^{(m+1)} \end{array}\right) \\&\quad \times {\mathbf {O}^{(m+1)}}^\mathrm{T}\left( \begin{array}{cc} \frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(m+1)}}{\partial {{{\phi }}^{(m+1)}}^2} &{} \mathbf {I}_{J} \\ \mathbf {I}_{J} &{} \frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(m)}}{\partial {\left. {{\phi }}^{(m+1)}\right. ^*}^2} \end{array}\right) {\mathbf {O}^{(m+1)}}\left( \begin{array}{c} \delta {\varvec{\theta }}^{(m+1)} \\ \delta \mathbf{J}^{(m+1)} \end{array}\right) \\&\quad -\frac{1}{2}\left( \begin{array}{c} \delta {\varvec{\theta }}^{(m)} \\ \delta \mathbf{J}^{(m)} \end{array}\right) {\mathbf {O}^{(m)}}^\mathrm{T}\left( \begin{array}{cc} \frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(m)}}{\partial {{{\phi }}^{(m)}}^2} &{} \mathbf {I}_{J} \\ \mathbf {I}_{J} &{} X^{(m)} \end{array}\right) {\mathbf {O}^{(m)}}\left( \begin{array}{c} \delta {\varvec{\theta }}^{(m)} \\ \delta \mathbf{J}^{(m)} \end{array}\right) \\&\quad +\left( \begin{array}{c} \delta {\varvec{\theta }}^{(m+1)} \\ \delta \mathbf{J}^{(m+1)} \end{array}\right) {\mathbf {O}^{(m+1)}}^\mathrm{T}\left( \begin{array}{cc} 0 &{} 0 \\ \mathbf {I}_{J}-\frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(m)}}{\partial \left. {{\phi }}^{(m+1)}\right. ^*\partial {{\phi }}^{(m)}} &{} 0 \end{array}\right) {\mathbf {O}^{(m)}}\left( \begin{array}{c} \delta {\varvec{\theta }}^{(m)} \\ \delta \mathbf{J}^{(m)} \end{array}\right) \Bigg \} \\&\quad =\left\{ \det \left[ \mathbf {I}_{J}-\frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(m)}}{\partial {{{\phi }}^{(m)}}^2}\mathbf {X}^{(m)}\right] \right\} ^{-1} \\&\quad \exp \left\{ -\frac{1}{2}\left( \begin{array}{c} \delta {\varvec{\theta }}^{(m+1)} \\ \delta \mathbf{J}^{(m+1)} \end{array}\right) {\mathbf {O}^{(m+1)}}^\mathrm{T}\left( \begin{array}{cc} \frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(m+1)}}{\partial {{{\phi }}^{(m+1)}}^2} &{} \mathbf {I}_{J} \\ \mathbf {I}_{J} &{} \mathbf {X}^{(m+1)} \end{array}\right) {\mathbf {O}^{(m+1)}}\left( \begin{array}{c} \delta {\varvec{\theta }}^{(m+1)} \\ \delta \mathbf{J}^{(m+1)} \end{array}\right) \right\} \end{aligned}$$
(114)

with

$$\begin{aligned} \mathbf {X}^{(m+1)}&= \frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(m)}}{\partial {\left. {{\phi }}^{(m+1)}\right. ^*}^2}+\left( \mathbf {I}_{J}-\frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(m)}}{\partial \left. {{\phi }}^{(m+1)}\right. ^*\partial {{\phi }}^{(m)}}\right) \mathbf {X}^{(m)} \\&\times \left( \mathbf {I}_{J}-\frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(m)}}{\partial {{{\phi }}^{(m)}}^2}\mathbf {X}^{(m)}\right) ^{-1}\left( \mathbf {I}_{J}-\frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(m)}}{\partial {{\phi }}^{(m)}\partial \left. {{\phi }}^{(m+1)}\right. ^*}\right) . \end{aligned}$$
(115)

