Skip to main content
Log in

On the Classification of Topological Orders

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We axiomatize the extended operators in topological orders (possibly gravitationally anomalous, possibly with degenerate ground states) in terms of monoidal Karoubi-complete n-categories which are mildly dualizable and have trivial centre. Dualizability encodes the word “topological,” and we take it as the definition of “(separable) multifusion n-category”; triviality of the centre implements the physical principle of “remote detectability.” We show that such n-categorical algebras are Morita-invertible (in the appropriate higher Morita category), thereby identifying topological orders with anomalous fully-extended TQFTs. We identify centreless fusion n-categories (i.e. multifusion n-categories with indecomposable unit) with centreless braided fusion \((n{-}1)\)-categories. We then discuss the classification in low spacetime dimension, proving in particular that all \((1{+}1)\)- and \((3{+}1)\)-dimensional topological orders, with arbitrary symmetry enhancement, are suitably-generalized topological sigma models. These mathematical results confirm and extend a series of conjectures and results by L. Kong, X.G. Wen, and their collaborators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ai, Y., Kong, L., Zheng, H.: Topological orders and factorization homology. Adv. Theor. Math. Phys. 21(8), 1845–1894 (2017). https://doi.org/10.4310/ATMP.2017.v21.n8.a1. arXiv:1607.08422

  2. Baez, J.C., Dolan, J.: Higher dimensional algebra and topological quantum field theory. J. Math. Phys. 36, 6073–6105 (1995). https://doi.org/10.1063/1.531236. arXiv:q-alg/9503002

  3. Bartlett, B., Douglas, C.L., Schommer-Pries, C.J., Vicary, J.: Modular categories as representations of the 3-dimensional bordism 2-category (2015). arXiv:1509.06811

  4. Brochier, A., Jordan, D., Snyder, N.: On dualizability of braided tensor categories (2018). arXiv:1804.07538

  5. Brochier, A., Jordan, D., Safronov, P., Snyder, N.: Invertible braided tensor categories (2020). arXiv:2003.13812

  6. Brochier, A.: Cyclotomic associators and finite type invariants for tangles in the solid torus. Algebr. Geom. Topol. 13(6), 3365–3409 (2013). https://doi.org/10.2140/agt.2013.13.3365. arXiv:1209.0417

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, X., Gu, Z.C., Wen, X.G.: Classification of gapped symmetric phases in one-dimensional spin systems. Phys. Rev. B 83, 035107 (2011). https://doi.org/10.1103/PhysRevB.83.035107. arXiv:1008.3745

    Article  ADS  Google Scholar 

  8. Chen, X., Gu, Z.C., Wen, X.G.: Complete classification of one-dimensional gapped quantum phases in interacting spin systems. Phys. Rev. B 84, 235128 (2011). https://doi.org/10.1103/PhysRevB.84.235128

    Article  ADS  Google Scholar 

  9. Chamon, C.: Quantum glassiness in strongly correlated clean systems: an example of topological overprotection. Phys. Rev. Lett. 94, 040402 (2005). https://doi.org/10.1103/PhysRevLett.94.040402

    Article  ADS  Google Scholar 

  10. Deligne, P.: Catégories tannakiennes. In: The Grothendieck Festschrift, vol. II, volume 87 of Progress in Mathematics, pp. 111–195. Birkhäuser Boston, Boston (1990)

  11. Deligne, P.: Catégories tensorielles. Mosc. Math. J. 2(2), 227–248 (2002). [Dedicated to Yuri I. Manin on the occasion of his 65th birthday]

  12. Deligne, P., Milne, J.S.: Tannakian categories. In: Hodge Cycles, Motives, and Shimura Varieties, Lecture Notes Mathematics, vol. 900, pp. 101–228 (1982)

  13. Davydov, A.: Müger, M., Nikshych, D., Ostrik, V.: The Witt group of non-degenerate braided fusion categories. J. Reine Angew. Math. 677, 135–177 (2013). arXiv:1009.2117

  14. Davydov, A., Nikshych, D.: Braided Picard groups and graded extensions of braided tensor categories (2020). arXiv:2006.08022

  15. Davydov, A., Nikshych, D., Ostrik, V.: On the structure of the Witt group of braided fusion categories. Selecta Math. (N.S.) 19(1), 237–269 (2013). https://doi.org/10.1007/s00029-012-0093-3. arXiv:1109.5558

