Skip to main content
Log in

On the Abundance of Sinai–Ruelle–Bowen Measures

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Motivated by Palis program (Ann Inst H Poincaré Anal Nonlinéaire 22:485–507, 2005) on physical measures, we prove that there is a dense set \({{\mathcal {D}}}\) in the space of \(C^1\) diffeomorphisms such that for any diffeomorphism \(f\in {{\mathcal {D}}}\), one of the following cases occurs: f admits at least one Sinai–Ruelle–Bowen measure; f has a physical measure supported on a sink; f has a homoclinic tangency. The key point is to prove the existence of a Sinai–Ruelle–Bowen measure for any \(C^2\) partially hyperbolic attractor with one-dimensional dominated center bundles. To build such a measure, we consider well-controlled limits of smooth random perturbations. This gives Gibbs cu-states which generalize the Gibbs u-states of Pesin and Sinai. The partially hyperbolic splitting may contain many sub-bundles. So the Gibbs cu-states may associate to various possible center-unstable sub-bundles among the dominated splittings. Finally we analyze these Gibbs cu-states and their center-unstable indices to obtain the desired Sinai–Ruelle–Bowen measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that the original version of Palis’ conjecture can be localized to some locally maximal invariant sets and Palis required the physical measures are stochastically stable.

  2. S. Crovisier helped us to clean some ideas of Theorem 4.14.

  3. As we mentioned before, we do not distinguish \(\Lambda ^G_\ell (E^c,\alpha )\) and \(\Lambda ^G_\ell (E\oplus E^c,\alpha ).\)

  4. We say that E is uniformly expanded on \(\Lambda ^G\), if there are constants \(C>0\) and \(\lambda \in (0,1)\) such that for any \([{\underline{\omega }},x]\in \Lambda ^G\) and any \(n\in {{\mathbb {N}}}\), one has that \(\Vert DG^{-n}|_{E([{\underline{\omega }},x])}\Vert \le C\lambda ^n\).

  5. For a set \(A\subset {{\mathbb {R}}}^{\dim E}\) and \(v\in {{\mathbb {R}}}^{\dim E}\), define \(A+v=\{a+v,a\in A\}\).

References

  1. Abdenur, F., Bonatti, C., Crovisier, S.: Nonuniform hyperbolicity for \(C^1\)-generic diffeomorphisms. Isr. J. Math. 183, 1–60 (2011)

    Article  MATH  Google Scholar 

  2. Alves, J., Bonatti, C., Viana, M.: SRB measures for partially hyperbolic systems whose central direction is mostly expanding. Invent. Math. 140, 351–398 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Alves, J., Dias, C., Luzzatto, S., Pinheiro, V.: SRB measures for partially hyperbolic systems whose central direction is weakly expanding. J. Eur. Math. Soc. 19, 2911–2946 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andersson, M., Vásquez, C.: Statistical stability of mostly expanding diffeomorphisms. Ann. Inst. H. Poincaré Anal. Non Linéaire 37, 1245–1270 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Araujo, A.: Existência de atratores hiperbólicos para difeomorfismos de superficies. Ph.D. Thesis, IMPA (1987)

  6. Avila, A., Bochi, J.: Nonuniform hyperbolicity, global dominated splittings and generic properties of volume-preserving diffeomorphisms. Trans. Am. Math. Soc. 364, 2883–2907 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Avila, A., Viana, M., Wilkinson, A.: Absolute continuity, Lyapunov exponents and rigidity I: geodesic flows. J. Eur. Math. Soc. 17, 1435–1462 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barreira, L., Pesin, Y.: Lectures on Lyapunov exponents and smooth ergodic theory. Proc. Symp. Pure Math. 69, 3–106 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonatti, C., Crovisier, S.: Récurrence et généricité. Invent. Math. 158, 33–104 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bonatti, C., Diaz, L.: Connexions hétéroclines et généricité d’une infinité de puits et de sources. Ann. Sci. École Norm. Sup. 32, 135–150 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bonatti, C., Diaz, L., Viana, M.: Dynamics beyond uniform hyperbolicity: a global geometric and probabilistic perspective. In: Encyclopaedia of Mathematical Sciences, Mathematical Physics: III, vol. 102, Springer, Berlin (2005)