For \(m=1\) this is exactly the integral in Eq. (104) after integrating out \(\delta {\varvec{\theta }}^{(0)}\) and thus defines \(\mathbf {X}^{(2)}\). One then recognizes, that after the \(m\)-th integration, the integral is again of the form of Eq. (114) up to the \((M-1)\)-th integration. With this observation, the semiclassical amplitude is given by

$$\begin{aligned} \fancyscript{A}_\gamma&= \lim \limits _{M\rightarrow \infty }\frac{1}{\left( 2\pi \right) ^{\frac{3N-1}{2}}}\int \limits _{}^{}\!\mathrm{d}^NJ^{(M)}_{}\int \limits _{}^{}\!\mathrm{d}^N\theta ^{(M)}_{}\prod \limits _{m=0}^{M-1}\sqrt{\det \left( \mathbf {I}_{J}-\frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(m)}}{\partial {{{\phi }}^{(m)}}^2}\mathbf {X}^{(m)}\right) }^{-1} \\&\qquad \times \exp \left\{ -\frac{1}{2}\left( \begin{array}{c} \delta {\varvec{\theta }}^{(M)}\mathbf {P}_f \\ \delta \mathbf{J}^{(M)}\mathbf {P}_f \end{array}\right) {\mathbf {O}^{(M)}}^\mathrm{T}\left( \begin{array}{cc} \exp \left[ -2\mathrm{i}\mathrm{diag}\left( {\varvec{\theta }}^{(M)}\right) \right] &{} \mathbf {I}_{J} \\ \mathbf {I}_{J} &{} X^{(M)} \end{array}\right) \mathbf {O}^{(M)}\left( \begin{array}{c} \mathbf {P}_f^\mathrm{T}\delta {\varvec{\theta }}^{(M)} \\ \mathbf {P}_f^\mathrm{T}\delta \mathbf{J}^{(M)} \end{array}\right) \right\} \\&= \lim \limits _{M\rightarrow \infty }\frac{1}{\sqrt{2\pi }^{N-1}}\left[ \prod \limits _{m=0}^{M-1}\sqrt{\det \left( \mathbf {I}_{J}-\frac{\mathrm{i}\tau }{\hbar }\frac{\partial ^2{H^{(cl)}}^{(m)}}{\partial {{{\phi }}^{(m)}}^2}\mathbf {X}^{(m)}\right) }^{-1}\right] \sqrt{\det \left( \mathbf {I}_{N}-\exp \left[ -2\mathrm{i}\mathrm{diag}\left( \mathbf {P}_{f}{\varvec{\theta }}^{(M)}\right) \right] \mathbf {P}_f\mathbf {X}^{(M)}\mathbf {P}_f^\mathrm{T}\right) }^{-1}. \end{aligned}$$
(116)

In the continuous limit, the discrete set of \(\mathbf {X}^{(m)}\) turns into a function of time \(\mathbf {X}(t)\), and (by expanding it up to first order in \(\tau\)) is given by Eq. (60), and the semiclassical amplitude can be written in the form given in Eq. (57).

Appendix 3: Possible classical Hamiltonians

In this part, we state different possibilities for the classical hamiltonian as can be derived out of similar calculations as in Appendix 1 without going further into detail.

1.1 Appendix 3.1: Classical Hamiltonians in the particle picture

First, we present two possibilities arising directly from the derivation presented in Appendix 1, but restrict ourselves to those, which contain \({\mu }\) and \({\phi }\) in a symmetric way and omitting the one already stated in Sect. 3. These examples shall just illustrate, which kinds of classical Hamiltonians are possible:

