Skip to main content
Log in

On the Harish-Chandra Homomorphism for Quantum Superalgebras

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we introduce the Harish-Chandra homomorphism for the quantum superalgebra \(\mathrm {U}_q({\mathfrak {g}})\) associated with a simple basic Lie superalgebra \({\mathfrak {g}}\) and give an explicit description of its image. We use it to prove that the center of \(\mathrm {U}_q({\mathfrak {g}})\) is isomorphic to a subring of the ring \(J({\mathfrak {g}})\) of exponential super-invariants in the sense of Sergeev and Veselov, establishing a Harish-Chandra type theorem for \(\mathrm {U}_q({\mathfrak {g}})\). As a byproduct, we obtain a basis of the center of \(\mathrm {U}_q({\mathfrak {g}})\) with the aid of quasi-R-matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. However, the inverse of the theorem is not true in general [2]. For example, there are many finite-dimensional irreducible modules (spinorial modules) of quantum superalgebras of type \(\mathrm {U}_q(\mathfrak {osp}_{1|2})\) without classical limit; see [52] for more details.

  2. In general, the center of the Lie superalgebra and quantum superalgebra is \({\mathbb {Z}}_2\)-graded [8, Sect. 2.2]. Similar to the basic Lie superalgebra case, the center of \(\mathrm {U}_q({\mathfrak {g}})\) consists of only even elements. However, the center contains odd part is also interesting in some aspects; e.g., the skew center of generalized quantum groups [3].

  3. More properties about quasi-R-matrix in a super setting can be deduction follows [34, Chap. 4]. For example, \(\bar{{\mathfrak {R}}}={\mathfrak {R}}^{-1}\), where the automorphism \(\bar{~}\) of \(\mathrm {U}{\widehat{\otimes }} \mathrm {U}\) is defined in [34, Chap. 4].

References

  1. Ahmed, S., Grantcharov, D., Guay, N.: Quantized enveloping superalgebra of type \(P\). Lett. Math. Phys. 111, 1–17 (2021)

  2. Azam, S., Yamane, H., Yousofzadeh, M.: Classification of finite-dimensional irreducible representations of generalized quantum groups via Weyl groupoids. Publ. Res. Inst. Math. Sci. 51, 59–130 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Batra, P., Yamane, H.: Centers of generalized quantum groups. J. Pure Appl. Algebra 222, 1203–1241 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Batra, P., Yamane, H.: Natural elements of center of generalized quantum groups. In Categorical, Homological and Combinatorial Methods in Algebra, 751, 19–31, Contemp. Math. Amer. Math. Soc., Providence, RI (2020)

  5. Baumann, P.: On the center of quantized enveloping algebras. J. Algebra 203, 244–260 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bergeron, N., Gao, Y., Hu, N.: Drinfel’d doubles and Lusztig’s symmetries of two-parameter quantum groups. J. Algebra 301, 378–405 (2006)

  7. Carter, R.W.: Lie algebras of finite and affine type. Cambridge Studies in Advanced Mathematics, vol. 96. Cambridge University Press, Cambridge (2005). (xviii+632 pp)

  8. Cheng, S.-J., Wang, W.: Dualities and representations of Lie superalgebras. Graduate Studies in Mathematics, vol. 144. American Mathematical Society, Providence, RI (2012). (xviii+302 pp)

  9. De Concini, C., Kac, V.G.: Representations of quantum groups at roots of 1. Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989), 471–506, Progr. Math., vol. 92. Birkhäuser, Boston, MA (1990)

    Google Scholar 

  10. Dai, Y., Zhang, Y.: Explicit generators and relations for the center of the quantum group (2021). arXiv: 2102.07407

  11. Drinfel’d, V.G.: Quantum groups. In: Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Berkeley, Calif., 1986), pp. 798–820. Amer. Math. Soc., Providence, RI (1987)

  12. Fan, Z., Xing, J.: Drinfeld double of deformed quantum algebras. J. Algebra 534, 358–383 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gao, Y., Hu, N., Zhang, H.: Two-parameter quantum affine algebra of type \(G_2^{(1)}\), Drinfeld realization and vertex representation. J. Math. Phys. 56, 011704 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Geer, N.: Etingof-Kazhdan quantization of Lie superbialgebras. Adv. Math. 207, 1–38 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Geer, N.: Some remarks on quantized Lie superalgebras of classical type. J. Algebra 314, 565–580 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gorelik, M.: Annihilation theorem and separation theorem for basic classical Lie superalgebras. J. Amer. Math. Soc. 15, 113–165 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gould, M.D., Zhang, R.B., Bracken, A.J.: Generalized Gel’fand invariants and characteristic identities for quantum groups. J. Math. Phys. 32, 2298–2303 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Gould, M.D., Zhang, R.B., Bracken, A.J.: Quantum double construction for graded Hopf algebras. Bull. Austral. Math. Soc. 47, 353–375 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Harish-Chandra: On some applications of the universal enveloping algebra of a semisimple Lie algebra. Trans. Amer. Math. Soc. 70, 28–96 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hu, N., Pei, Y., Rosso, M.: Multi-parameter quantum groups and quantum shuffles. I. Contemp. Math. 506, 145–171 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hu, N., Rosso, M., Zhang, H.: Two-parameter quantum affine algebra \(\text{ U}_{r,s}(\widehat{\mathfrak{sl}}_n)\). Drinfel’d realization and quantum affine Lyndon basis. Comm. Math. Phys. 278, 453–486 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Hu, N., Zhang, H.: Two-parameter quantum affine algebra of type \(C_n^{(1)}\), Drinfeld realization and vertex representation. J. Algebra 459, 43–75 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jantzen, J.: Lectures on quantum groups. Graduate Studies in Mathematics, vol. 6. American Mathematical Society, Providence, RI (1996). (viii+266 pp)

  24. Jimbo, M.: A q-difference analogue of \(U({\mathfrak{g}})\) and the Yang-Baxter equation. Lett. Math. Phys. 10, 63–69 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Joseph, A., Letzter, G.: Rosso’s form and quantized Kac-Moody algebras. Math. Z. 222, 543–571 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kac, V.G.: Lie superalgebras. Adv. Math. 26, 8–96 (1977)

    Article  MATH  Google Scholar 

  27. Kac, V.G.: Representations of classical Lie superalgebras. Differential geometrical methods in mathematical physics, II (Proc. Conf., Univ. Bonn, Bonn, 1977). Lecture Notes in Math., vol. 676, pp. 597–626. Springer, Berlin (1978)

    Google Scholar 

  28. Kac, V.G.: Laplace operators of infinite-dimensional Lie algebras and theta functions. Proc. Natl. Acad. Sci. U.S.A. 81, 645–647 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Khoroshkin, S.M., Tolstoy, V.N.: Twisting of quantum (super-)algebras. in Generalized symmetries in physics (Claustal, 1993), pp. 42–54. World Sci. Publ., River Edge, NJ (1994)