  12. Bonatti, C., Viana, M.: SRB measures for partially hyperbolic systems whose central direction is mostly contracting. Isr. J. Math. 115, 157–193 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bowen, R.: Equilibrium states and the ergodic theory of Anosov diffeomorphisms. In: Springer Lectures Notes in Mathematics (1975)

  14. Bowen, R., Ruelle, D.: The ergodic theory of Axiom A fows. Invent. Math. 29, 181–202 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Cao, Y., Yang, D.: On Pesin’s entropy formula for dominated splittings without mixed behavior. J. Differ. Equ. 261, 3964–3986 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Cowieson, W., Young, L.-S.: SRB measures as zero-noise limits. Ergod. Theory Dyn. Syst. 25(4), 1115–1138 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Crovisier, S., Potrie, R.: Introduction to partially hyperbolic dynamics (2018). https://www.math.u-psud.fr/~crovisie/00-CP-Trieste-Version1.pdf

  18. Crovisier, S., Pujals, E.: Essential hyperbolicity and homoclinic bifurcations: a dichotomy phenomenon/mechanism for diffeomorphisms. Invent. Math. 201, 385–517 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Crovisier, S., Pujals, E., Sambarino, M.: On the hyperbolicity of the extremal bundle (in preparation)

  20. Crovisier, S., Sambarino, M., Yang, D.: Partial hyperbolicity and homoclinic tangencies. J. Eur. Math. Soc. 17, 1–49 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Crovisier, S., Yang, D., Zhang, J.: Empirical measures of partially hyperbolic attractors. Commun. Math. Phys. 375, 725–764 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Hayashi, S.: A \(C^2\) generic trichotomy for diffeomorphisms: hyperbolicity or zero Lyapunov exponents or the \(C^1\) creation of homoclinic bifurcations. Trans. Am. Math. Soc. 366, 5613–5651 (2014)

    Article  MATH  Google Scholar 

  23. Hirsch, M., Pugh, C., Shub, M.: Invariant manifolds. In: Lecture Notes in Mathematics, vol. 583 (1977)

  24. Kifer, Y.: Ergodic theory of random transformations. In: Progress in Probability and Statistics, vol. 10. Birkhäuser, Boston (1986)

  25. Kifer, Y.: Random perturbations of dynamical systems. In: Progress in Probability and Statistics, vol. 16, Birkhäuser, Boston (1988)

  26. Ledrappier, F., Young, L.-S.: The metric entropy of diffeomorphisms, part I: characterization of measures satisfying Pesin’s entropy formula. Ann. Math. 122, 509–539 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lian, Z., Liu, P., Lu, K.: SRB measures for a class of partially hyperbolic attractors in Hilbert spaces. J. Differ. Equ. 261, 1532–1603 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Lian, Z., Liu, P., Lu, K.: Existence of SRB measures for a class of partially hyperbolic attractors in Banach spaces. Discrete Contin. Dyn. Syst. 37, 3905–3920 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liao, S.: On the stability conjecture. Chin. Ann. Math. 1, 9–30 (1980)

    MathSciNet  MATH  Google Scholar 

  30. Liu, P., Qian, M.: Smooth Ergodic Theory of Random Dynamical Systems, Lecture Notes in Mathematics, Springer, vol. 1606 (1995)

  31. Liu, P., Lu, K.: A note on partially hyperbolic attractors: entropy conjecture and SRB measures. Discrete Contin. Dyn. Syst. 35, 341–352 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mañé, R.: An ergodic closing lemma. Ann. Math. 116, 503–540 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  33. Morales, C., Pacifico, M.: Lyapunov stability of \(\omega \)-limit sets. Discrete Contin. Dyn. Syst. 8, 671–674 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Newhouse, S.: Nondensity of axiom A(a) on \(S^2\), global analysis I. Proc. Symp. Pure Math. AMS 14, 191–202 (1970)