$$\begin{aligned} H_{cl}^{(1)}&\left( \left. {\mu }\right. ^*,{\phi }\right) \\&\quad = \sum \limits _{\alpha }^{}h_{\alpha \alpha }\left. \mu _\alpha \right. ^*\phi _\alpha \cos \left( \left. \mu _\alpha \right. ^*\phi _\alpha \right) +{\mathop {\mathop {\sum }\limits _{\alpha ,\beta }}\limits _{\alpha \ne \beta }}^{}U_{\alpha \beta }\left. \mu _\alpha \right. ^*\left. \mu _\beta \right. ^*\phi _\alpha \phi _\beta \\&\quad +{\mathop {\mathop {\sum }\limits _{\alpha ,\beta }}\limits _{\alpha \ne \beta }}^{}h_{\alpha \beta }\left. \mu _\alpha \right. ^*\phi _\beta \exp \left( -\sum \limits _{l=\min \left( \alpha ,\beta \right) }^{\max \left( \alpha ,\beta \right) }\left. \mu _l\right. ^*\phi _l\right) , \end{aligned}$$
(117)
$$\begin{aligned}&H_{cl}^{(2)}\left( \left. {\mu }\right. ^*,{\phi }\right) \\&\quad =\sum \limits _{\alpha }^{}h_{\alpha \alpha }\left. \mu _\alpha \right. ^*\phi _\alpha \exp \left( \left. \mu _\alpha \right. ^*\phi _\alpha \right) \\&\quad +{\mathop {\mathop {\sum }\limits _{\alpha ,\beta }}\limits _{\alpha \ne \beta }}^{}h_{\alpha \beta }\left. \mu _\alpha \right. ^*\phi _\beta \exp \left( -\left. \mu _\beta \right. ^*\phi _\beta -\left. \mu _\alpha \right. ^*\phi _\alpha \right) \\& \quad \times \prod \limits _{l=\min \left( \alpha ,\beta \right) +1}^{\max \left( \alpha ,\beta \right) -1}\left[ 1-\sinh \left( 2\left. \mu _l\right. ^*\phi _l\right) \right] \\& \quad +{\mathop {\mathop {\sum }\limits _{\alpha ,\beta }}\limits _{\alpha \ne \beta }}^{}U_{\alpha \beta }\left. \mu _\alpha \right. ^*\left. \mu _\beta \right. ^*\phi _\alpha \phi _\beta \cosh \left( \left. \mu _\alpha \right. ^*\phi _\alpha \right) \cosh \left( \left. \mu _\beta \right. ^*\phi _\beta \right) , \end{aligned}$$
(118)

Next, consider the more general case, that the quantum Hamiltonian is written in the form

$$\begin{aligned} \hat{H}=\sum \limits _{\alpha ,\beta }^{}h_{\alpha \beta }\hat{c}_\alpha ^\dagger \hat{c}_\beta ^{}+{\mathop {\mathop {\sum }\limits _{\alpha ,\beta ,\rho ,\nu }}\limits _{\alpha \ne \beta ,\rho \ne \nu }}^{}U_{\alpha \beta \rho \nu }\hat{c}_\alpha ^\dagger \hat{c}_\beta ^\dagger \hat{c}_\rho ^{}\hat{c}_\nu . \end{aligned}$$
(119)

By splitting the interaction term also into (pairwise) diagonal and non-diagonal terms, one can in a similar way as in Sect. 7 construct the following classical Hamiltonian