    Google Scholar 

  30. Kwon, J.-H.: Super duality and crystal bases for quantum ortho-symplectic superalgebras. Int. Math. Res. Not. IMRN 2015, 12620–12677 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Kwon, J.-H.: Super duality and crystal bases for quantum ortho-symplectic superalgebras II. J. Algebr. Combin. 43, 553–588 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lehrer, G., Zhang, H.C., Zhang, R.B.: First fundamental theorems of invariant theory for quantum supergroups. Eur. J. Math. 6, 928–976 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, L., Xia, L., Zhang, Y.: On the center of the quantized enveloping algebra of a simple Lie algebra (2016). arXiv:1607.00802

  34. Lusztig, G.: Introduction to Quantum Groups. Progress in Mathematics, vol. 110. Birkhäuser Boston, Inc., Boston, MA (1993). (xii+341 pp)

  35. Musson, I.: Lie Superalgebras and Enveloping Algebras. Graduate Studies in Mathematics, vol. 131. American Mathematical Society, Providence, RI (2012). (xx+488 pp)

  36. Naito, S.: On the Harish-Chandra homomorphism for generalized Kac-Moody algebras. Comm. Algebra 29, 1069–1084 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Olshanski, G.: Quantized universal enveloping superalgebra of type \(Q\) and a super-extension of the Hecke algebra. Lett. Math. Phys. 24, 93–102 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  38. Rosso, M.: Analogues de la forme de Killing et du théorème d’Harish-Chandra pour les groupes quantiques. Ann. Sci. EC. Norm. Sup. (4) 23, 445–467 (1990)

    Article  MATH  Google Scholar 

  39. Serganova, V.: Kazhdan-Lusztig polynomials and character formula for the Lie superalgebra \(\mathfrak{gl} (m|n)\). Selecta Math. (N.S.) 2, 607–651 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sergeev, A.N.: The centre of enveloping algebra for Lie superalgebra \(Q(n,{\mathbb{C}})\). Lett. Math. Phys. 7, 177–179 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Sergeev, A.N.: The invariant polynomials on simple Lie superalgebras. Represent. Theory 3, 250–280 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sergeev, A.N., Veselov, A.P.: Grothendieck rings of basic classical Lie superalgebras. Ann. Math. (2) 173, 663–703 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Tanisaki, T.: Harish-Chandra isomorphisms for quantum algebras. Comm. Math. Phys. 127, 555–571 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Tanisaki, T.: Killing forms, Harish-Chandra isomorphisms, and universal R-matrices for quantum algebras. Adv. Ser. Math. Phys. 16, 941–961 (1992)

    MathSciNet  MATH  Google Scholar 

  45. Yamane, H.: Universal \(R\)-matrices for quantum groups associated to simple Lie superalgebras. Proc. Jpn. Acad. Ser. A Math. Sci. 67, 108–112 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yamane, H.: Quantized enveloping algebras associated with simple Lie superalgebras and their universal R-matrices. Publ. Res. Inst. Math. Sci. 30, 15–87 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yamane, H.: On defining relations of affine Lie superalgebras and affine quantized universal enveloping superalgebras. Publ. Res. Inst. Math. Sci. 35, 321–390 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhang, R.B., Gould, M.D.: Universal R-matrices and invariants of quantum supergroups. J. Math. Phys. 32, 3261–3267 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Zhang, R.B., Gould, M.D., Bracken, A.J.: Quantum group invariants and link polynomials. Comm. Math. Phys. 137, 13–27 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Zhang, R.B., Gould, M.D., Bracken, A.J.: Generalized Gelfand invariants of quantum groups. J. Phys. A 24, 937–943 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Zhang, R.B., Gould, M.D., Bracken, A.J.: Solutions of the graded classical Yang-Baxter equation and integrable models. J. Phys. A 24, 1185–1197 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Zhang, R.B.: Finite-dimensional representations of \(\rm U_q(\mathfrak{osp}(1|2n))\) and its connection with quantum \(\mathfrak{so}(2n+1)\). Lett. Math. Phys. 25, 317–325 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Zhang, R.B.: Universal L operator and invariants of the quantum supergroup \(\rm U_q(\mathfrak{gl}(m/n))\). J. Math. Phys. 33, 1970–1979 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Zhang, R.B.: Finite-dimensional irreducible representations of the quantum supergroups \(\rm U_q(\mathfrak{gl}_{m|n})\). J. Math. Phys. 34, 1236–1254 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  55. Zhang, R.B.: Finite-dimensional representations of \(\rm U_q(C(n+1))\) at arbitrary \(q\). J. Phys. A 26, 7041–7059 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Zhang, R.B.: Quantum supergroups and topological invariants of three-manifolds. Rev. Math. Phys. 7, 809–931 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhang, R.B.: Serre presentations of Lie superalgebras. Advances in Lie Superalgebras. Springer INdAM Series, vol. 7, pp. 235–280. Springer, Cham (2014)

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to express our debt to Shun-Jen Cheng, Hiroyuki Yamane, Hechun Zhang, and Ruibin Zhang for many insightful discussions. We are very grateful to referees for their insightful comments which helped us to improve the paper considerably. This paper was partially written up during the second author visit to Institute of Geometry and Physics, USTC, in Summer 2021, from which we gratefully acknowledge the support and excellent working environment where most of this work was completed. Y. Wang is partially supported by the National Natural Science Foundation of China (Nos. 11901146 and 12071026), and the Fundamental Research Funds for the Central Universities JZ2021HGTB0124. Y. Ye is partially supported by the National Natural Science Foundation of China (Nos. 11971449 and 12131015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjie Wang.

Additional information

Communicated by Y. Kawahigashi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Dynkin Diagrams in Distinguished Root Systems

The Dynkin diagrams in the distinguished root systems of a simple basic Lie superalgebra of type A-G are listed below, where r is the number of nodes and s is the element of \(\tau \). Note that the form of Dynkin diagrams in the distinguished root systems is quite uniform in the literature.