  16. Douglas, C.L., Reutter, D.J.: Fusion 2-categories and a state-sum invariant for 4-manifolds (2018). arXiv:1812.11933

  17. Douglas, C.L., Schommer-Pries, C., Snyder, N.: Dualizable tensor categories. In: Memoirs of the AMS (2020). arXiv:1312.7188

  18. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor categories, volume 205 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2015). http://www-math.mit.edu/~etingof/egnobookfinal.pdf. https://doi.org/10.1090/surv/205

  19. Fröhlich, J., Gabbiani, F.: Braid statistics in local quantum theory. Rev. Math. Phys. 2(3), 251–353 (1990). https://doi.org/10.1142/S0129055X90000107

    Article  MathSciNet  MATH  Google Scholar 

  20. Fröhlich, J., Gabbiani, F., Marchetti, P.A.: Superselection structure and statistics in three-dimensional local quantum theory. In: Knots Topology and Quantum Field Theories (Florence, 1989), pp. 335–415. World Sci. Publ, River Edge (1989)

  21. Freed, D.S.: 4-3-2-8-7-6. https://web.ma.utexas.edu/users/dafr/Aspects.pdf

  22. Freed, D.S.: Lectures on field theory and topology. In: CBMS Regional Conference Series in Mathematics, vol. 133. American Mathematical Society, Providence (2019)

  23. Fredenhagen, K., Rehren, K.H., Schroer, B.: Superselection sectors with braid group statistics and exchange algebras. I. General theory. Commun. Math. Phys. 125(2), 201–226 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  24. Fredenhagen, K., Rehren, K.H., Schroer, B.: Superselection sectors with braid group statistics and exchange algebras. II. Geometric aspects and conformal covariance. Number Special Issue, pp. 113–157 (1992). Special issue dedicated to R. Haag on the occasion of his 70th birthday. https://doi.org/10.1142/S0129055X92000170

  25. Fuchs, J., Schweigert, C., Valentino, A.: Bicategories for boundary conditions and for surface defects in 3-d TFT. Commun. Math. Phys. 321(2), 543–575 (2013). https://doi.org/10.1007/s00220-013-1723-0. arXiv:1203.4568

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. Freed, D.S.: Teleman, constantin: relative quantum field theory. Commun. Math. Phys. 326(2), 459–476 (2014). https://doi.org/10.1007/s00220-013-1880-1. arXiv:1212.1692

    Article  MATH  ADS  Google Scholar 

  27. Gaitsgory, D.: Sheaves of categories and the notion of 1-affineness. In: Stacks and Categories in Geometry, Topology, and Algebra, volume 643 of Contemporary Mathematics, pp. 127–225. Amer. Math. Soc., Providence (2015). https://doi.org/10.1090/conm/643/12899. arXiv:1306.4304

  28. Gepner, D., Haugseng, R.: Enriched \(\infty \)-categories via non-symmetric \(\infty \)-operads. Adv. Math. 279, 575–716 (2015). https://doi.org/10.1016/j.aim.2015.02.007. arXiv:1312.3178

    Article  MathSciNet  MATH  Google Scholar 

  29. Gaiotto, D., Johnson-Freyd, T.: Condensations in higher categories (2019). arXiv:1905.09566

  30. Gaiotto, D., Johnson-Freyd, T.: Symmetry protected topological phases and generalized cohomology. J. High Energy Phys. 5, 007–034 (2019). https://doi.org/10.1007/JHEP05(2019)007. arXiv:1712.07950

  31. Gwilliam, O., Scheimbauer, C.: Duals and adjoints in higher Morita categories (2018). arXiv:1804.10924

  32. Haah, J.: Local stabilizer codes in three dimensions without string logical operators. Phys. Rev. A 83, 042330 (2011). https://doi.org/10.1103/PhysRevA.83.042330. arXiv:1101.1962

    Article  ADS  Google Scholar 

  33. Heuts, G., Lurie, J.: Ambidexterity. In: Topology and Field Theories, volume 613 of Contemporary Mathematics, pp. 79–110. Amer. Math. Soc., Providence (2014). https://doi.org/10.1090/conm/613/12236

  34. Johnson-Freyd, T.: Spin, statistics, orientations, unitarity. Algebr. Geom. Topol 17(2), 917–956 (2017). https://doi.org/10.2140/agt.2017.17.917. arXiv:1507.06297