    Article  Google Scholar 

  35. Newhouse, S.: Diffeomorphisms with infinitely many sinks. Topology 13, 9–18 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  36. Newhouse, S.: The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms. Inst. Hautes Études Sci. Publ. Math. 50, 101–151 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  37. Palis, J.: A Global perspective for non-conservative dynamics. Ann. Inst. H. Poincaré Anal. Nonlinéaire 22, 485–507 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Palis, J., de Melo, W.: Geometric Theory of Dynamical Systems: An Introduction. Springer, New York (1982)

    Book  MATH  Google Scholar 

  39. Palis, J., Viana, M.: High dimension diffeomorphisms displaying infinitely many periodic attractors. Ann. Math. 140, 207–250 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pliss, V.: On a conjecture due to Smale. Differ. Uravenenija 8, 262–268 (1972)

    Google Scholar 

  41. Pesin, Y., Sinai, Y.: Gibbs measures for partially hyperbolic attractors. Ergod. Theory. Dyn. Syst. 2, 417–438 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  42. Potrie, R.: A proof of the existence of attractors in dimension \(2\) (preprint) (2009). http://www.cmat.edu.uy/~rpotrie/documentos/pdfs/dimensiondos.pdf

  43. Pujals, E., Sambarino, M.: Homoclinic tangencies and hyperbolicity for surface diffeomorphisms. Ann. Math. 151, 961–1023 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  44. Qiu, H.: Existence and uniqueness of SRB measure on \(C^1\) generic hyperbolic attractors. Commun. Math. Phys. 320, 345–357 (2011)

    Article  ADS  MATH  Google Scholar 

  45. Rokhlin, V.A.: Lectures on the entropy theory of measure-preserving transformations. Russ. Math. Surv. 22, 1–52 (1967)

    Article  MATH  Google Scholar 

  46. Ruelle, D.: A measure associated with Axiom A attractors. Am. J. Math. 98, 619–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ruelle, D.: Positivity of entropy production in non equilibrium statistical mechanics. J. Stat. Phys. 85, 1–23 (1996)

    Article  ADS  MATH  Google Scholar 

  48. Sinai, Y.: Gibbs measures in ergodic theory. Russ. Math. 27(4), 21–69 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tsujii, M.: Regular points for ergodic Sinai measures. Trans. Am. Math. Soc. 328, 747–766 (1991)

    MathSciNet  MATH  Google Scholar 

  50. Viana, M.: Lectures on Lyapunov exponents. In: Cambridge Studies in Advanced Mathematics, vol. 145 (2014). http://w3.impa.br/~viana/out/peru.pdf

  51. Viana, M.: Lecture Notes on Attractors and Physical Measures. Course Lectured at the IMCA, IMCA, Peru (1999)

  52. Wen, L.: Homoclinic tangencies and dominated splittings. Nonlinearity 15, 1445–1469 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Wen, L.: Generic diffeomorphisms away from homoclinic tangencies and heterodimensional cycles. Bull. Braz. Math. Soc. 35(3), 419–452 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  54. Young, L.-S.: What are SRB measures, and which dynamical systems have them? J. Stat. Phys. 108, 733–754 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zang, Y., Yang, D., Cao, Y.: The entropy conjecture for dominated splitting with multi 1D centers via upper semi-continuity of the metric entropy. Nonlinearity 30, 3076–3087 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Buzzi, S. Crovisier, S. Gan, H. Hu, P. Liu, S. Lloyd, L. Wen, X. Wen, J. Xie and Y. Zang for their suggestions and discussions. J. Buzzi and S. Crovisier helped us to check and improve the proof carefully. S. Lloyd helped us to improve English significantly. We thank the anonymous referees for their careful reading, questions and comments for improving the paper. We thank for the support from Tianyuan Mathematical Center in Southwest China (NSFC 11826102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Yang.