\(\boxed {A(m,n) ~{\mathbf{case }}:}\) Let \({\mathfrak {h}}^*\) be a vector space spanned by \(\{\varepsilon _i-\varepsilon _{i+1},\varepsilon _{m+1}-\delta _1 ,\delta _j-\delta _{j+1}| 1\leqslant i\leqslant m, 1\leqslant j\leqslant n \}\) satisfies

$$\begin{aligned} (\varepsilon _1+\ldots +\varepsilon _{m+1})-(\delta _1+\ldots +\delta _{n+1})=0. \end{aligned}$$

We equip the dual \({\mathfrak {h}}^*\) with a bilinear form \((\cdot ,\cdot )\) such that

$$\begin{aligned} (\varepsilon _i, \varepsilon _j)=\delta _{ij},\quad (\varepsilon _i,\delta _j)=(\delta _j, \varepsilon _i)=0, \quad (\delta _i, \delta _j)=-\delta _{ij}\quad \text {for all possible}~i,j. \end{aligned}$$

The distinguished fundamental system \(\Pi =\{\alpha _1,\ \ldots ,\ \alpha _{m+n+1}\}\) is given by

$$\begin{aligned} \{\varepsilon _1-\varepsilon _2, \ \ldots ,\ \varepsilon _m,-\varepsilon _{m+1}, \ \varepsilon _{m+1}-\delta _1, \ \delta _1-\delta _2,\ \ldots ,\ \delta _{n}-\delta _{n+1}\}. \end{aligned}$$

The Dynkin diagram associated with \(\Pi \) is depicted as follows:

figure e

In this case \(r=m+n+1\), \(s=m+1\). The distinguished positive system \(\Phi ^+=\Phi _{{\bar{0}}}^+\cup \Phi _{{\bar{1}}}^+\) corresponding to the distinguished Borel subalgebra for A(mn) is

$$\begin{aligned}&\{\varepsilon _i-\varepsilon _j, \delta _k-\delta _l| 1\leqslant i<j\leqslant m+1, 1\leqslant k<l\leqslant n+1\}\\&\quad \cup \{\varepsilon _i-\delta _j| 1\leqslant i\leqslant m+1, 1\leqslant j\leqslant n+1\}. \end{aligned}$$

The Weyl group \(W\cong {\mathfrak {S}}_{m+1}\times {\mathfrak {S}}_{n+1}\).

\(\boxed {B(m,n) ~\mathbf{case: }}\) Let \({\mathfrak {h}}^*\) be a vector space with basis \(\{\varepsilon _i, \delta _j| 1\leqslant i\leqslant m, 1\leqslant j\leqslant n\}\). We equip the dual \({\mathfrak {h}}^*\) with a bilinear form \((\cdot ,\cdot )\) such that

$$\begin{aligned} (\varepsilon _i, \varepsilon _j)=\delta _{ij},\quad (\varepsilon _i,\delta _j)=(\delta _j, \varepsilon _i)=0, (\delta _i, \delta _j)=-\delta _{ij}\quad \text {for all possible}~i,j. \end{aligned}$$

The distinguished fundamental system \(\Pi =\{\alpha _1,\ \ldots ,\ \alpha _{m+n}\}\) is given by

$$\begin{aligned} \{\delta _1-\delta _2, \ \ldots ,\ \delta _{n-1}-\delta _{n},\ \delta _{n}-\varepsilon _1, \varepsilon _{1}-\varepsilon _2,\ \ldots ,\ \varepsilon _{m-1}-\varepsilon _{m}, \ \varepsilon _m\}. \end{aligned}$$

The Dynkin diagram associated with \(\Pi \) is depicted as follows:

figure f

In this case \(r=m+n\), \(s=n+1\). The distinguished positive system \(\Phi ^+=\Phi ^+_{{\bar{0}}}\cup \Phi _{{\bar{1}}}^+\) corresponding to the distinguished Borel subalgebra is

$$\begin{aligned} \{\delta _{i}\pm \delta _j,\ 2\delta _p,\ \varepsilon _k\pm \varepsilon _l, \ \varepsilon _q\}\cup \{\delta _p\pm \varepsilon _q,\ \delta _p\}, \end{aligned}$$

where \(1\leqslant i<j\leqslant n, 1\leqslant k<l\leqslant m, 1\leqslant p\leqslant n, 1\leqslant q\leqslant m\). The Weyl group \(W\cong ({\mathfrak {S}}_{n}\ltimes {\mathbb {Z}}_2^n)\times ({\mathfrak {S}}_{m}\ltimes {\mathbb {Z}}_2^m)\).

\(\boxed {B(0,n) ~\mathbf{case: }}\) Let \({\mathfrak {h}}^*\) be a vector space with basis \(\{\delta _i|1\leqslant i\leqslant n \}\). We equip the dual \({\mathfrak {h}}^*\) with a bilinear form \((\cdot ,\cdot )\) such that

$$\begin{aligned} (\delta _i, \delta _j)=-\delta _{ij}\quad \text {for all possible}~i,j. \end{aligned}$$

The distinguished fundamental system \(\Pi =\{\alpha _1,\ \ldots ,\ \alpha _{n}\}\) is given by

$$\begin{aligned} \{\delta _1-\delta _2, \ \ldots ,\ \delta _{n-1}-\delta _{n},\ \delta _{n}\}. \end{aligned}$$

The Dynkin diagram associated with \(\Pi \) is depicted as follows:

figure g

In this case, \(r=s=n\). The distinguished positive system \(\Phi ^+=\Phi ^+_{{\bar{0}}}\cup \Phi _{{\bar{1}}}^+\) corresponding to the distinguished Borel subalgebra is

$$\begin{aligned} \{\delta _{i}\pm \delta _j,\ 2\delta _p|1\leqslant i<j\leqslant n, 1\leqslant p\leqslant n\}\cup \{\delta _p|1\leqslant p\leqslant n\}. \end{aligned}$$

The Weyl group \(W\cong ({\mathfrak {S}}_{n}\ltimes {\mathbb {Z}}_2^n)\).

\(\boxed {C(n+1) ~\mathbf{case: }} \) Let \({\mathfrak {h}}^*\) be a vector space with basis \(\{\varepsilon ,\delta _i|1\leqslant i\leqslant n \}\). We equip the dual \({\mathfrak {h}}^*\) with a bilinear form \((\cdot ,\cdot )\) such that

$$\begin{aligned} (\varepsilon ,\varepsilon )=1,\quad (\varepsilon ,\delta _i)=(\delta _i, \varepsilon )=0,\quad (\delta _i, \delta _j)=-\delta _{ij}\quad \text {for all possible}~i,j. \end{aligned}$$

The distinguished fundamental system \(\Pi =\{\alpha _1,\ \ldots ,\ \alpha _{n+1}\}\) is given by

$$\begin{aligned} \{\varepsilon -\delta _1,\delta _1-\delta _2, \ \ldots ,\ \delta _{n-1}-\delta _{n},\ 2\delta _{n}\}. \end{aligned}$$

The Dynkin diagram associated with \(\Pi \) is depicted as follows:

figure h

In this case \(r=n+1,s=1\). The distinguished positive system \(\Phi ^+=\Phi ^+_{{\bar{0}}}\cup \Phi _{{\bar{1}}}^+\) corresponding to the distinguished Borel subalgebra is

$$\begin{aligned} \{\delta _{i}\pm \delta _j,\ 2\delta _p|1\leqslant i<j\leqslant n, 1\leqslant p\leqslant n\}\cup \{\varepsilon \pm \delta _p|1\leqslant p\leqslant n\}. \end{aligned}$$

The Weyl group \(W\cong ({\mathfrak {S}}_{n}\ltimes {\mathbb {Z}}_2^n)\).