$$\begin{aligned} H_{cl}\left( \left. {\mu }\right. ^*,{\phi }\right)&= \sum \limits _{\alpha }^{}h_{\alpha \alpha }\left. \mu _\alpha \right. ^*\phi _\alpha f_1\left( \left. \mu _\alpha \right. ^*,\phi _\alpha \right) \\&\quad +{\mathop {\mathop {\sum }\limits _{\alpha ,\beta }}\limits _{\alpha \ne \beta }}^{}h_{\alpha \beta }\left. \mu _\alpha \right. ^*\phi _\beta f_2\left( \left. \mu _\alpha \right. ^*,\phi _\alpha \right) \exp \left( -\left. \mu _\beta \right. ^*\phi _\beta \right) \prod \limits _{l=\min \left( \alpha ,\beta \right) +1}^{\max \left( \alpha ,\beta \right) -1}g\left( \left. \mu _l\right. ^*,\phi _l\right) \\&\quad +{\mathop {\mathop {\sum }\limits _{\alpha ,\beta }}\limits _{\alpha \ne \beta }}^{}U_{\alpha \beta \beta \alpha }\left. \mu _\alpha \right. ^*\left. \mu _\beta \right. ^*\phi _\alpha \phi _\beta f_3\left( \left. \mu _\alpha \right. ^*,\phi _\alpha \right) f_3\left( \left. \mu _\beta \right. ^*,\phi _\beta \right) \\&\quad +{\mathop {\mathop {\sum }\limits _{\alpha ,\beta ,\rho }}\limits _{\alpha \ne \beta ,\rho \ne \alpha ,\rho \ne \beta }}^{}\left[ \Theta \left( \beta -\alpha \right) \Theta \left( \beta -\rho \right) +\Theta \left( \alpha -\beta \right) \Theta \left( \rho -\beta \right) \right. \\&\quad \left. -\Theta \left( \alpha -\beta \right) \Theta \left( \beta -\rho \right) -\Theta \left( \beta -\alpha \right) \Theta \left( \rho -\beta \right) \right] \\&\quad\times \left( U_{\alpha \beta \beta \rho }-U_{\alpha \beta \rho \beta }\right) \left. \mu _\alpha \right. ^*\left. \mu _\beta \right. ^*\phi _\beta \phi _\rho f_1\left( \left. \mu _\alpha \right. ^*,\phi _\alpha \right) f_2\left( \left. \mu _\alpha \right. ^*,\phi _\alpha \right) \\&\quad \times \exp \left( -\left. \mu _\rho \right. ^*\phi _\rho \right) \prod \limits _{j=\min \left( \alpha ,\rho \right) +1}^{\max \left( \alpha ,\rho \right) -1}g\left( \left. \mu _j\right. ^*,\phi _j\right) \\&\quad +{\mathop {\mathop {\sum }\limits _{\alpha ,\beta ,\rho }}\limits _{ \alpha \ne \beta ,\rho \ne \alpha ,\rho \ne \beta }}^{}\left[ \Theta \left( \beta -\alpha \right) \Theta \left( \rho -\alpha \right) \right. \\&\quad \left. +\Theta \left( \alpha -\beta \right) \Theta \left( \alpha -\rho \right) -\Theta \left( \alpha -\beta \right) \Theta \left( \rho -\alpha \right) -\Theta \left( \beta -\alpha \right) \Theta \left( \alpha -\rho \right) \right] \\&\quad \left( U_{\alpha \beta \rho \alpha }-U_{\alpha \beta \alpha \rho }\right) \left. \mu _\alpha \right. ^*\left. \mu _\beta \right. ^*\phi _\alpha \phi _\rho f_1\left( \left. \mu _\alpha \right. ^*,\phi _\alpha \right) f_2\left( \left. \mu _\beta \right. ^*,\phi _\beta \right) \\&\quad \times\exp \left( -\left. \mu _\rho \right. ^*\phi _\rho \right) \prod \limits _{j=\min \left( \beta ,\rho \right) +1}^{\max \left( \beta ,\rho \right) -1}g\left( \left. \mu _j\right. ^*,\phi _j\right) \\&\quad +{\mathop {\mathop {\sum }\limits _{\alpha ,\beta ,\rho ,\nu }}\limits _{\alpha \ne \beta ,\alpha \ne \rho ,\alpha \ne \nu ,\beta \ne \rho ,\beta \ne \nu ,\rho \ne \nu }}^{}\left[ \Theta \left( \beta -\alpha \right) \right. \\&\quad \left. -\Theta \left( \alpha -\beta \right) \right] \left[ \Theta \left( \rho -\nu \right) -\Theta \left( \nu -\rho \right) \right] U_{\alpha \beta \rho \nu }\left. \mu _\alpha \right. ^*\left. \mu _\beta \right. ^*\phi _\rho \phi _\nu f_2 \\&\left( \left. \mu _\alpha \right. ^*,\phi _\alpha \right) f_2\left( \left. \mu _\beta \right. ^*,\phi _\beta \right) \\&\quad \exp \left( -\left. \mu _\rho \right. ^*\phi _\rho -\left. \mu _\nu \right. ^*\phi _\nu \right) \\&\quad \times \left[ \prod \limits _{l=\min \left( \alpha ,\beta ,\rho ,\nu \right) +1}^{\min \big \{\left\{ \alpha ,\beta ,\rho ,\nu \right\} \setminus \left\{ \min \left( \alpha ,\beta ,\rho ,\nu \right) \right\} \big \}-1}g\left( \left. \mu _j\right. ^*,\phi _j\right) \right] \left[ \prod \limits _{l=\max \big \{\left\{ \alpha ,\beta ,\rho ,\nu \right\} \setminus \left\{ \max \left( \alpha ,\beta ,\rho ,\nu \right) \right\} \big \}+1}^{\max \left( \alpha ,\beta ,\rho ,\nu \right) -1}g\left( \left. \mu _j\right. ^*,\phi _j\right) \right] , \end{aligned}$$
(120)