  35. Johnson-Freyd, T., Scheimbauer, C.: (Op)lax natural transformations, twisted field theories, and “even higher” Morita categories. Adv. Math. 307, 147–223 (2017). https://doi.org/10.1016/j.aim.2016.11.014. arXiv:1502.06526

  36. Johnson-Freyd, T., Yu, M.: Topological orders in (4+1)-dimensions (2021). arXiv:2104.04534

  37. Ji, W., Wen, X.G.: Algebraic higher symmetries and non-invertible anomaly in symmetry-breaking and topological phase transitions (2019). arXiv:1912.13492

  38. Kapustin, A.: Topological field theory, higher categories, and their applications. In: Proceedings of the International Congress of Mathematicians, vol. III, pp. 2021–2043. Hindustan Book Agency, New Delhi (2010). arXiv:1004.2307

  39. Kitaev, A.: Anyons in an exactly solved model and beyond. Ann. Phys. 321(1), 2–111 (2006). https://doi.org/10.1016/j.aop.2005.10.005. arXiv:cond-mat/0506438

  40. Kitaev, A.: Homotopy-theoretic approach to SPT phases in action: \({Z}_{16}\) classification of three-dimensional superconductors. In: Symmetry and Topology in Quantum Matter Workshop. Institute for Pure and Applied Mathematics, University of California, Los Angeles (2015). http://www.ipam.ucla.edu/abstract/?tid=12389&pcode=STQ2015 (2015)

  41. Kitaev, A.: Kong, L.: Models for gapped boundaries and domain walls. Commun. Math. Phys. 313(2), 351–373 (2012). https://doi.org/10.1007/s00220-012-1500-5. arXiv:1104.5047

  42. Kong, L., Lan, T., Wen, X.G., Zhang, Z.H., Zheng, H.: Classification of topological phases with finite internal symmetries in all dimensions. J. High Energy Phys. 93 (2020). https://doi.org/10.1007/JHEP09(2020)093. arXiv:2003.08898

  43. Kong, L.: Anyon condensation and tensor categories. Nucl. Phys. B 886, 436–482 (2014). https://doi.org/10.1016/j.nuclphysb.2014.07.003. arXiv:1307.8244

    Article  MathSciNet  MATH  ADS  Google Scholar 

  44. Kong, L., Wen, X.G.: Braided fusion categories, gravitational anomalies, and the mathematical framework for topological orders in any dimensions (2014). arXiv:1405.5858

  45. Kong, L., Wen, X.G., Zheng, H.: Boundary-bulk relation for topological orders as the functor mapping higher categories to their centers (2015). arXiv:1502.01690

  46. Kong, L., Wen, X.G., Zheng, H.: Boundary-bulk relation in topological orders. Nucl. Phys. B 922, 62–76 (2017). https://doi.org/10.1016/j.nuclphysb.2017.06.023. arXiv:1702.00673

  47. Kong, L., Zheng, H.: Categories of quantum liquids I (2020). arXiv:2011.02859

  48. Levin, M.: Protected edge modes without symmetry. Phys. Rev. X 3, 021009 (2013). https://doi.org/10.1103/PhysRevX.3.021009. arXiv:1301.7355

    Article  Google Scholar 

  49. Lan, T., Kong, L., Wen, X.G.: Classification of \((3+1){{\rm D}}\) bosonic topological orders: The case when pointlike excitations are all bosons. Phys. Rev. X 8, 021074 (2018). https://doi.org/10.1103/PhysRevX.8.021074. arXiv:1704.04221

  50. Lurie, J.: On the classification of topological field theories. In: Current Developments in Mathematics, pp. 129–280. Int. Press, Somerville (2009). arXiv:0905.0465

  51. Lurie, J.: Higher Algebra (2014). http://www.math.harvard.edu/~lurie/papers/HigherAlgebra.pdf

  52. Lan, T., Wen, X.G.: Classification of 3+1D bosonic topological orders (ii): the case when some pointlike excitations are fermions. Phys. Rev. X 9, 021005 (2019). https://doi.org/10.1103/PhysRevX.9.021005. arXiv:1801.08530

  53. Moore, G.: Seiberg, N.: Classical and quantum conformal field theory. Commun. Math. Phys. 123(2), 177–254 (1989)

  54. Ostrik, V.: Module categories, weak Hopf algebras and modular invariants. Transform. Groups 8(2), 177–206 (2003). https://doi.org/10.1007/s00031-003-0515-6. arXiv:math/0111139