Additional information

Communicated by C. Liverani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Y. Cao was partially supported by NSFC (11771317,11790274, 11826102). Z. Mi was partially supported by NSFC 11801278. D.Yang was partially supported by NSFC (11822109, 11671288, 11790274)

Appendices

The Absolute Continuity of Invariant Manifolds

Let W be an embedded manifold of M. A foliation \({{\mathcal {F}}}\) of W is absolutely continuous if for any two cross section \(\Sigma _1\) and \(\Sigma _2\) in W that are close and transverse to the foliation \({{\mathcal {F}}}\) in W, the holonomy map \(h:\Sigma _1\rightarrow \Sigma _2\) defined by the foliation \({{\mathcal {F}}}\) has the following property: \(h_*(\mathrm{Leb}_{\Sigma _1})\) is absolutely continuous with respect to \(\mathrm{Leb}_{\Sigma _2}\).

A fundamental property of an absolutely continuous foliation is the following (one can see [7, Lemma 3.4] for the proof):

Lemma A.1

Assume that W is an embedded sub-manifold of M and \({{\mathcal {F}}}\) is an absolutely continuous foliation of W. Then the conditional measures of the Lebesgue measure of W with respect to the measurable partition associated to \({{\mathcal {F}}}\) are absolutely continuous with respect to the Lebesgue measures of the leaves of \({{\mathcal {F}}}\).

About the plaque families, one has the following result (Lemma A.2) on the absolute continuity. Recall that

Lemma A.2

Assume that f is a \(C^2\) diffeomorphism and assume that \(\Lambda \) is a compact f-invariant set with a dominated splitting \(TM|_\Lambda =\Delta _1\oplus _\succ \Delta _2\oplus _\succ \Delta _3\). Given \(\ell \in {{\mathbb {N}}}\) and \(\alpha >0\), there is \(\delta =\delta (\ell ,\alpha )\) such that for any point \(x\in \Lambda _\ell (\Delta _2,\alpha )\), i.e.,

$$\begin{aligned} \prod _{i=0}^{n-1}\Vert Df^{-\ell }|_{\Delta _2(f^{-i \ell }(x))}\Vert \le \mathrm{e}^{-\alpha \ell n},~\forall n\in {{\mathbb {N}}}, \end{aligned}$$

the foliation

$$\begin{aligned} \{W^{\Delta _1}_\delta (y):~y\in W^{\Delta _1\oplus \Delta _2}(x)\} \end{aligned}$$

is an absolutely continuous foliation of \(W^{\Delta _1\oplus \Delta _2}(x)\).

Proof

We give a sketch of the proof. By relaxing the constants, for any point \(x\in \Lambda _\ell (\Delta _2,\alpha )\), one has that

$$\begin{aligned} \prod _{i=0}^{n-1}\Vert Df^{-\ell }|_{\Delta _1\oplus _\succ \Delta _2(f^{-i \ell }(x))}\Vert \le \mathrm{e}^{-\alpha \ell n},~\forall n\in {{\mathbb {N}}}. \end{aligned}$$

Thus, by Lemma 4.4, there is \(\delta =\delta (\ell ,\alpha )\) such that \(W^{\Delta _1\oplus \Delta _2}_\delta (x)\) is contained in the (exponentially) unstable manifold of x.

Thus, by reducing \(\delta \) if necessary, for any point \(y\in W^{\Delta _1\oplus \Delta _2}_\delta (x)\), \(W^{\Delta _1}_\delta (y)\) is the stronger unstable manifold in \(W^{\Delta _1\oplus \Delta _2}_\delta (x)\). The absolute continuity follows from a similar argument in [8, Chapter 11]. \(\square \)

Now we can give the proof of Proposition 4.9.