where \(f_1,\, f_2,\, f_3\) and \(g\) are again arbitrary analytic functions satisfying Eqs. (100102). Thereby, one should notice, that

$$\begin{aligned} \min \big \{\left\{ \alpha ,\beta ,\rho ,\nu \right\} \setminus \left\{ \min \left( \alpha ,\beta ,\rho ,\nu \right) \right\} \big \}\ \end{aligned}$$

is the second smallest number out of the set \(\left\{ \alpha ,\beta ,\rho ,\nu \right\}\) and

$$\begin{aligned} \max \big \{\left\{ \alpha ,\beta ,\rho ,\nu \right\} \setminus \left\{ \max \left( \alpha ,\beta ,\rho ,\nu \right) \right\} \big \} \end{aligned}$$

the second largest number out of the set \(\left\{ \alpha ,\beta ,\rho ,\nu \right\}\).

1.2 Appendix 3.2: Classical Hamiltonians in the hole picture

The cases considered above, we call particle picture, since the boundary conditions are such, that \(\left| \phi _j\right| ^2=1\) corresponds to the \(j\)-th single-particle state being occupied, while \(\left| \phi _j\right| ^2=0\) corresponds to the \(j\)-th single-particle state being empty. However, the role of occupied and unoccupied states can be reversed, if Eqs. (88) are replaced by

$$\begin{aligned}&\int \mathrm{d}^{2J}\zeta ^{(0)}_{}\exp \left( -\left. {\varvec{\zeta }}^{(0)}\right. ^*\cdot {\varvec{\zeta }}^{(0)}\right) \left[ \prod \limits _{j=1}^{J}\left( 1+\left. \chi ^{(0)}_{j}\right. ^*\zeta ^{(0)}_{j}\right) \right] \prod \limits _{j=1}^{J}\left( \left. \zeta ^{(0)}_{j}\right. ^*\right) ^{n^{(i)}_{j}} \\&= \int \frac{\mathrm{d}^{2\left( J-N_i\right) }\phi ^{(0)}_{}}{\pi ^{J-N_i}}\int \limits _{0}^{2\pi }\frac{\mathrm{d}^{J-N_i}\theta ^{(i)}_{}}{\left( 2\pi \right) ^{J-N_i}}\int \mathrm{d}^{2J}\zeta ^{(0)}_{} \\&\exp \left( -\left. {\varvec{\zeta }}^{(0)}\right. ^*\cdot {\varvec{\zeta }}^{(0)}-\left| {{\phi }}^{(0)}\right| ^2+\left. {{\phi }}^{(0)}\right. ^*\cdot {{\mu }}^{(0)}\right) \\&\times \left[ \prod \limits _{j=1}^{J}\left( \phi ^{(0)}_{j}+\left. \chi ^{(0)}_{j}\right. ^*\right) \right] \left[ \prod \limits _{j=0}^{J-1}\left( \left. \mu ^{(0)}_{J-j}\right. ^*+\zeta ^{(0)}_{J-j}\right) \right] \prod \limits _{j=1}^{J}\left( \left. \zeta ^{(0)}_{j}\right. ^*\right) ^{n^{(i)}_{j}}, \end{aligned}$$
(121)

where the integrations over \({\varvec{\theta }}^{(i)}\) and \({{\phi }}^{(0)}\) run over those components, which are initially empty \(\mu ^{(0)}_{j}=( 1-n^{(i)}_{j}) \exp ( \mathrm{i}\theta ^{(i)}_{j})\), as well as