\(\boxed {D(m,n) ~\mathbf{case: }} \) Let \({\mathfrak {h}}^*\) be a vector space with basis \(\{\varepsilon _i, \delta _j| 1\leqslant i\leqslant m, 1\leqslant j\leqslant n\}\). We equip the dual \({\mathfrak {h}}^*\) with a bilinear form \((\cdot ,\cdot )\) such that

$$\begin{aligned} (\varepsilon _i, \varepsilon _j)=\delta _{ij},\quad (\varepsilon _i,\delta _j)=(\delta _j, \varepsilon _i)=0, \quad (\delta _i, \delta _j)=-\delta _{ij}\quad \text {for all possible}~i,j. \end{aligned}$$

The distinguished fundamental system \(\Pi =\{\alpha _1,\ \ldots ,\ \alpha _{m+n}\}\) is given by

$$\begin{aligned} \{\delta _1-\delta _2, \ \ldots ,\ \delta _{n-1}-\delta _{n},\ \delta _{n}-\varepsilon _1, \varepsilon _{1}-\varepsilon _2,\ \ldots ,\ \varepsilon _{m-1}-\varepsilon _{m}, \ \varepsilon _{m-1}+\varepsilon _m\}. \end{aligned}$$

The Dynkin diagram associated with \(\Pi \) is depicted as follows:

figure i

In this case \(r=m+n\), \(s=n+1\). The distinguished positive system \(\Phi ^+=\Phi ^+_{{\bar{0}}}\cap \Phi _{{\bar{1}}}^+\) corresponding to the distinguished Borel subalgebra is

$$\begin{aligned} \{\delta _{i}\pm \delta _j,\ 2\delta _p,\ \varepsilon _k\pm \varepsilon _l, \}\cup \{\delta _p\pm \varepsilon _q\}, \end{aligned}$$

where \(1\leqslant i<j\leqslant n, 1\leqslant k<l\leqslant m, 1\leqslant p\leqslant n, 1\leqslant q\leqslant m\). The Weyl group \(W\cong ({\mathfrak {S}}_{n}\ltimes {\mathbb {Z}}_2^n)\times ({\mathfrak {S}}_{m}\ltimes {\mathbb {Z}}_2^{m-1} )\).

\(\boxed {D(2,1;\alpha ) ~\mathbf{case }:}\) Let \({\mathfrak {h}}^*\) be a vector space with basis \(\{\varepsilon _1, \varepsilon _2,\varepsilon _3\}\). We equip the dual \({\mathfrak {h}}^*\) with a bilinear form \((\cdot ,\cdot )\) with

$$\begin{aligned} (\varepsilon _1, \varepsilon _1)= & {} -(1+\alpha ),\quad (\varepsilon _2, \varepsilon _2)=1, \quad (\varepsilon _3, \varepsilon _3)=\alpha \quad \text {and}\\ (\varepsilon _i,\varepsilon _j)= & {} 0\quad \text {for all}~\quad 1\leqslant i\ne j\leqslant 3. \end{aligned}$$

The distinguished fundamental system

$$\begin{aligned} \Pi =\{\alpha _1=\varepsilon _1+\varepsilon _2+\varepsilon _3, \alpha _2=-2\varepsilon _2, \alpha _3=-2\varepsilon _3\}. \end{aligned}$$

The Dynkin diagram associated with \(\Pi \) is depicted as follows:

figure j

In this case \(r=3\), \(s=1\). The distinguished positive system \(\Phi ^+=\Phi ^+_{{\bar{0}}}\cap \Phi _{{\bar{1}}}^+\) corresponding to the distinguished Borel subalgebra is

$$\begin{aligned} \Phi ^+_{{{\bar{0}}}}=\{2\varepsilon _1,-2\varepsilon _2,-2\varepsilon _3\}, \quad \Phi ^+_{{{\bar{1}}}}=\{\varepsilon _1\pm \varepsilon _2\pm \varepsilon _3\}. \end{aligned}$$

The Weyl group \(W\cong {\mathbb {Z}}_2^3\).

\(\boxed {F(4) ~{\mathbf{case }}:}\) Let \({\mathfrak {h}}^*\) be a vector space with basis \(\{\delta , \varepsilon _1, \varepsilon _2, \varepsilon _3\}\).We equip the dual \({\mathfrak {h}}^*\) with a bilinear form \((\cdot ,\cdot )\) such that

$$\begin{aligned} (\delta , \delta )=-3,\quad (\varepsilon _i,\delta )=(\delta , \varepsilon _i)=0, \quad (\varepsilon _i, \varepsilon _j)=\delta _{ij}\quad \text {for all}~i . \end{aligned}$$

The distinguished fundamental system

$$\begin{aligned} \Pi =\left\{ \alpha _1=\frac{1}{2}(\delta -\varepsilon _1-\varepsilon _2-\varepsilon _3), \quad \alpha _2=\varepsilon _3, \quad \alpha _3=\varepsilon _2-\varepsilon _3, \quad \alpha _4=\varepsilon _1-\varepsilon _2\right\} . \end{aligned}$$

The Dynkin diagram associated with \(\Pi \) is depicted as follows:

figure k

In this case \(r=4\), \(s=1\). The distinguished positive system \(\Phi ^+=\Phi ^+_{{\bar{0}}}\cap \Phi _{{\bar{1}}}^+\) corresponding to the distinguished Borel subalgebra is

$$\begin{aligned} \{ \delta ,\ \varepsilon _p,\ \varepsilon _i\pm \varepsilon _j |1\leqslant i<j\leqslant 3,1\leqslant p\leqslant 3\}\cup \left\{ \frac{1}{2}(\delta \pm \varepsilon _1\pm \varepsilon _2\pm \varepsilon _3)\right\} , \end{aligned}$$

The Weyl group \(W={\mathbb {Z}}_2\times ({\mathfrak {S}}_3\ltimes {\mathbb {Z}}_2^3)\).

\(\boxed {G(3) ~\mathbf{case }:}\) Let \({\mathfrak {h}}^*\) be a vector space with basis \(\{\delta , \varepsilon _1, \varepsilon _2\}\) and \(\varepsilon _3=-\varepsilon _1-\varepsilon _2\). We equip the dual \({\mathfrak {h}}^*\) with a bilinear form \((\cdot ,\cdot )\) such that

$$\begin{aligned} (\delta , \delta )=-(\varepsilon _i, \varepsilon _i)=-2,\quad (\varepsilon _i,\delta )=(\delta , \varepsilon _i)=0, \quad (\varepsilon _i, \varepsilon _j)=-1,\quad \text {for all}~1\leqslant i\ne j\leqslant 3. \end{aligned}$$

The distinguished fundamental system

$$\begin{aligned} \Pi =\{\alpha _1=\delta +\varepsilon _3, \alpha _2=\varepsilon _1, \alpha _3=\varepsilon _2-\varepsilon _1\}. \end{aligned}$$

The Dynkin diagram associated with \(\Pi \) is depicted as follows:

figure l

In this case \(r=3\), \(s=1\). The distinguished positive system \(\Phi ^+=\Phi ^+_{{\bar{0}}}\cap \Phi _{{\bar{1}}}^+\) corresponding to the distinguished Borel subalgebra is

$$\begin{aligned} \{ 2\delta ,\ \varepsilon _1,\ \varepsilon _2,\ \varepsilon _2\pm \varepsilon _1,\ \varepsilon _1-\varepsilon _3,\ \varepsilon _2-\varepsilon _3 \}\cup \{\delta ,\ \delta \pm \varepsilon _i|i=1,2,3\}, \end{aligned}$$

The Weyl group \(W={\mathbb {Z}}_2\times D_6\), where \(D_6\) is the dihedral group of order 12.