    Article  MathSciNet  MATH  Google Scholar 

  55. Ostrik, V.: On symmetric fusion categories in positive characteristic (2015). arXiv:1503.01492

  56. Scheimbauer, C.: Factorization Homology as a Fully Extended Topological Field Theory. PhD thesis, ETH Zürich (2014). https://www.research-collection.ethz.ch/handle/20.500.11850/154981

  57. Simpson, C.: On the Breen–Baez–Dolan stabilization hypothesis for Tamsamani’s weak n-categories (1998). arXiv:math/9810058

  58. Schommer-Pries, C.J.: The Classification of Two-Dimensional Extended Topological Field Theories. PhD thesis, University of California, Berkeley (2009). arXiv:1112.1000

  59. Schommer-Pries, C.J.: Dualizability in low-dimensional higher category theory. In: Topology and Field Theories, volume 613 of Contemporary Mathematics, pp. 111–176. Amer. Math. Soc., Providence (2014). https://doi.org/10.1090/conm/613/12237. arXiv:1308.3574

  60. Schommer-Pries, C.J.: Tori detect invertibility of topological field theories. Geom. Topol. 22(5), 2713–2756 (2018). https://doi.org/10.2140/gt.2018.22.2713. arXiv:1511.01772

  61. Schuch, N., Perez-Garcia, D., Cirac, I.: Classifying quantum phases using matrix product states and projected entangled pair states. Phys. Rev. B 84, 165139 (2011). https://doi.org/10.1103/PhysRevB.84.165139

    Article  ADS  Google Scholar 

  62. Stolz, S., Teichner, P.: Supersymmetric field theories and generalized cohomology. In: Mathematical Foundations of Quantum Field Theory and Perturbative String Theory, volume 83 of Proceedings of Symposium Pure Mathematics, pp. 279–340. Amer. Math. Soc., Providence, (2011). arXiv:1108.0189

  63. The Royal Swedish Academy. Topological phase transitions and topological phases of matter. In: Scientific Background on the Nobel Prize in Physics (2016). https://www.nobelprize.org/uploads/2018/06/advanced-physicsprize2016-1.pdf

  64. Tillmann, U.: \(S\)-structures for \(k\)-linear categories and the definition of a modular functor. J. Lond. Math. Soc. (2) 58(1), 208–228 (1998). https://doi.org/10.1112/S0024610798006383. arXiv:math/9802089

  65. Thorngren, R., Wang, Y.: Fusion category symmetry I: anomaly in-flow and gapped phases (2019). arXiv:1912.02817

  66. Wen, X.G.: Topological orders in rigid states. Internat. J. Modern Phys. B 4(2), 239–271 (1990). https://doi.org/10.1142/S0217979290000139

    Article  MathSciNet  ADS  Google Scholar 

  67. Wen, X.G.: Classifying gauge anomalies through SPT orders and classifying gravitational anomalies through topological orders. Phys. Rev. D 88(4),(2013). https://doi.org/10.1103/PhysRevD.88.045013. arXiv:1303.1803

  68. Wen, X.G.: A theory of 2+1D bosonic topological orders. Natl. Sci. Rev. 3(1), 68–106 (2015). https://doi.org/10.1093/nsr/nwv077. arXiv:1506.05768

  69. Wang, Q.R., Gu, Z.C.: Towards a complete classification of fermionic symmetry protected topological phases in 3d and a general group supercohomology theory (2017). arXiv:1703.10937

  70. Zhu, C., Lan, T., Wen, X.G.: Topological nonlinear \(\sigma \)-model, higher gauge theory, and a systematic construction of \(3+1\text{D}\) topological orders for boson systems. Phys. Rev. B 100, 045105 (2019). https://doi.org/10.1103/PhysRevB.100.045105. arXiv:1808.09394

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theo Johnson-Freyd.

Additional information

Communicated by C. Schweigert.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

I thank D. Freed, D. Gaiotto, L. Kong, D. Reutter, and M. Yu, and in particular the anonymous referee, for discussion and comments. I thank C. Scheimbauer for Remark II.7, and D. Nykshych for the end of Remark V.2. Research at Perimeter Institute is supported by the Government of Canada through the Department of Innovation, Science and Economic Development Canada and by the Province of Ontario through the Ministry of Colleges and Universities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson-Freyd, T. On the Classification of Topological Orders. Commun. Math. Phys. 393, 989–1033 (2022). https://doi.org/10.1007/s00220-022-04380-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04380-3

Navigation