Skip to main content
Log in

On the Duality of F-Theory and the CHL String in Seven Dimensions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that the duality between F-theory and the CHL string in seven dimensions defines algebraic correspondences between K3 surfaces polarized by the rank-ten lattices \(H \oplus N\) and \(H\oplus E_8(-2)\). In the special case when the F-theory admits an additional anti-symplectic involution or, equivalently, the CHL string admits a symplectic one, both moduli spaces coincide. In this case, we derive an explicit parametrization for the F-theory compactifications dual to the CHL string, using an auxiliary genus-one curve, based on a construction given by André Weil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The scenario has been recently claimed to be reconstructed in the Swampland Program in [4, 36], excluding the other disconnected components mentioned above.

References

  1. Aspinwall, P.S.: \(K3\) surfaces and string duality. In: Efthimiou, C., Greene, B. (eds.) Fields, Strings and Duality, pp. 421–540. World Scientific Publishing, Boulder (1997)

    Google Scholar 

  2. Aspinwall, P.S.: \(K3\) surfaces and string duality. In: Yau, S.T. (ed.) Surveys in Differential Geometry: Differential Geometry Inspired by String Theory, pp. 1–95. International Press, Vienna (1999)

    Google Scholar 

  3. Barth, W.: Even sets of eight rational curves on a surface. In: Bauer, I., Catanese, F., Kawamata, Y., Peternell, T., Siu, Y.T. (eds.) Complex Geometry. Collection of papers dedicated to Hans Grauert. Selected papers from the International Conference on Analytic and Algebraic Methods in Complex Geometry held in Göttingen, April 3–8, 2000. Springer, Berlin, pp. xxii+340 (2002) (ISBN: 3-540-43259-0 )

  4. Bedroya, A., Hamada, Y., Montero, M., Vafa,C.: Compactness of brane moduli and the string lamppost principle in \(d {>}{6}\). arXiv:2110.10157

  5. Bershadsky, M., Pantev, T., Sadov, V.: F-theory with quantized fluxes. Adv. Theor. Math. Phys. 3(3), 727–773 (1999)

    Article  MathSciNet  Google Scholar 

  6. Bhardwaj, L., Morrison, D.R., Tachikawa, Y., Tomasiello, A.: The frozen phase of F-theory. J. High Energy Phys. 8, 138 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  7. Braeger, N., Malmendier, A., Sung, Y.: Kummer sandwiches and Greene–Plesser construction. J. Geom. Phys. 154, 103718 (2020)

  8. Camere, C., Garbagnati, A.: On certain isogenies between \(K3\) surfaces. Trans. Am. Math. Soc. 373(4), 2913–2931 (2020)

    Article  MathSciNet  Google Scholar 

  9. Candelas, P., Horowitz, G.T., Strominger, A., Witten, E.: Vacuum configurations for superstrings. Nucl. Phys. B 258(1), 46–74 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  10. Chaudhuri, S., Hockney, G., Lykken, J.: Maximally supersymmetric string theories in \(D<\) 10. Phys. Rev. Lett. 75(12), 2264–2267 (1995)

  11. Chaudhuri, S., Polchinski, J.: Moduli space of Chaudhuri–Hockney–Lykken strings. Phys. Rev. D (3) 52(12), 7168–7173 (1995)

  12. Clingher, A., Malmendier, A., Shaska, T.: Six line configurations and string dualities. Commun. Math. Phys. 371(1), 159–196 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  13. Clingher, A., Malmendier, A., Shaska, T.: On isogenies among certain abelian surfaces. Michigan Math. J. Advance Publication 1–43 (2021). https://doi.org/10.1307/mmj/20195790

  14. Clingher, A., Malmendier, A.: On \(K3\) surfaces of Picard rank 14. arXiv:2009.09635

  15. Clingher, A., Malmendier, A.: On Picard lattices of Jacobian elliptic \(K3\) surfaces. arXiv:2109.01929

  16. Clingher, A., Donagi, R., Wijnholt, M.: The Sen limit. Adv. Theor. Math. Phys. 18(3), 613–658 (2014)

    Article  MathSciNet  Google Scholar 

  17. Clingher, A., Doran, C.F.: Modular invariants for lattice polarized \(K3\) surfaces. Mich. Math. J. 55(2), 355–393 (2007)