Appendix B. Explicit Description of the Rings \(J_{\mathrm {ev}}({\mathfrak {g}})\)

Now we give the explicit description of the rings \(J_{\mathrm {ev}}({\mathfrak {g}})\) for quantum superalgebras, which is inspired by Sergeev and Veselov’s description for Lie superalgebras [42, Sects. 7, 8]. Let \(x_i={\mathbb {K}}_{-\varepsilon _i/2}\) and \(y_j={\mathbb {K}}_{-\delta _j/2}\) formally. First we need to review the rings \(J({\mathfrak {g}})\) for \({\mathfrak {g}}\) is of type A. Let

$$\begin{aligned} P_0=\bigg \{ \mathop {\sum }\limits _{i=1}^{m+1}a_i\varepsilon _i +\mathop {\sum }\limits _{j=1}^{n+1}b_j\delta _j\bigg | a_i,b_j \in {\mathbb {C}}~\text {and}~a_i-a_{i+1},b_j-b_{j+1}\in {\mathbb {Z}}, ~ \forall i,j \bigg \}\bigg /{\mathbb {C}}\gamma \end{aligned}$$

be the weights of \(\mathfrak {sl}_{m+1|n+1}\), where \(\gamma =\varepsilon _1+\cdots +\varepsilon _{m+1}-\delta _1-\cdots -\delta _{n+1}\) and \(x_i=e^{\varepsilon _i}, y_j=e^{\delta _j}\) for all possible ij be the elements of the group ring of \({\mathbb {C}}[P_0]\). For convenience, we set \({\mathbb {C}}[x^{\pm },y^{\pm }]={\mathbb {C}}[x_1^{\pm 1},\cdots ,x_{m+1}^{\pm 1},y_1^{\pm 1},\cdots ,y_{n+1}^{\pm 1}],~ {\mathbb {Z}}[x^{\pm },y^{\pm }]={\mathbb {Z}}[x_1^{\pm 1},\cdots ,x_{m+1}^{\pm 1},y_1^{\pm 1},\cdots ,y_{n+1}^{\pm 1}]\) and then for \((m,n)\ne (1,1)\)

$$\begin{aligned} J(\mathfrak {sl}_{m+1|n+1})&=\left\{ f\in {\mathbb {Z}}[P_0]^W \left| y_j\frac{\partial f}{\partial y_j}+x_i\frac{\partial f}{\partial x_i}\in (x_i-y_j) \right. \right\} \\&=\mathop {\bigoplus }\limits _{a\in {\mathbb {C}}/{\mathbb {Z}} }J(\mathfrak {sl}_{m+1|n+1})_{a}, \end{aligned}$$

where

$$\begin{aligned} J(\mathfrak {sl}_{m+1|n+1})_{a}=(x_1\cdots x_{m+1})^a \mathop {\prod }\limits _{i,p}\left( 1-\frac{x_i}{y_p}\right) {\mathbb {Z}}[x^{\pm 1},y^{\pm 1}]_0^{{\mathfrak {S}}_{m+1}\times {\mathfrak {S}}_{n+1}} \end{aligned}$$

if \(a\notin {\mathbb {Z}}\);

$$\begin{aligned} J(\mathfrak {sl}_{m+1|n+1})_0=\left\{ f\in {\mathbb {Z}}[x^{\pm 1}, y^{\pm 1}]_0^{{\mathfrak {S}}_{m+1}\times {\mathfrak {S}}_{n+1} }\left| x_i\frac{\partial f}{\partial x_i}+y_j\frac{\partial f}{\partial y_j}\in (x_i-y_j) \right. \right\} \end{aligned}$$

and \({\mathbb {Z}}[x^{\pm 1},y^{\pm 1}]_0^{{\mathfrak {S}}_{m+1}\times {\mathfrak {S}}_{n+1}}\) is the quotient of the ring \({\mathbb {Z}}[x^{\pm 1},y^{\pm 1}]^{{\mathfrak {S}}_{m+1}\times {\mathfrak {S}}_{n+1}}\) by the ideal generated by \(x_1\cdots x_{m+1}-y_1\cdots y_{n+1}\).

\(J(A(n,n))=\mathop {\oplus }\limits _{i=0}^{n}J(A(n,n))_i\) for \(n\ne 1\), where for \(i\ne 0\)

$$\begin{aligned} J(A(n,n))_i=\bigg \{ f=(x_1\cdots x_{n+1})^{\frac{i}{n+1}}\mathop {\prod }\limits _{j,p}^{n+1}\left( 1-\frac{x_j}{y_p}\right) g\bigg | g\in {\mathbb {Z}}[x^{\pm 1},y^{\pm 1}]_0^{{\mathfrak {S}}_{n+1}\times {\mathfrak {S}}_{n+1}},~ \mathrm {deg}~g=-i \bigg \} \end{aligned}$$

and \(J(A(n,n))_0\) is the subring of \(J(\mathfrak {sl}_{n+1|n+1})_0\) consisting of elements of degree 0.

\(J(A(1,1))=\{c+(u-v)^2g |c\in {\mathbb {Z}}, g\in {\mathbb {Z}}[u,v] \}\) where \(u=\left( \frac{x_1}{x_2}\right) ^{\frac{1}{2}}+\left( \frac{x_2}{x_1}\right) ^{\frac{1}{2}},~ v=\left( \frac{y_1}{y_2}\right) ^{\frac{1}{2}}+\left( \frac{y_2}{y_1}\right) ^{\frac{1}{2}}\).

\(\boxed {A(m,n), m\ne n ~\mathbf{case: }}\) Define

$$\begin{aligned} J^{m|n}=\left\{ f\in {\mathbb {Z}}[x^{\pm 1}, y^{\pm 1}]^{{\mathfrak {S}}_{m+1}\times {\mathfrak {S}}_{n+1}}\left| x_i\frac{\partial f}{\partial x_i}+ y_j\frac{\partial f}{\partial y_j}\in (x_i-y_j)\right. \right\} \end{aligned}$$

and

$$\begin{aligned} J^{m|n}_{k}=\left\{ \left. f\in J^{m|n}\right| \mathrm {deg}~f=k \right\} . \end{aligned}$$

Thus, \(J^{m|n}=\bigoplus \limits _{k\in {\mathbb {Z}}}J^{m|n}_{k}\).