$$\begin{aligned} a^{(m)}&= \int \frac{\mathrm{d}^{2J}\mu ^{(m)}_{}}{\pi ^J}\int \frac{\mathrm{d}^{2J}\phi ^{(m)}_{}}{\pi ^J}\left[ \prod \limits _{j=1}^{J}\left( \phi ^{(m)}_{j}\right) +\left. \chi ^{(m)}_{j}\right. ^*\right] \\&\quad \times \exp \left( -\left| {{\phi }}^{(m)}\right| ^2-\left| {{\mu }}^{(m)}\right| ^2+\left. {{\phi }}^{(m)}\right. ^*\cdot {{\mu }}^{(m)}\right) \prod \limits _{j=0}^{J-1}\left[ \sum \limits _{k=1}^{\infty }\frac{1}{k!}\left( \left. \mu ^{(m)}_{J-j}\right. ^*\right) ^{k}\left( \phi ^{(m-1)}_{J-j}\right) ^{k-1}+\zeta ^{(m)}_{J-j}\right] , \end{aligned}$$
(122)
$$\begin{aligned} b_{\alpha }^{(m)}&= \int \frac{\mathrm{d}^{2J}\mu ^{(m)}_{}}{\pi ^J}\int \frac{\mathrm{d}^{2J}\phi ^{(m)}_{}}{\pi ^J} \\&\quad\times\exp \left( -\left| {{\phi }}^{(m)}\right| ^2-\left| {{\mu }}^{(m)}\right| ^2+\left. {{\phi }}^{(m)}\right. ^*\cdot {{\mu }}^{(m)}\right) \left. \zeta ^{(m)}_{\alpha }\right. ^*\chi ^{(m-1)}_{\alpha }\left\{ \prod \limits _{j=0}^{J-\alpha -1}\left[ \sum \limits _{k=1}^{\infty }\frac{1}{k!}\left( \left. \mu ^{(m)}_{J-j}\right. ^*\right) ^{k}\left( \phi ^{(m-1)}_{J-j}\right) ^{k-1}+\zeta ^{(m)}_{J-j}\right] \right\} \\&\quad \times \left[ \sum \limits _{k=1}^{\infty }c_k^{(1)}\left( \phi ^{(m-1)}_{\alpha }\right) \left( \left. \mu ^{(m)}_{\alpha }\right. ^*\right) ^{k}+\zeta ^{(m)}_{\alpha }\right] \left\{ \prod \limits _{j=J-\alpha +1}^{J-1}\left[ \sum \limits _{k=1}^{\infty }\frac{1}{k!}\left( \left. \mu ^{(m)}_{J-j}\right. ^*\right) ^{k}\left( \phi ^{(m-1)}_{J-j}\right) ^{k-1}+\zeta ^{(m)}_{J-j}\right] \right\} \\&\quad \times \left[ \prod \limits _{j=1}^{J}\left( \phi ^{(m)}_{j}+\left. \chi ^{(m)}_{j}\right. ^*\right) \right] , \end{aligned}$$
(123)
$$\begin{aligned} c_{\alpha \beta }^{(m)}&= \int \frac{\mathrm{d}^{2J}\mu ^{(m)}_{}}{\pi ^J}\int \frac{\mathrm{d}^{2J}\phi ^{(m)}_{}}{\pi ^J}\exp \left( -\left| {{\phi }}^{(m)}\right| ^2-\left| {{\mu }}^{(m)}\right| ^2+\left. {{\phi }}^{(m)}\right. ^*\cdot {{\mu }}^{(m)}\right) \left. \zeta ^{(m)}_{\alpha }\right. ^*\chi ^{(m-1)}_{\beta } \\&\quad\times\left\{ \prod \limits _{j=0}^{J-\max \left( \alpha ,\beta \right) -1}\left[ \sum \limits _{k=1}^{\infty }\frac{1}{k!}\left( \left. \mu ^{(m)}_{J-j}\right. ^*\right) ^{k}\left( \phi ^{(m-1)}_{J-j}\right) ^{k-1}+\zeta ^{(m)}_{J-j}\right] \right\} \\&\quad \times \left[ \sum \limits _{k=1}^{\infty }c_k^{(2)}\left( \phi ^{(m-1)}_{\max \left( \alpha ,\beta \right) }\right) \left( \left. \mu ^{(m)}_{\max \left( \alpha ,\beta \right) }\right. ^*\right) ^k+\zeta ^{(m)}_{\max \left( \alpha ,\beta \right) }\right] \\&\quad \times \left\{ \prod \limits _{j=J-\max \left( \alpha ,\beta \right) +1}^{J-\min \left( \alpha ,\beta \right) -1}\left[ \sum \limits _{k=1}^{\infty }c_k^{(3)}\left( \phi ^{(m-1)}_{J-j}\right) \left( \left. \mu ^{(m)}_{J-j}\right. ^*\right) ^{k}+\zeta ^{(m)}_{J-j}\right] \right\} \\&\quad \times \left[ \sum \limits _{k=1}^{\infty }c_k^{(2)}\left( \phi ^{(m-1)}_{\min \left( \alpha ,\beta \right) }\right) \left( \left. \mu ^{(m)}_{\min \left( \alpha ,\beta \right) }\right. ^*\right) ^k+\zeta ^{(m)}_{\min \left( \alpha ,\beta \right) }\right] \\&\quad \times \left\{ \prod \limits _{j=J-\min \left( \alpha ,\beta \right) +1}^{J-1}\left[ \sum \limits _{k=1}^{\infty }\frac{1}{k!}\left( \left. \mu ^{(m)}_{J-j}\right. ^*\right) ^{k}\left( \phi ^{(m-1)}_{J-j}\right) ^{k-1}+\zeta ^{(m)}_{J-j}\right] \right\} \\&\quad \times \left[ \prod \limits _{j=1}^{J}\left( \phi ^{(m)}_{j}+\left. \chi ^{(m)}_{j}\right. ^*\right) \right] \end{aligned}$$
(124)
$$\begin{aligned} d_{\alpha \beta }^{(m)}&= \int \frac{\mathrm{d}^{2J}\mu ^{(m)}_{}}{\pi ^J}\int \frac{\mathrm{d}^{2J}\phi ^{(m)}_{}}{\pi ^J}\exp \left( -\left| {{\phi }}^{(m)}\right| ^2-\left| {{\mu }}^{(m)}\right| ^2+\left. {{\phi }}^{(m)}\right. ^*\cdot {{\mu }}^{(m)}\right) \\&\quad \times\left[ \prod \limits _{j=1}^{J}\left( \phi ^{(m)}_{j}+\left. \chi ^{(m)}_{j}\right. ^*\right) \right] \left. \zeta ^{(m)}_{\alpha }\right. ^*\left. \zeta ^{(m)}_{\beta }\right. ^*\chi ^{(m-1)}_{\beta }\chi ^{(m-1)}_{\alpha } \\&\quad \times \left\{ \prod \limits _{j=0}^{J-\max \left( \alpha ,\beta \right) -1}\left[ \sum \limits _{k=1}^{\infty }\frac{1}{k!}\left( \left. \mu ^{(m)}_{J-j}\right. ^*\right) ^{k}\left( \phi ^{(m-1)}_{J-j}\right) ^{k-1}+\zeta ^{(m)}_{J-j}\right] \right\} \\&\quad\times \left[ \sum \limits _{k=1}^{\infty }c_k^{(4)}\left( \phi ^{(m-1)}_{\max \left( \alpha ,\beta \right) }\right) \left( \left. \mu ^{(m)}_{\max \left( \alpha ,\beta \right) }\right. ^*\right) ^k+\zeta ^{(m)}_{\max \left( \alpha ,\beta \right) }\right] \\&\quad \times \left\{ \prod \limits _{j=J-\max \left( \alpha ,\beta \right) +1}^{J-\min \left( \alpha ,\beta \right) -1}\left[ \sum \limits _{k=1}^{\infty }\frac{1}{k!}\left( \left. \mu ^{(m)}_{J-j}\right. ^*\right) ^{k}\left( \phi ^{(m-1)}_{J-j}\right) ^{k-1}+\zeta ^{(m)}_{J-j}\right] \right\} \\&\quad\times \left[ \sum \limits _{k=1}^{\infty }c_k^{(4)}\left( \phi ^{(m-1)}_{\min \left( \alpha ,\beta \right) }\right) \left( \left. \mu ^{(m)}_{\min \left( \alpha ,\beta \right) }\right. ^*\right) ^k+\zeta ^{(m)}_{\min \left( \alpha ,\beta \right) }\right] \\&\quad \times \left\{ \prod \limits _{j=J-\min \left( \alpha ,\beta \right) +1}^{J-1}\left[ \sum \limits _{k=1}^{\infty }\frac{1}{k!}\left( \left. \mu ^{(m)}_{J-j}\right. ^*\right) ^{k}\left( \phi ^{(m-1)}_{J-j}\right) ^{k-1}+\zeta ^{(m)}_{J-j}\right] \right\} , \end{aligned}$$
(125)