    Article  MathSciNet  Google Scholar 

  18. Clingher, A., Doran, C.F.: Note on a geometric isogeny of \(K3\) surfaces. Int. Math. Res. Not. IMRN 16, 3657–3687 (2011)

    Article  MathSciNet  Google Scholar 

  19. Clingher, A., Doran, C.F.: Lattice polarized \(K3\) surfaces and Siegel modular forms. Adv. Math. 231(1), 172–212 (2012)

    Article  MathSciNet  Google Scholar 

  20. Clingher, A., Doran, C.F., Malmendier, A.: Special function identities from superelliptic Kummer varieties. Asian J. Math. 21(5), 909–951 (2017)

    Article  MathSciNet  Google Scholar 

  21. Clingher, A., Hill, T., Malmendier, A.: Jacobian elliptic fibrations on a special family of \(K3\) surfaces of Picard rank sixteen. arXiv:1908.09578 [math.AG] (2019)

  22. Clingher, A., Hill, T., Malmendier, A.: The duality between F-theory and the heterotic string in \(D=8\) with two Wilson lines. Lett. Math. Phys. 110(11), 3081–3104 (2020)

  23. Clingher, A., Malmendier, A.: Nikulin involutions and the CHL string. Commun. Math. Phys. 370(3), 959–994 (2019)

  24. Clingher, A., Malmendier, A.: Normal forms for Kummer surfaces. In: Integrable Systems and Algebraic Geometry. London Mathematical Society Lecture Note Series, pp. 119–174 (2020)

  25. Cossec, F.R., Dolgachev, I.V.: Enriques Surfaces. I, Progress in Mathematics, vol. 76. Birkhöauser Boston Inc., Boston (1989)

  26. de Boer, J., Dijkgraaf, R., Hori, K., Keurentjes, A., Morgan, J., Morrison, D.R., Sethi, S.: Triples, fluxes, and strings. Adv. Theor. Math. Phys. 4(5), 995–1186 (2001))

  27. Dolgachev, I.V.: Mirror symmetry for lattice polarized \(K3\) surfaces. J. Math. Sci. 81(3), 2599–2630 (1996)

  28. Dolgachev, I.V.: A brief introduction to Enriques surfaces. In: Fujino, O., Kond\(\bar{{\rm 0}}\), s., Moriwaki, A., Saito, M-H., Yoshioka, K. (eds.) Development of Moduli Theory—Kyoto 2013. Proceedings of the Meeting of the Japanese Mathematical Society-Seasonal Institute (MSJSI) held at the Research Institute of Mathematical Science, Kyoto University, Kyoto, June 11–21, 2013.Advanced Studies in Pure Mathematics, vol. 69. Mathematical Society of Japan, Tokyo (2016)

  29. Garbagnati, A., Salgado, C.: Linear systems on rational elliptic surfaces and elliptic fibrations on \(K3\) surfaces. J. Pure Appl. Algebra 223(1), 277–300 (2019)

  30. Garbagnati, A., Sarti, A.: On symplectic and non-symplectic automorphisms of \(K3\) surfaces. Rev. Mat. Iberoam. 29(1), 135–162 (2013)

  31. Garbagnati, A., Sarti, A.: Kummer surfaces and \(K3\) surfaces with \((\mathbb{Z}/2\mathbb{Z})^4\) symplectic action. Rocky Mt. J. Math. 46(4), 1141–1205 (2016)

  32. Griffin, E., Malmendier, A.: Jacobian elliptic Kummer surfaces and special function identities. Commun. Number Theory Phys. 12(1), 97–125 (2018)

  33. Gross, D.J., Harvey, J.A., Martinec, E., Rohm, R.: Heterotic string theory. I. The free heterotic string. Nucl. Phys. B 256, 253–284 (1985)

  34. Gross, D.J.: Heterotic string theory. II. The interacting heterotic string. Nucl. Phys. B 267, 75–124 (1986)

  35. Gu, J., Jockers, H.: Nongeometric F-theory—heterotic duality. Phys. Rev. D 91(8), 086007, 10 (2015)

  36. Hamada, Y.: 8d supergravity, reconstruction of internal geometry and the swampland. J. High Energy Phys. 6(178), 21 (2021)