For any element \(\lambda \in {\mathfrak {h}}^*\), we write \(\lambda =\mathop {\sum }\limits _{i=1}^{m+1}a_i\varepsilon _i+\mathop {\sum }\limits _{j=1}^{n+1}b_j\delta _j\), then we have

$$\begin{aligned}&{\mathbb {Z}}\Phi =\bigg \{ \lambda \in {\mathfrak {h}}^* \bigg | a_i,b_j\in {\mathbb {Z}},~\forall i,j \text { and } \mathop {\sum }\limits _{i=1}^{m+1}a_i+\mathop {\sum }\limits _{j=1}^{n+1}b_j=0 \bigg \}, \end{aligned}$$

and

$$\begin{aligned} \Lambda&=\bigg \{ \lambda \in {\mathfrak {h}}^* \bigg | a_i,b_j\in {\mathbb {Q}},~ a_i-a_{i+1},b_j-b_{j+1}\in {\mathbb {Z}}, ~\forall i\leqslant m,j\leqslant n \\&\qquad \text {and}~ \mathop {\sum }\limits _{i=1}^{m+1}a_i+\mathop {\sum }\limits _{j=1}^{n+1}b_j=0 \bigg \}. \end{aligned}$$

By direct computation, we know that

$$\begin{aligned} 2\Lambda \cap {\mathbb {Z}}\Phi ={\left\{ \begin{array}{ll} 2{\mathbb {Z}}\Phi +{\mathbb {Z}}\left( \mathop {\sum }\limits _{i=1}^{m+1}(-1)^{i+1}\varepsilon _i+\mathop {\sum }\limits _{j=1}^{n+1}(-1)^j\delta _j\right) , &{} \quad \text { if } m=2k,n=2l,\\ 2{\mathbb {Z}}\Phi +{\mathbb {Z}}\mathop {\sum }\limits _{j=1}^{n+1}(-1)^j\delta _j, &{}\quad \text { if } m=2k,n=2l+1,\\ 2{\mathbb {Z}}\Phi +{\mathbb {Z}}\mathop {\sum }\limits _{i=1}^{m+1}(-1)^{i+1}\varepsilon _i, &{} \quad \text { if } m=2k+1,n=2l,\\ 2{\mathbb {Z}}\Phi +{\mathbb {Z}}\mathop {\sum }\limits _{i=1}^{m+1}(-1)^{i+1}\varepsilon _i+{\mathbb {Z}}\mathop {\sum }\limits _{j=1}^{n+1}(-1)^j\delta _j, &{} \quad \text { if } m=2k+1,n=2l+1, \end{array}\right. } \end{aligned}$$

for some non-negative integers kl. Then the algebra

$$\begin{aligned} J_{\mathrm {ev}}({\mathfrak {g}})={\left\{ \begin{array}{ll} J^{m|n}_0\oplus \mathop {\prod }\limits _{i}x_i^{\frac{1}{2}}\mathop {\prod }\limits _{j}y_j^{\frac{1}{2}}J^{m|n}_{-(k+l+1)},&{} \quad \text {if} ~m=2k,n=2l,\\ J^{m|n}_0\oplus \mathop {\prod }\limits _{j}y_j^{\frac{1}{2}}J^{m|n}_{-(l+1)},&{}\quad \text {if} ~m=2k,n=2l+1,\\ J^{m|n}_0\oplus \mathop {\prod }\limits _{i}x_i^{\frac{1}{2}}J^{m|n}_{-(k+1)}, &{}\quad \text {if} ~m=2k+1,n=2l,\\ J^{m|n}_0\oplus \mathop {\prod }\limits _{i}x_i^{\frac{1}{2}}J^{m|n}_{-(k+1)}\oplus \mathop {\prod }\limits _{j}y_j^{\frac{1}{2}}J^{m|n}_{-(l+1)}\oplus \mathop {\prod }\limits _{i}x_i^{\frac{1}{2}}\mathop {\prod }\limits _{j}y_j^{\frac{1}{2}}J^{m|n}_{-(k+l+2)}, &{}\quad \text {if} ~m=2k+1,n=2l+1. \end{array}\right. } \end{aligned}$$

for some non-negative integers kl. So it can be viewed as a subalgebra of \(J({\mathfrak {g}})\) by \(\iota :J_{\mathrm {ev}}({\mathfrak {g}})\rightarrow J({\mathfrak {g}})\) with \({\mathbb {K}}_i\mapsto e^{-\alpha _i/2}\) and its image is coincide with \(\mathrm {Sch}(K_{\mathrm {ev}}({\mathfrak {g}}))\).

\(\boxed {A(n,n)~~ (n\ne 1)~\mathbf{case: }}\) In this case, we set

$$\begin{aligned} J(n)_0&=\left\{ f\in {\mathbb {Z}}[x^{\pm 1}, y^{\pm 1}]_{0,0}^{{\mathfrak {S}}_{n+1}\times {\mathfrak {S}}_{n+1}}\left| x_i\frac{\partial f}{\partial x_i}+ y_j\frac{\partial f}{\partial y_j}\in (x_i-y_j) \right. \right\} \end{aligned}$$

where \({\mathbb {Z}}[x^{\pm 1},y^{\pm 1}]_{0,0}\) is the quotient of the ring \({\mathbb {Z}}[x^{\pm 1},y^{\pm 1}]\) with degree 0 by the ideal \(I=\left\langle \frac{x_1\cdots x_{n+1}}{y_1\cdots y_{n+1}}-1\right\rangle \). Then we have

$$\begin{aligned} J_{\mathrm {ev}}({\mathfrak {g}})={\left\{ \begin{array}{ll} J(n)_0 &{}\quad \text {if} ~ n ~\text { is even},\\ J(n)_0\oplus \bigg \{\overrightarrow{x}^{\frac{1}{2}} \mathop {\prod }\limits _{j,p}\left( 1-\frac{x_j}{y_p}\right) g +I\bigg |g\in {\mathbb {Z}}[x^{\pm 1},y^{\pm 1}]^{W},~\mathrm {deg} ~g=-\frac{n+1}{2}\bigg \} &{}\quad \text {if} ~ n ~\text { is odd}, \end{array}\right. } \end{aligned}$$

where \(\overrightarrow{x}=x_1x_2\cdots x_{n+1}\) and \(W={\mathfrak {S}}_{n+1}\times {\mathfrak {S}}_{n+1}\). It can be viewed as a subalgebra by \(\iota :J_{\mathrm {ev}}({\mathfrak {g}})\rightarrow J({\mathfrak {g}})\) with \({\mathbb {K}}_i\mapsto e^{-\alpha _i/2}\) and its image is coincide with \(\mathrm {Sch}(K_{\mathrm {ev}}({\mathfrak {g}}))\).