Proof of Proposition 4.9

It suffices to prove that for any \(0\le i\le k-1\), one has that \({{\mathcal {G}}}_i\supset {{\mathcal {G}}}_{i+1}\). We set \(E=E^{uu}\oplus _\succ E_1^c\oplus _\succ \cdots \oplus _\succ E_{i+1}^c\) and \(\Delta =E^{uu}\oplus _\succ E_1^c\oplus _\succ \cdots \oplus _\succ E_{i}^c\). For any measure \(\mu \in {{\mathcal {G}}}_{i+1}\), one knows that:

  1. 1.

    \(\mu \)-almost every point has its Lyapunov exponents along E are positive.

  2. 2.

    The conditional measures of \(\mu \) on \(W^{E,u}\) are absolutely continuous w.r.t. Lebesgue.

By Item 1, there are \(\ell \in {{\mathbb {N}}}\) and \(\alpha >0\) such that \(x\in \Lambda _\ell (\alpha ,E^c_{i+1})\). By Lemma A.2, the foliation

$$\begin{aligned} \{W^{\Delta }_\delta (y):~y\in W^{E}(x)\} \end{aligned}$$

is an absolutely continuous foliation of \(W^{E}(x)\). Thus from Lemma A.1, the conditional measures of the Lebesgue measure on \(W^E(x)\) on the foliation \(\{W^{\Delta }_\delta (y):~y\in W^{E}(x)\}\) are Lebesgue measures. By Item 2 and the transitivity of conditional measures, one can conclude the proposition. \(\square \)

The Proof of the Pliss-Like Lemma

Proof of Lemma 6.8

For any given \(\varepsilon >0\), take

$$\begin{aligned} 0<\rho < \min \left\{ 1,\frac{(\gamma _2-\gamma _1)}{2(2C-\gamma _1)}, \frac{\gamma _2-\gamma _1}{C-\gamma _1}\varepsilon \right\} . \end{aligned}$$

The subset \({{\mathbb {J}}}\subset {{\mathbb {N}}}\) is defined by

$$\begin{aligned} {{\mathbb {J}}}=\{j\in {{\mathbb {N}}}:~\sum _{i=0}^{n-1}a_{i+j}\le n\gamma _2,~~~\forall n\in {{\mathbb {N}}}\}. \end{aligned}$$

We are going to prove that \(\limsup _{n\rightarrow \infty }\frac{1}{n}\#({{\mathbb {J}}}\cap [1,n])\ge 1-\varepsilon \). Fix \(\gamma =(\gamma _1+\gamma _2)/2\).

Claim

For any L large enough, one has that

$$\begin{aligned} \sum _{i=1}^L a_i\le L\gamma . \end{aligned}$$

Proof

Choose a large integer \(L\in {{\mathbb {L}}}\) such that \(\rho L>1\). By the property of \({{\mathbb {L}}}\), there exists a set of integers \({{\mathbb {G}}}=\{n_1,n_2,\cdots ,n_k\}\subset [1,L]\) such that \(\#{{\mathbb {G}}}\ge (1-\rho )L\) and \(a_{n_i}<\gamma _1\). Thus, one has that

$$\begin{aligned} \sum _{i=1}^L a_i= & {} \sum _{m\in {{\mathbb {G}}}}a_m+\sum _{m\in [1,L]\setminus {{\mathbb {G}}}}a_m\le \gamma _1(1-\rho )L+C(\rho L+1) \\\le & {} ((2C-\gamma _1)\rho +\gamma _1)L\le \gamma L \end{aligned}$$

when \(\rho <(\gamma _2-\gamma _1)/2(2C-\gamma _1)\). \(\square \)

From the above claim, by the usual Pliss Lemma as in [40], one knows that \({{\mathbb {J}}}\) is a non-empty set with infinite cardinality.

To conclude, it suffices to prove that for some large \(J\in {{\mathbb {J}}}\), one has that \({{\mathbb {J}}}\cap [1,J]\ge (1-\varepsilon )J\). We will prove by contradiction and assume that \({{\mathbb {J}}}\cap [1,J]< (1-\varepsilon )J\) for any large J. Therefore, \([1,J]\setminus {{\mathbb {J}}}\) can be split into finitely many intervals \(\{I_\alpha =[c_\alpha ,d_\alpha )\}_{\alpha \in {{\mathcal {A}}}}\) such that

  • \(\sum _{m\in [c_\alpha ,d_\alpha )}a_m\ge (d_\alpha -c_\alpha )\gamma _2\) for any \(\alpha \in {{\mathcal {A}}}\).