Inserting the integrals like this results in the following path integral:

$$\begin{aligned} K\left( \mathbf{n}^{(f)},\mathbf{n}^{(i)};t_f\right)&= \left[ \prod \limits _{j:n_j^{(i)}=0}^{}\int \limits _{0}^{2\pi }\frac{\mathrm{d}\theta _j^{(0)}}{2\pi }\exp \left( -\mathrm{i}\theta _j^{(0)}\right) \right] \left[ \prod \limits _{m=1}^{M-1}\prod \limits _{j}^{}\int \limits _{\mathbb {C}}^{}\frac{\mathrm{d}\phi _j^{(m)}}{\pi }\exp \left( -\left| \phi _j^{(m)}\right| ^2\right) \right] \\&\quad \times \left[ \prod \limits _{j:n_j^{(f)}=0}^{}\int \limits _{\mathbb {C}}^{}\frac{\mathrm{d}\phi _j^{(M)}}{\pi }\phi _j^{(M)}\right. \left. \exp \left( -\left| \phi _j^{(M)}\right| ^2\right) \right] \\&\quad \times\exp \left\{ \sum \limits _{m=1}^{M}\left[ {{\phi }^{(m)}}^*\cdot {\phi }^{(m-1)}\right. \right. \left. \left. -\frac{\mathrm{i}\tau }{\hbar }H_{cl}\left( {{\phi }^{(m)}}^{*},{\phi }^{(m-1)}\right) \right] \right\} , \end{aligned}$$
(126)

with the classical hamiltonian

$$\begin{aligned}&{H^{(cl)}}^{(m)}\left( \left. {\mu }\right. ^*,{\phi }\right) \\&\quad= \sum \limits _{\alpha =1}^{J}h_{\alpha \alpha }^{(m)}\exp \left( -\left. \mu _\alpha \right. ^*\phi _\alpha \right) \\&\quad +{\mathop {\mathop {\sum }\limits _{\alpha ,\beta =1 }}\limits _{\alpha \ne \beta }^{J}}U_{\alpha \beta }^{(m)}\exp \left( -\left. \mu _\alpha \right. ^*\phi _\alpha -\left. \mu _\beta \right. ^*\phi _\beta \right) \\&\quad +{\mathop {\mathop {\sum }\limits _{\alpha ,\beta =1 }}\limits _{\alpha \ne \beta }^{J}}h_{\alpha \beta }^{(m)}\left. \mu _\beta \right. ^*\phi _\alpha \exp \left( -\left. \mu _\alpha \right. ^*\phi _\alpha \right) f\left( \left. \mu _\beta \right. ^*,\phi _\beta \right) \prod \limits _{j=\min \left( \alpha ,\beta \right) +1}^{\max \left( \alpha ,\beta \right) -1}g\left( \left. \mu _j\right. ^*,\phi _j\right) , \end{aligned}$$
(127)

where \(f\) and \(g\) are arbitrary analytical functions satisfying

$$\begin{aligned}&f(0,\phi )=1 \end{aligned}$$
(128)
$$\begin{aligned}&g(0,\phi )=-1 \end{aligned}$$
(129)
$$\begin{aligned}&\left. \frac{\partial }{\partial \left. \mu \right. ^*}g\left( \left. \mu \right. ^*,\phi \right) \right| _{\left. \mu \right. ^*=0}=2\phi . \end{aligned}$$
(130)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engl, T., Plößl, P., Urbina, J.D. et al. The semiclassical propagator in fermionic Fock space. Theor Chem Acc 133, 1563 (2014). https://doi.org/10.1007/s00214-014-1563-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1563-9

Keywords

Navigation