\(\boxed {A(1,1) ~\mathbf{case: }}\) We have \(J_{\mathrm {ev}}(A(1,1))=\left\{ c+(u-v)g\left| g\in {\mathbb {Z}}[u,v]\right. \right\} \) where \(u=\left( \frac{x_1}{x_2}\right) ^{\frac{1}{2}}+\left( \frac{x_2}{x_1}\right) ^{\frac{1}{2}},~ v=\left( \frac{y_1}{y_2}\right) ^{\frac{1}{2}}+\left( \frac{y_2}{y_1}\right) ^{\frac{1}{2}}\). And \(u-v={\mathbb {K}}_{1}+{\mathbb {K}}^{-1}_{1}-{\mathbb {K}}_{3}-{\mathbb {K}}_{3}^{-1}\in J_{\mathrm {ev}}(A(1,1))\), but \(u-v\notin J(A(1,1))\).

\(\boxed {B(m,n), m, n>0 ~\mathbf{case: }}\) We set \(\lambda =\mathop {\sum }\limits _{i=1}^{m}\lambda _i\varepsilon _i+\mathop {\sum }\limits _{j=1}^{n} \mu _j\delta _j\in {\mathfrak {h}}^*\), then in this case

$$\begin{aligned}&{\mathbb {Z}}\Phi =\left\{ \lambda \in {\mathfrak {h}}^*\left| \lambda _i, \mu _j\in {\mathbb {Z}}, ~\forall i,j \right. \right\} ~\text { and }\\&\Lambda =\left\{ \lambda \in {\mathfrak {h}}^*\left| \mu _j\in {\mathbb {Z}},~\forall j \text { and all }\lambda _i\in {\mathbb {Z}} \text { or all } \lambda _i\in {\mathbb {Z}}+\frac{1}{2} \right. \right\} . \end{aligned}$$

So \(2\Lambda \cap {\mathbb {Z}}\Phi =2\Lambda \). Let \(u_i=x_i+x_i^{-1}\) and \(v_j=y_j+y_j^{-1}\) for all possible ij, then we have \(J_{\mathrm {ev}}({\mathfrak {g}})=J({\mathfrak {g}})_0\oplus J({\mathfrak {g}})_{1/2}\), where

$$\begin{aligned} J({\mathfrak {g}})_0=\left\{ f\in {\mathbb {Z}}[u_1,\cdots ,u_m,v_1,\cdots ,v_n]^{{\mathfrak {S}}_m\times {\mathfrak {S}}_n}\left| u_i\frac{\partial f}{\partial u_i}+v_j\frac{\partial f}{\partial v_j}\in (u_i-v_j) \right. \right\} , \end{aligned}$$

and

$$\begin{aligned} J({\mathfrak {g}})_{1/2}=\bigg \{ \prod \limits _{i=1}^m(x_i^{1/2}+x_i^{-1/2})\mathop {\prod }\limits _{i=1}^m\prod \limits _{j=1}^n(u_i-v_j)g \bigg |g\in {\mathbb {Z}}[u_1,\cdots ,u_m,v_1,\cdots ,v_n]^{{\mathfrak {S}}_m\times {\mathfrak {S}}_n} \bigg \}. \end{aligned}$$

\(\boxed {B(0,n) ~\mathbf{case: }}\) In this case \(\Lambda ={\mathbb {Z}}\Phi =\Big \{\mathop {\sum }\limits _{j=1}^{n} \mu _j\delta _j\Big |\mu _j\in {\mathbb {Z}},~\forall j \Big \},\) so \(2\Lambda \cap {\mathbb {Z}}\Phi =2\Lambda \) and this algebra \(J_{\mathrm {ev}}({\mathfrak {g}})={\mathbb {Z}}[v_1,v_2,\cdots ,v_n]^{{\mathfrak {S}}_n}\), where the notation \(v_i\) are the same as above.

\(\boxed {C(n+1) ~\mathbf{case: }}\) In this case

$$\begin{aligned}&\Lambda =\bigg \{ \lambda \varepsilon +\mathop {\sum }\limits _{j=1}^{n} \mu _j\delta _j\bigg |\lambda \in {\mathbb {C}},\mu _j\in {\mathbb {Z}},~\forall j \bigg \} \end{aligned}$$

and

$$\begin{aligned}&{\mathbb {Z}}\Phi =\bigg \{ \lambda \varepsilon +\mathop {\sum }\limits _{j=1}^{n} \mu _j\delta _j\bigg |\lambda ,\mu _j\in {\mathbb {Z}},~\forall j ~\text {and}~ \lambda +\mathop {\sum }\limits _{j=1}^{n} \mu _j ~\text {is even} \bigg \}. \end{aligned}$$

So \(2\Lambda \cap {\mathbb {Z}}\Phi =\Big \{ \lambda \varepsilon +\mathop {\sum }\limits _{j=1}^{n} \mu _j\delta _j\Big |\lambda ,\mu _j\in 2{\mathbb {Z}},~\forall j \Big \}\) and the algebra

\(\boxed {D(m,n), m>1,n>0 ~\mathbf{case: }}\) Let \(\lambda =\mathop {\sum }\limits _{i=1}^{m}\lambda _i\varepsilon _i+\mathop {\sum }\limits _{j=1}^{n} \mu _j\delta _j\in {\mathfrak {h}}^*\) and \(u_i, v_j\) are as above, then

$$\begin{aligned}&\Lambda =\left\{ \lambda \in {\mathfrak {h}}^*\left| \mu _j\in {\mathbb {Z}},~\forall j \text { and all } \lambda _i\in {\mathbb {Z}} ~\text {or all}~ \lambda _i\in {\mathbb {Z}}+\frac{1}{2} \right. \right\} \end{aligned}$$

and

$$\begin{aligned}&{\mathbb {Z}}\Phi =\bigg \{ \lambda \in {\mathfrak {h}}^*\bigg |\lambda _i,\mu _j\in {\mathbb {Z}},~\forall i,j ~\text {and}~ \mathop {\sum }\limits _{i=1}^{m}\lambda _i+\mathop {\sum }\limits _{j=1}^{n} \mu _j ~\text {is even} \bigg \}. \end{aligned}$$

So

$$\begin{aligned} 2\Lambda \cap {\mathbb {Z}}\Phi ={\left\{ \begin{array}{ll} 2{\mathbb {Z}}\Phi +{\mathbb {Z}}\left( \mathop {\sum }\limits _{i=1}^n \varepsilon _i\right) +2{\mathbb {Z}}\varepsilon _n, &{}\quad \text {if }m=2k,\\ 2{\mathbb {Z}}\Phi +2{\mathbb {Z}}\varepsilon _n, &{}\quad \text {if }m=2k+1, \end{array}\right. } \end{aligned}$$

for some positive integer k. Thus the algebra \(J_{\mathrm {ev}}({\mathfrak {g}})\) is, respectively, equal to \(J({\mathfrak {g}})_0\oplus J({\mathfrak {g}})_{1/2}\) for \(m=2k\) and \(J({\mathfrak {g}})_0\) for \(m=2k+1\), where

$$\begin{aligned} J({\mathfrak {g}})_0=\left\{ f\in {\mathbb {Z}}[x^{\pm 1}_1,\cdots ,x^{\pm 1}_m,y^{\pm 1}_1,\cdots ,y^{\pm 1}_n]^{W}\left| x_i\frac{\partial f}{\partial x_i}+y_j\frac{\partial f}{\partial y_j}\in (x_i-y_j) \right. \right\} , \end{aligned}$$

and

$$\begin{aligned} J({\mathfrak {g}})_{1/2}=\bigg \{ \mathop {\prod }\limits _{i,j}(u_i-v_j)\Big ((x_1x_2\cdots x_m)^{1/2}{\mathbb {Z}}[x^{\pm 1}_1,\cdots ,x^{\pm 1}_m,y^{\pm 1}_1,\cdots ,y^{\pm 1}_n]\Big )^W \bigg \}. \end{aligned}$$