  • \(\sum _{\alpha \in {{\mathcal {A}}}}(d_\alpha -c_\alpha )\ge \varepsilon J\).

Set \({{\mathbb {B}}}=\cup _{\alpha \in {{\mathcal {A}}}}I_\alpha \). Since \(\liminf _{n\rightarrow +\infty }\frac{1}{n}\#\{[0,n-1]\cap {{\mathbb {L}}}\}>1-\rho \), for J large enough, one has that \(\# ({{\mathbb {L}}}\cap [1,J])\ge (1-\rho )J\).

Claim

One has the following estimate:

$$\begin{aligned} \#({{\mathbb {B}}}\setminus {{\mathbb {L}}})\ge \frac{\gamma _2-\gamma _1}{C-\gamma _1}\#({{\mathbb {B}}})\ge \frac{\gamma _2-\gamma _1}{C-\gamma _1}\varepsilon J. \end{aligned}$$

Proof

We have the following two estimates:

  • \(\sum _{i\in {{\mathbb {B}}}}a_i>(\#{{\mathbb {B}}})\gamma _2\).

  • \(\sum _{i\in {{\mathbb {B}}}}a_i\le \sum _{i\in {{\mathbb {B}}}\cap {{\mathbb {L}}}}a_i+\sum _{i\in {{\mathbb {B}}}\setminus {{\mathbb {L}}}}a_i\le (\#({{\mathbb {B}}}\cap {{\mathbb {L}}}))\gamma _1+(\#({{\mathbb {B}}}\setminus {{\mathbb {L}}}))C=(\#{{\mathbb {B}}})\gamma _1+(\#({{\mathbb {B}}}\setminus {{\mathbb {L}}}))(C-\gamma _1).\)

By combining the above two inequalities one obtains that \(\#({{\mathbb {B}}}\setminus {{\mathbb {L}}})\ge \frac{\gamma _2-\gamma _1}{C-\gamma _1}\#({{\mathbb {B}}})\). The last inequality then follows from \(\#{{\mathbb {B}}}\ge \varepsilon J\). \(\square \)

Consequently, we have that

$$\begin{aligned} \rho J\ge & {} \#([1,J]\setminus {{\mathbb {L}}})\ge \#({{\mathbb {B}}}\setminus {{\mathbb {L}}})\\\ge & {} \frac{\gamma _2-\gamma _1}{C-\gamma _1}\#({{\mathbb {B}}})\ge \frac{\gamma _2-\gamma _1}{C-\gamma _1}\varepsilon J. \end{aligned}$$

This gives a contradiction since \(\rho < {(\gamma _2-\gamma _1)}\varepsilon /{(C-\gamma _1)}\). \(\square \)

Proof of the Addendum

Now we give the proof of the addendum in Sect. 1.

It has been announced by Araujo [5] that for a \(C^1\) generic surface diffeomorphism f, either it has infinitely many sinks or it has finitely many hyperbolic attractors whose basins cover a full Lebesgue measure set of the manifold. Potrie [42] presented a complete proof of Araujo’s theorem by using the work of Pujals and Sambarino [43, Theorem B].

Recall that Qiu [44] has proved that for \(C^1\) generic diffeomorphisms, any hyperbolic attractor supports a physical measure satisfying Pesin’s entropy formula. If f has only hyperbolic attractors, then one can apply Qiu’s result to conclude. If f has sinks, then the measures supported on sinks are physical measures that satisfy Pesin’s entropy formula.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Mi, Z. & Yang, D. On the Abundance of Sinai–Ruelle–Bowen Measures. Commun. Math. Phys. 391, 1271–1306 (2022). https://doi.org/10.1007/s00220-022-04338-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04338-5

Navigation