  37. Horozov, E., van Moerbeke, P.: The full geometry of Kowalewski’s top and (1, 2)-abelian surfaces. Commun. Pure Appl. Math. 42(4), 357–407 (1989)

  38. Hoyt, W.L.: Notes on elliptic \(K3\) surfaces. In: Chudnovsky, D. V., Chudnovsky, G. V., Cohn, H., Nathanson, M. B. (eds.) Number Theory. Proceedings of the seminar held at the City University of New York, New York, 1984-985. Lecture Notes in Mathematics, vol. 1240. Springer, Berlin (1987)

  39. Hoyt, W.L.: Elliptic fiberings of Kummer surfaces. In: Chudnovsky, D. V., Chudnovsky, G. V., Cohn, H., Nathanson, M. B. (eds.) Number Theory. Proceedings of the seminar held at the City University of New York, New York, 1984–1985. Lecture Notes in Mathematics, vol. 1240. Springer, Berlin (1987)

  40. Hoyt, W.L.: On twisted Legendre equations and Kummer surfaces. In: Ehrenpreis, L., Gunning, R. C., (eds.) Theta Functions—Bowdoin 1987, Part 1. Proceedings of the Thirty-fifth Summer Research Institute held at Bowdoin College, Brunswick, Maine, July 6–24, 1987. Proceedings of Symposia in Pure Mathematics, vol. 49, Part 1. American Mathematical Society, Providence, RI (1989)

  41. Hoyt, W.L., Schwartz, C.F.: Yoshida surfaces with Picard number \(\rho \quad \ge \) 17. In: McKay J., Sebbar, A. (eds.) Proceedings on Moonshine and related topics. Dedicated to the memory of Chih-Han Sah. Proceedings of the Moonshine Workshop held in Montréal, QC, May 1999. CRM Proceedings & Lecture Notes, vol. 30. American Mathematical Society, Providence, RI (2001)

  42. Hulek, K., Schöutt, M.: Enriques surfaces and Jacobian elliptic \(K3\) surfaces. Math. Z. 268(3–4), 1025–1056 (2011)

  43. Keum, J.H.: Automorphisms of Jacobian Kummer surfaces. Compos. Math. 107(3), 269–288 (1997)

  44. Keum, J.H.: Automorphisms of a generic Jacobian Kummer surface. Geom. Dedicata 76(2), 177–181 (1999)

  45. Keum, J.H.: A note on elliptic \(K3\) surfaces. Trans. Am. Math. Soc. 352(5), 2077–2086 (2000)

  46. Kimura, Y.: Discrete gauge groups in certain F-theory models in six dimensions. J. High Energy Phys. 7, 027 (2019)

  47. Kimura, Y.: Nongeometric heterotic strings and dual F-theory with enhanced gauge groups. J. High Energy Phys. 2, 036 (2019)

  48. Kodaira, K.: On compact analytic surfaces. II, III. Ann. Math. (2) 77(1963), 563–626, ibid. 78, 1–40 (1963)

  49. Koike, K., Shiga, H., Takayama, N., Tsutsui, T.: Study on the family of \(K3\) surfaces induced from the lattice \((D_4)^3\oplus \langle {-2}\rangle \oplus \langle {2}\rangle \). Int. J. Math. 12(9), 1049–1085 (2001)

  50. Kumar, A.: \(K3\) surfaces associated with curves of genus two. Int. Math. Res. Not. IMRN 6, Art. ID rnm165, 26. (2009d:14044) (2008)

  51. Kumar, A.: Elliptic fibrations on a generic Jacobian Kummer surface. J. Algebr. Geom. 23(4), 599–667 (2014)

  52. Kuwata, M., Shioda, T.: Elliptic parameters and defining equations for elliptic fibrations on a Kummer surface. Algebr. Geom. East Asia-Hanoi 2008, 177–215 (2005)

  53. Lerche, W., Schweigert, Ch., Minasian, R., Theisen, S.: A note on the geometry of CHL heterotic strings. Phys. Lett. B 424(1–2), 53–59 (1998)