\(\boxed {D(2,1,\alpha ) ~\mathbf{case: }}\) In this case,

$$\begin{aligned} \Lambda =\bigg \{ \mathop {\sum }\limits _{i=1}^3\lambda _i\varepsilon _i\bigg | \lambda _i\in {\mathbb {Z}}, ~\forall i \bigg \},\text { and } {\mathbb {Z}}\Phi =\bigg \{ \mathop {\sum }\limits _{i=1}^3\lambda _i\varepsilon _i\bigg | \lambda _i\in {\mathbb {Z}} ~\text {and}~\lambda _i-\lambda _j\in 2{\mathbb {Z}}, ~\forall i,j \bigg \}. \end{aligned}$$

So \(2\Lambda \cap {\mathbb {Z}}\Phi =2\Lambda \). Thus the algebra

$$\begin{aligned} J_{\mathrm {ev}}({\mathfrak {g}})={\left\{ \begin{array}{ll} \big \{c+\Delta h | c\in {\mathbb {Z}},h\in {\mathbb {Z}}[u_1,u_2,u_3] \big \},&{}\quad \text { if } \alpha \text { is not rational}, \\ \big \{g(w_{\alpha })+\Delta h| g\in {\mathbb {Z}}[\omega ],h\in {\mathbb {Z}}[u_1,u_2,u_3] \big \}, &{}\quad \text { if }\alpha =p/q \text { with } p\in {\mathbb {Z}},q\in {\mathbb {N}}, \end{array}\right. } \end{aligned}$$

where

$$\begin{aligned} \Delta =u_1^2+u_2^2+u_3^2-u_1u_2u_3-4,~ u_i=x_i+x_i^{-1}, \text { for }i=1,2,3, \end{aligned}$$

and

$$\begin{aligned} \omega _{\alpha }=(x_1+x_1^{-1}-x_2x_3-x_2^{-1}x_3^{-1}) \frac{(x_2^p-x_2^{-p})(x_3^{q}-x_3^{-q})}{(x_2-x_2^{-1}) (x_3-x_3^{-1})}+x_2^px_3^{-q}+x_2^{-p}x_3^q. \end{aligned}$$

\(\boxed {F(4) ~\mathbf{case: }}\) In this case,

$$\begin{aligned}&\Lambda =\bigg \{ \mu \delta +\mathop {\sum }\limits _{i=1}^3\lambda _i \varepsilon _i\bigg |\text {all}~\lambda _i\in {\mathbb {Z}} ~\text {or}~\text {all}~\lambda _i\in {\mathbb {Z}}+\frac{1}{2} ,~ 2\mu \in {\mathbb {Z}} \bigg \}, \end{aligned}$$

and

$$\begin{aligned}&{\mathbb {Z}}\Phi =\bigg \{ \mu \delta +\mathop {\sum }\limits _{i=1}^3 \lambda _i\varepsilon _i\bigg |\text {all}~\lambda _i,~\mu \in {\mathbb {Z}} ~\text {or}~\text {all}~\lambda _i,~\mu \in {\mathbb {Z}}+\frac{1}{2} \bigg \}. \end{aligned}$$

So \(2\Lambda \cap {\mathbb {Z}}\Phi =2\Lambda \), and the algebra

$$\begin{aligned} J_{\mathrm {ev}}({\mathfrak {g}})=\Big \{ g(\omega _1,\omega _2)+\Delta h\Big | h\in {\mathbb {Z}}[x_1^{\pm 2},x_2^{\pm 2},x_3^{\pm 2},(x_1x_2x_3)^{\pm 1},y^{\pm 1}]^W, ~g\in {\mathbb {Z}}[\omega _1,\omega _2] \Big \}, \end{aligned}$$

where

$$\begin{aligned} \Delta =\left( y+y^{-1}-x_1x_2x_3-x_1^{-1}x_2^{-1}x_3^{-1}\right) \mathop {\prod }\limits _{i=1}^3\left( y+y^{-1}-\frac{x_1x_2x_3}{x_i ^2}-\frac{x_i^2}{x_1x_2x_3}\right) , \end{aligned}$$

and

$$\begin{aligned} \omega _k&=\mathop {\sum }\limits _{1\leqslant i<j\leqslant 3}\left( x^{2k}_i+x^{-2k}_i+\frac{1}{2}\right) \left( x^{2k}_j +x^{-2k}_j+\frac{1}{2}\right) \\&\quad -\frac{3}{4}+y^{2k}+y^{-2k}-(y^k+y^{-k}) \mathop {\prod }\limits _{i=1}^3\left( x_i^k+x_i^{-k}\right) \end{aligned}$$

with \(k=1,2\), and \(W={\mathbb {Z}}_2\times ({\mathfrak {S}}_3\ltimes {\mathbb {Z}}_2^3)\).

\(\boxed {G(3) ~\mathbf{case: }}\) In this case, \(\Lambda ={\mathbb {Z}}\Phi =\big \{ \lambda _1\varepsilon _1+\lambda _2\varepsilon _2+\mu \delta |\lambda _1,\lambda _2,\mu \in {\mathbb {Z}} \big \}\). So \(2\Lambda \cap {\mathbb {Z}}\Phi =2\Lambda \), and the algebra

$$\begin{aligned} J_{\mathrm {ev}}({\mathfrak {g}})=\bigg \{g(\omega ) +\mathop {\prod }\limits _{i=1}^3(v-u_i)h\bigg |h\in {\mathbb {Z}} [v,u_1,u_2,u_3]^{{\mathfrak {S}}_3},~g\in {\mathbb {Z}}[\omega ] \bigg \}, \end{aligned}$$

where

$$\begin{aligned} \omega =v^2-v(u_1+u_2+u_3+1)+u_1u_2+u_1u_3+u_2u_3. \end{aligned}$$

and the notations \(u_i, v\) are the same as above.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Wang, Y. & Ye, Y. On the Harish-Chandra Homomorphism for Quantum Superalgebras. Commun. Math. Phys. 393, 1483–1527 (2022). https://doi.org/10.1007/s00220-022-04394-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04394-x

Navigation