  54. Malmendier, A.: Kummer surfaces associated with Seiberg–Witten curves. J. Geom. Phys. 62(1), 107–123 (2012)

  55. Malmendier, A., Morrison, D.R.: \(K3\) surfaces, modular forms, and non-geometric heterotic compactifications. Lett. Math. Phys. 105(8), 1085–1118 (2015)

  56. Malmendier, A., Shaska, T.: The Satake sextic in F-theory. J. Geom. Phys. 120, 290–305 (2017)

  57. Malmendier, A., Sung, Y.: Counting rational points on Kummer surfaces. Res. Number Theory 5(3), Paper no. 27, 23 (2019)

  58. Mehran, A.: Double covers of Kummer surfaces. Manuscr. Math. 123(2), 205–235 (2007)

  59. Morrison, D.R.: On \(K3\) surfaces with large Picard number. Invent. Math. 75(1), 105–121 (1984)

  60. Morrison, D.R., Vafa, C.: Compactifications of F-theory on Calabi–Yau threefolds. I. Nucl. Phys. B 473(1–2), 74–92 (1996)

  61. Morrison, D.R., Vafa, C.: Compactifications of F-theory on Calabi–Yau threefolds. II. Nucl. Phys. B 476(3), 437–469 (1996)

  62. Narain, K.S.: New heterotic string theories in uncompactified dimensions \(>{10}\). Phys. Lett. B 169(1), 41–46 (1986)

    Article  MathSciNet  Google Scholar 

  63. Nikulin, V.V.: Kummer surfaces. Izv. Akad. Nauk SSSR Ser. Mat. 39(2), 278–293 (1975)

  64. Nikulin, V.V.: Finite groups of automorphisms of Köahlerian \(K3\) surfaces. Trudy Moskov. Mat. Obshch. 38, 75–137 (1979)

  65. Nikulin, V.V.: Quotient-groups of groups of automorphisms of hyperbolic forms by subgroups generated by 2-reflections. Algebro-geom. Appl. Curr. Probl. Math. 18, 3–114 (1981)

  66. Nikulin, V.V.: Factor groups of groups of automorphisms of hyperbolic forms with respect to subgroups generated by 2-reflections. Algebrogeometric applications. J. Sov. Math. 22(4), 1401–1475 (1983)

  67. Oguiso, K.: On Jacobian fibrations on the Kummer surfaces of the product of nonisogenous elliptic curves. J. Math. Soc. Jpn. 41(4), 651–680 (1989)

  68. Oguiso, K., Shioda, T.: The Mordell–Weil lattice of a rational elliptic surface. Comment. Math. Univ. St. Paul. 40(1), 83–99 (1991)

  69. Saint-Donat, B.: Projective models of \(K3\) surfaces. Am. J. Math. 96, 602–639 (1974)

  70. Schellekens, A.N.: Classification of ten-dimensional heterotic strings. Phys. Lett. B 277(3), 277–284 (1992)

  71. Tachikawa, Y.: Frozen singularities in M and F theory. J. High Energy Phys. 6, 128 (2016)

  72. van Geemen, B.: Some remarks on Brauer groups of \(K3\) surfaces. Adv. Math. 197(1), 222–247 (2005)

  73. van Geemen, B., Sarti, A.: Nikulin involutions on \(K3\) surfaces. Math. Z. 255(4), 731–753 (2007)

  74. Weil, A.: Remarques sur un mémoire d’Hermite. Arch. Math. (Basel) 5, 197–202 (1954)

    Article  MathSciNet  Google Scholar 

  75. Weil, A.: Euler and the Jacobians of elliptic curves. Arith. Geom. I, 353–359 (1983)

  76. Witten, E.: Toroidal compactification without vector structure. J. High Energy Phys. 2, 43 (1998)

Download references

Acknowledgements

The authors would like to thank the referees for their insightful comments, in particular with regards to the correct physical interpretation of our results. A.C. acknowledges support from a UMSL Mid-Career Research Grant. A.M. acknowledges support from the Simons Foundation through grant no. 202367.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Malmendier.

Additional information

Communicated by C. Schweigert.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clingher, A., Malmendier, A. On the Duality of F-Theory and the CHL String in Seven Dimensions. Commun. Math. Phys. 393, 631–667 (2022). https://doi.org/10.1007/s00220-022-04374-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04374-1

Navigation